JPH0135451B2 - - Google Patents

Info

Publication number
JPH0135451B2
JPH0135451B2 JP54044564A JP4456479A JPH0135451B2 JP H0135451 B2 JPH0135451 B2 JP H0135451B2 JP 54044564 A JP54044564 A JP 54044564A JP 4456479 A JP4456479 A JP 4456479A JP H0135451 B2 JPH0135451 B2 JP H0135451B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
superconducting wire
wires
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54044564A
Other languages
Japanese (ja)
Other versions
JPS55136408A (en
Inventor
Yasuzo Tanaka
Itaru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4456479A priority Critical patent/JPS55136408A/en
Publication of JPS55136408A publication Critical patent/JPS55136408A/en
Publication of JPH0135451B2 publication Critical patent/JPH0135451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は電流密度の高い成型撚線型又は編組型
の超電導線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a molded stranded or braided superconducting wire with high current density.

従来この種超電導線の製造方法は第1図aに示
す如く超電導体1を複数本安定化材2の内に埋込
んだ素線3を複数本撚合せて第1図bに示す如く
成型撚線型超電導線をえているものである。なお
編組型超電導線の場合には編組機を使用して製造
するものである。
Conventionally, a method for manufacturing this type of superconducting wire is to twist together a plurality of strands 3 in which a plurality of superconductors 1 are embedded in a stabilizing material 2 as shown in FIG. 1a, and then form and twist them as shown in FIG. 1b. This is a linear superconducting wire. In the case of a braided superconducting wire, a braiding machine is used to manufacture it.

然しながら従来の方法においては素線が丸棒で
あるため、このままの状態にて撚線した場合には
その線密度は78%程度と低いものであつた。更に
該素線を圧縮成型して第1図bの如き状態におい
て撚線したとしても線密度が数%の上昇にすぎ
ず、強力に圧縮して線密度を85%以上にした場合
には素線に断線などを生じ超電導線としての性能
を著しく阻害する。又編組型線における線密度は
70%程度が限度とされている。
However, in the conventional method, since the wires are round bars, when the wires are twisted in this state, the linear density is as low as about 78%. Furthermore, even if the strands are compression molded and twisted in the state shown in Figure 1b, the linear density increases by only a few percent; This can cause wire breakage and other problems, significantly impeding its performance as a superconducting wire. Also, the linear density of the braided wire is
The limit is set at around 70%.

更に丸線の素線を平角状に成形する超電導線に
おいては、その端部(エツジ部)の変形が激しく
場合によつては断線するものであつた。この結果
エツジ部での素線は細くなり臨界電流が規定され
る。又、編組型線においては素線同志の交叉が点
接触であるため圧縮加工によるクビレが起り素線
の断線につながるものであつた。
Furthermore, in superconducting wires in which round strands are formed into rectangular shapes, the ends (edges) are severely deformed and may break. As a result, the wire at the edge becomes thinner and a critical current is defined. In addition, in the case of a braided wire, since the strands intersect with each other in point contact, the compression process causes cracking, which leads to breakage of the strands.

本発明はかかる欠点を改善せんとして鋭意研究
を行つた結果、線密度の高い超電導線を得るため
の製造方法を見出したものである。即ち本発明方
法は所望本数の超電導素線を撚合せて成型撚線型
又は編組型超電導線を製造する方法において、超
電導素線を予め縦横比が1から2の範囲の平角状
にする工程と、これら平角状の素線を撚線する工
程と該撚線を圧縮する工程とからなることを特徴
とするものである。
The present invention has been made as a result of intensive research aimed at improving these drawbacks, and as a result has discovered a manufacturing method for obtaining a superconducting wire with high linear density. That is, the method of the present invention is a method for manufacturing a molded stranded or braided superconducting wire by twisting a desired number of superconducting strands, which includes the steps of: pre-forming the superconducting strands into a rectangular shape with an aspect ratio in the range of 1 to 2; This method is characterized by comprising a step of twisting these rectangular wires and a step of compressing the twisted wires.

本発明方法は第2図に示す如くアスペクト比1
乃至2の素線3を使用して、従来の撚合機あるい
は編組機を用いて撚線あるいは編組線とするもの
である。なお必要に応じて圧縮機やタースクヘツ
ドを用いて圧縮成形しつつ撚線してもよい。
The method of the present invention has an aspect ratio of 1 as shown in FIG.
The two strands 3 are used to form a twisted wire or a braided wire using a conventional twisting machine or braiding machine. Note that, if necessary, the wires may be twisted while compression molding using a compressor or a tursk head.

