JPS61115612A - Production of nb-ti multicore superconductive wire - Google Patents

Production of nb-ti multicore superconductive wire

Info

Publication number
JPS61115612A
JPS61115612A JP59236176A JP23617684A JPS61115612A JP S61115612 A JPS61115612 A JP S61115612A JP 59236176 A JP59236176 A JP 59236176A JP 23617684 A JP23617684 A JP 23617684A JP S61115612 A JPS61115612 A JP S61115612A
Authority
JP
Japan
Prior art keywords
wire
copper
alloy
based metal
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59236176A
Other languages
Japanese (ja)
Other versions
JPH0579408B2 (en
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59236176A priority Critical patent/JPS61115612A/en
Publication of JPS61115612A publication Critical patent/JPS61115612A/en
Publication of JPH0579408B2 publication Critical patent/JPH0579408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the wire rod having excellent workability and supercon duction characteristic by specifying the arrangement of the composite wire and the matrix thickness on the outer peripheral part in the method of packing numerous pieces of the copper coating Nb-Ti composite wire having the pre scribed matrix ratio and a copper wire into a copper pipe. CONSTITUTION:The composite wire having almost a regular hexagonal section of 0.25-0.6 matrix ratio is produced with coating a copper or copper alloy on the outer periphery of Nb-Ti alloy. Numerous pieces of this composite wire are arranged in about cylindrical shape, the copper metal wire of the same sectional shape with said composite wire is arranged on the inner side of this cylinder or on the inner side and outer side, and these are packed into a copper metal pipe. This copper metal pipe is subjected to reduction and the wire rod of the copper metal having the thickness more than 10% of the wire diameter being arranged on the outer peripheral part is obtd.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、伸線加工時におけるNb−Ti素線の断線が
少なく、これによって臨界電流密度、交流損失等の特性
の改善された超電導線の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a superconducting wire that has less disconnection of Nb-Ti strands during wire drawing and has improved characteristics such as critical current density and AC loss. Regarding the manufacturing method.

[発明の技術的背景とその問題点] 従来から、超電導線、特にファインマルチ超電導線の製
造方法として、Nb−Ti線の外周にCu被覆を施し、
断面正六角形に成形したーコアロッドの多数本をCuパ
イプ中に緊密に挿入し、このCuパイプとコアロッド間
の空隙にスペーサとなる断面円形の0L10ンドを挿入
し、これに静水圧押出および伸線加工による減面加工を
施し、ざらに必要に応じて、この減面加工を施した超電
導線を断面正六角形状に形成し、同様の操作を繰り返し
て所望の外径の超電導線とする方法が知られている。
[Technical background of the invention and its problems] Conventionally, as a method for manufacturing superconducting wires, especially fine multi-superconducting wires, a method of manufacturing a Nb-Ti wire by applying a Cu coating to the outer periphery of the Nb-Ti wire,
A large number of core rods formed into a regular hexagonal cross section are tightly inserted into a Cu pipe, and an 0L10 rod with a circular cross section is inserted as a spacer into the gap between the Cu pipe and the core rod, and this is subjected to hydrostatic extrusion and wire drawing. It is known that there is a method in which a superconducting wire is subjected to an area reduction process, and if necessary, the superconducting wire subjected to this area reduction process is formed into a regular hexagonal cross section, and the same operation is repeated to obtain a superconducting wire with a desired outer diameter. It is being

しかしながら、このような従来の方法では、減面加工の
際にNb−Ti素線の断線が発生し易く、得られる超電
導線の特性が低下したり、場合によっては線材全体の断
線を引き起こすという問題があり、その改善が望まれて
いた。また臨界電流密度、比抵抗値、交流損失等の超電
導線としての特性の改善も望まれていた。
However, with such conventional methods, the Nb-Ti element wire is likely to break during area reduction processing, resulting in a problem that the properties of the obtained superconducting wire may deteriorate, and in some cases, the entire wire may break. There was a desire for improvement. It was also desired to improve the properties of superconducting wires, such as critical current density, specific resistance value, and AC loss.

上記のような断線を生じ難い超電導線の製造力ロンドを
、前記Cu被覆Nb−Ti合金線を中央部に集合してC
u管中に充填し、これに減面加工を施す超電導線の製造
方法を先に出願した(vF願昭58−201957)。
The above-mentioned superconducting wire production capability that does not easily cause wire breakage is achieved by gathering the Cu-coated Nb-Ti alloy wires in the center.
We previously filed an application for a method for manufacturing superconducting wire that is filled into a U-tube and subjected to surface reduction processing (vF Application No. 58-201957).