第3図は本発明方法における成形撚線の製造概
念を示したものであり、超電導体1を内蔵して、
素線3を7本用意し、これを整列撚合しながらタ
ークスヘツド4に導き圧縮成型加工を行うことに
よつて成型撚線型超電導線5をうるものである。
FIG. 3 shows the concept of manufacturing a shaped stranded wire according to the method of the present invention, in which a superconductor 1 is built-in,
A molded stranded superconducting wire 5 is obtained by preparing seven strands of wire 3 and guiding them to a Turk's head 4 while aligning and twisting them and compression molding them.

本発明方法における素線の形状はその縦横比
(アスペクト比)が1から2の範囲のものを使用
するものである。このようにして限定した理由は
エツジ部或は素線交叉部における素線の変形加工
を著しく小さくすることができるためであり、芯
材を設けない撚線型または編組型の超電導線にお
いてはアスペスト比は1乃至2である。すなわ
ち、素材の寸法は撚線又は編組線型超電導線の厚
みと同等から1/2程度までのものを使用すること である。一方芯材を設けた撚線型又は編組型の超
電導線においては、芯材の大きさによつて素線の
アスペスト比は決められるものであり一概のアス
ピスト比を選定することは出来ない。いずれにし
ても、素線として平角線を使用するという概念に
おいて含まれるものである。
In the method of the present invention, wires having an aspect ratio of 1 to 2 are used. The reason for this limitation is that deformation of the strands at the edge portion or strand intersection portion can be significantly reduced, and in stranded or braided superconducting wires that do not have a core material, the aspest ratio is 1 to 2. That is, the dimensions of the material to be used are from the same to about 1/2 the thickness of the stranded or braided superconducting wire. On the other hand, in a stranded or braided superconducting wire provided with a core material, the aspest ratio of the wire is determined by the size of the core material, and it is not possible to select a general aspest ratio. In any case, it is included in the concept of using a rectangular wire as a wire.

なお、本発明方法はNbTi合金などの合金超電
導線及びV3Ga,Nb3Snなどの化合物超電導線に
適用することができる。もちろん化合物超電導線
の場合は、成型撚線あるいは編組線とした後に拡
散熱処理によつて化合物超電導体が形成されるこ
とである。
Note that the method of the present invention can be applied to alloy superconducting wires such as NbTi alloys and compound superconducting wires such as V 3 Ga and Nb 3 Sn. Of course, in the case of a compound superconducting wire, a compound superconductor is formed by forming a stranded or braided wire and then performing a diffusion heat treatment.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 1 Nb3Snを成形すべくNb芯505芯をCuSnマトリ
ツクス中に内蔵し、外被をOFHC銅とせる0.2×
0.4mm2(R=0.05)の素線7本用意し、第3図に
示す成形撚線加工を行つて0.39×1.38mm2の成型撚
線型超電導線をえた。かくして得た超電導線の線
密度は96.5%であつた。
Example 1 In order to mold Nb 3 Sn, 505 Nb cores are built into a CuSn matrix, and the outer sheath is made of OFHC copper.
Seven wires of 0.4 mm 2 (R=0.05) were prepared and subjected to the forming stranding process shown in FIG. 3 to obtain a stranded superconducting wire of 0.39×1.38 mm 2 . The linear density of the superconducting wire thus obtained was 96.5%.

なお上記の素線を従来の方法により撚線加工を
行つて得た、成型撚線型超電導線の線密度は85%
であつた。
Furthermore, the linear density of the formed stranded superconducting wire obtained by twisting the above wires using the conventional method is 85%.
It was hot.

実施例 2 NbTi合金を820芯、Cuマトリツクス中に内蔵
した0.35×0.7mm2の平角線を7本用意し、編組機
によつて加工を行い、0.85×4.4mm2の編組線超電
導線をえた。この超電導線の線密度は51%であつ
たが、更にタークスヘツドにより圧縮成形して
0.69×3.1mm2の成型編組線型超電導線をえたこの
線の密度は81%であつた。
Example 2 Seven rectangular wires of 0.35 x 0.7 mm 2 with 820 cores of NbTi alloy embedded in a Cu matrix were prepared and processed using a braiding machine to obtain a braided superconducting wire of 0.85 x 4.4 mm 2 . . The linear density of this superconducting wire was 51%, but it was also compression molded using a Turks head.
A molded braided wire superconducting wire measuring 0.69×3.1 mm 2 was obtained, and the density of this wire was 81%.

なお比較のためにNbTi合金を420芯Cuマトリ
ツクス中に内蔵した0.35mmφの素線を13本用意
し、編組機によつて0.85×5.5mm2の編組線型超電
導線をえた。この線の線密度は43%であつた。更
にこれを圧延し0.62×5.4mm2としたところ線密度
は58%に上昇したが素線が2本断線した。
For comparison, 13 strands of 0.35 mmφ with NbTi alloy embedded in a 420-core Cu matrix were prepared, and a 0.85 x 5.5 mm 2 braided superconducting wire was obtained using a braiding machine. The linear density of this line was 43%. When this was further rolled to a size of 0.62 x 5.4 mm 2 , the linear density increased to 58%, but two strands were broken.

以上詳述した如く本発明方法によれば高密度の
超電導線をうることが出来るため、ソレノイドマ
グネツトは勿論のこと鞍型マグネツトなどの異型
マグネツトに極めて有用なものである。
As described in detail above, the method of the present invention makes it possible to obtain a high-density superconducting wire, making it extremely useful not only for solenoid magnets but also for unusual magnets such as saddle-shaped magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の撚線型超電導線の概略説明図、
第2図は本発明方法による撚線型超電導線の概略
説明図、第3図は本発明における撚線方法を示す
概略説明図である。 1……超電導体、2……安定化材、3……超電
導素線、4……タークスヘツド、5……成型撚線
型超電導線。
Figure 1 is a schematic explanatory diagram of a conventional stranded superconducting wire.
FIG. 2 is a schematic explanatory diagram of a stranded superconducting wire according to the method of the present invention, and FIG. 3 is a schematic explanatory diagram showing the stranded wire method according to the present invention. 1... Superconductor, 2... Stabilizing material, 3... Superconducting wire, 4... Turks head, 5... Molded stranded superconducting wire.

Claims (1)

【特許請求の範囲】[Claims] 1 所望本数の超電導線を撚合せて成型撚線型又
は編組型の超電導線を製造する方法において、超
電導素線を予め縦横比が1から2の範囲の平角状
にする工程とこれら平角状の素線を撚線する工程
と該撚線を圧縮する工程とからなることを特徴と
する超電導線の製造方法。
1. A method for manufacturing a molded stranded or braided superconducting wire by twisting a desired number of superconducting wires, a step of pre-forming superconducting strands into a rectangular shape with an aspect ratio in the range of 1 to 2, and forming these rectangular strands. A method for producing a superconducting wire, comprising the steps of twisting wires and compressing the twisted wires.
JP4456479A 1979-04-12 1979-04-12 Method of manufacturing superconductive wire Granted JPS55136408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4456479A JPS55136408A (en) 1979-04-12 1979-04-12 Method of manufacturing superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4456479A JPS55136408A (en) 1979-04-12 1979-04-12 Method of manufacturing superconductive wire

Publications (2)

Publication Number Publication Date
JPS55136408A JPS55136408A (en) 1980-10-24
JPH0135451B2 true JPH0135451B2 (en) 1989-07-25

Family

ID=12694983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4456479A Granted JPS55136408A (en) 1979-04-12 1979-04-12 Method of manufacturing superconductive wire

Country Status (1)

Country Link
JP (1) JPS55136408A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017804A (en) * 1983-07-11 1985-01-29 古河電気工業株式会社 Superconductive wire for permanent current switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132692A (en) * 1976-04-28 1977-11-07 Furukawa Electric Co Ltd:The Superconductor cable made of twisted-wire-type compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132692A (en) * 1976-04-28 1977-11-07 Furukawa Electric Co Ltd:The Superconductor cable made of twisted-wire-type compound

Also Published As

Publication number Publication date
JPS55136408A (en) 1980-10-24

Similar Documents

Publication Publication Date Title
JPS62170111A (en) Manufacture of multicore fine wire super conductor
US4094059A (en) Method for producing composite superconductors
JPH0135451B2 (en)
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JP3070969B2 (en) Superconducting wire manufacturing method
JP2997006B2 (en) Molded stranded wire
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPS5952491B2 (en) Method for producing stabilized superconducting stranded wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP3143908B2 (en) Superconducting conductor
JP3148212B2 (en) Manufacturing method of superconducting molded stranded wire
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
RU2088993C1 (en) Method of production of multiple-fiber alloyed super- conductor based on intermetallic compound nb*003sn
JPS6215965B2 (en)
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPS6228526B2 (en)
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH03141515A (en) Manufacture of nb-ti ac superconductive cable
JPH0422015A (en) Manufacture of superconductive circular molded stranded wire
JPS60250509A (en) Method of producing nb3sn composite superconductive wire
JPS61115612A (en) Production of nb-ti multicore superconductive wire
JPH0554741A (en) Manufacture of compound superconducting wire
JPH0696627A (en) Nbti superconductive wire
JPS61279662A (en) Production of nb3sn multi-cored superconductive wire