しかしながら、この方法においては、線材加工中の断線
の発生頻度およびこれに関連した上述の緒特性は改善さ
れるが、コイル成型時の占積率、巻線作業性、機械的安
定性に優れる平角線製造時の圧延および川床加工におい
て、Nb−Ti合金素線の配置が乱れ、従って上記の改
善された緒特性を維持することが困難であるという難点
を有することが判明した。
However, although this method improves the frequency of wire breakage during wire processing and the above-mentioned characteristics related to this, it does It has been found that the arrangement of the Nb-Ti alloy strands is disturbed during rolling and river bed processing during wire manufacturing, making it difficult to maintain the above-mentioned improved wire characteristics.

上記のような平角加工時の超電導素線の配置の乱れを防
止するためには線材の中央部に適当な面積のマトリック
スを有する必要があり、上述の方法ではこれを達成する
ことができない。
In order to prevent the arrangement of the superconducting strands from being disturbed during rectangular processing as described above, it is necessary to have a matrix of an appropriate area in the center of the wire, and this cannot be achieved with the above-mentioned method.

(発明の目的) 本発明は以上の難点を改善するためになされたもので1
、所定範囲のマトリックス比を有する複合線を円筒状に
配置するとともに、この外周のマトリックスの厚みを一
定以上とすることにより、加工性および超電導特性に優
れた多芯構造のNb−Ti多芯超電導線の製造方法を提
供することを目的とする。
(Object of the invention) The present invention has been made in order to improve the above-mentioned difficulties.
By arranging composite wires having a matrix ratio in a predetermined range in a cylindrical shape and making the thickness of the matrix on the outer periphery more than a certain level, Nb-Ti multicore superconductors with a multicore structure with excellent workability and superconducting properties are produced. The purpose is to provide a method for manufacturing wire.

(発明の概要) 本発明のC(IまたはCIJ基合金(LIIO2u基金
属と称す。)マトリックス中に多数本のNb−Ti合金
素線を配置して成る超電導線の製造方法    )は、 (イ)Nb−Ti合金の外周にCu系金属を被覆し、マ
トリックス比(マトリックス断面積/Nb−Ti合金断
面積)0.25〜0.6の断面略正角形の複合線を製造
する工程と、 (ロ)前記複合線の多数本をほぼ円筒状に配置し、この
円筒の内側、あるいは内側および外側に前記複合線と同
断面形状のCu系金属線を配置し、これらをQu系金属
管中に充填する工程と、(ハ)前記複合線およびCu系
金属線の充填されたCu系金属管に断面減少加工を施し
て、少なくとも線径の10%以上の厚さのCu系金属が
線材外周部に配置された線材を製造する工程とから成る
ことを特徴としている。
(Summary of the Invention) C (method for manufacturing a superconducting wire comprising a large number of Nb-Ti alloy wires arranged in an I or CIJ-based alloy (referred to as LIIO2u-based metal) matrix) of the present invention ) Coating the outer periphery of the Nb-Ti alloy with a Cu-based metal to produce a composite wire with a substantially square cross section having a matrix ratio (matrix cross-sectional area/Nb-Ti alloy cross-sectional area) of 0.25 to 0.6; (b) A large number of the composite wires are arranged in a substantially cylindrical shape, and Cu-based metal wires having the same cross-sectional shape as the composite wires are arranged inside the cylinder, or inside and outside the cylinder, and these are placed in a Qu-based metal tube. (c) performing a cross-section reduction process on the composite wire and the Cu-based metal tube filled with the Cu-based metal wire so that the Cu-based metal with a thickness of at least 10% or more of the wire diameter is formed on the outer periphery of the wire; The method is characterized in that it consists of a step of manufacturing a wire rod placed in the section.

本発明において、複合線のマトリックス比および超電導
線外周部のマトリックスの厚さを上記のように限定した
のは、上記範囲外ではいずれも本発明の効果が実質的に
得られなくなるからによる。
In the present invention, the matrix ratio of the composite wire and the thickness of the matrix at the outer periphery of the superconducting wire are limited as described above because the effects of the present invention cannot be substantially obtained outside the above ranges.

本発明によれば、J[導素線の断線が減少して作業性が
改善され、かつこれにより超電導線としての諸得性も一
段と改善される。
According to the present invention, breakage of the J[conductor wire is reduced, workability is improved, and the benefits of the superconducting wire are thereby further improved.

[発明の実施例] 実施例1 Cu比0.29のCI WlfJNl)−Ti合金線を
断面正六角形に加工し、この336本と同断面形状のC
u線の709本を外径80nφ、内径/7211φのC
u管中に収容した。この際Cu管の内側および中央部に
CuI+を配置1ノ、CIJ被覆Nb−Ti合金線がほ
ぼ円筒状に配置するように充填した。このCu管の先後
端をCu合金で密閉した侵、静水圧押出加工を施して外
径38nφの複合ロッドを得た。この複合ロンドに伸線
加工および熱処理(300℃〜470℃X90〜150
時間)を施した侵、さらに伸線加工を施して外径1.0
+nφの超電導線を製造した。
[Embodiments of the Invention] Example 1 A CI WlfJNl)-Ti alloy wire with a Cu ratio of 0.29 was processed into a regular hexagonal cross section, and a C wire with the same cross-sectional shape as these 336 wires was processed.
709 U wires with an outer diameter of 80nφ and an inner diameter of 7211φ
It was housed in a U tube. At this time, CuI+ was placed inside and at the center of the Cu tube, and the CIJ-coated Nb-Ti alloy wire was filled so as to be arranged in a substantially cylindrical shape. The front and rear ends of this Cu tube were sealed with a Cu alloy and subjected to hydrostatic extrusion to obtain a composite rod with an outer diameter of 38 nφ. Wire drawing and heat treatment (300℃~470℃X90~150℃)
time) and further wire drawing processing to make the outer diameter 1.0.
+nφ superconducting wire was manufactured.

この線材について熱処理後の加工率とNb−Tiフィラ
メントの断線率の関係および加工率O%の値で規格化し
た臨界電流密度比と熱処理後の加工率との関係を求めた
For this wire, the relationship between the processing rate after heat treatment and the disconnection rate of the Nb-Ti filament, and the relationship between the critical current density ratio normalized by the value of processing rate 0% and the processing rate after heat treatment were determined.

尚この超電導線のマトリックス比は4.7、Nb −T
i フィラメント径は24.2μ■φであり、超電導線
外周部のマトリックス厚さは線材外径の13.3%であ
った。
The matrix ratio of this superconducting wire is 4.7, Nb-T
i The filament diameter was 24.2 μιφ, and the matrix thickness at the outer periphery of the superconducting wire was 13.3% of the wire outer diameter.

実施例2 Cu比0.50のCu被覆Nb−7i合金線の336本
とこれと同断面形状のCu線の595本を用い、他は実
施例1と同様の方法で超電導線を製造した。
Example 2 A superconducting wire was manufactured in the same manner as in Example 1 except for using 336 pieces of Cu-coated Nb-7i alloy wire with a Cu ratio of 0.50 and 595 pieces of Cu wire having the same cross-sectional shape.

尚この超電導線のマトリックス比は4.4、Nb−Ti
フィラメント径は23.5μlφであり、超電導線外周
部のマトリックス厚さは線材外径の12.8%であった
The matrix ratio of this superconducting wire is 4.4, Nb-Ti
The filament diameter was 23.5 μlφ, and the matrix thickness at the outer periphery of the superconducting wire was 12.8% of the wire outer diameter.

比較例1 Cujto、73のCu被覆Nb−Ti合金線の336
本とこれと同断面形状のCu線の487本を用い、他は
実施例1と同様の方法で超電導線を製造した。
Comparative Example 1 Cujto, 73 Cu coated Nb-Ti alloy wire 336
A superconducting wire was manufactured in the same manner as in Example 1 except for using a book and 487 Cu wires having the same cross-sectional shape as the book.

尚この超電導線のマトリックス・比は4.6、Nb−T
iフィラメント径は23.1μlφであり、超N導線外
周部のマトリックス厚さは線材外径の11.7%であっ
た。
The matrix ratio of this superconducting wire is 4.6, Nb-T
The i-filament diameter was 23.1 μlφ, and the matrix thickness at the outer periphery of the super-N conductor was 11.7% of the wire outer diameter.

比較例2 CIJ比1.7のCu被覆Nb−Ti合金線の336本
とこれと同断面形状のCunの181本を用い、他は実
施例1と同様の方法で超電導線を製造した。
Comparative Example 2 A superconducting wire was manufactured in the same manner as in Example 1 except for using 336 pieces of Cu-coated Nb-Ti alloy wire with a CIJ ratio of 1.7 and 181 pieces of Cu coated with the same cross-sectional shape.

尚この超電導線のマトリックス比は4.3、Nb−Ti
フィラメント径は23.7μlφであり、超電導線外周
部のマトリックス厚さは線材外径の5%であった。
The matrix ratio of this superconducting wire is 4.3, Nb-Ti
The filament diameter was 23.7 μlφ, and the matrix thickness at the outer periphery of the superconducting wire was 5% of the wire outer diameter.

以上実施例および比較例についての、熱処理後の加工率
とフィラメントの断線率の関係を第1図に、熱処理後の
加工率と臨界電流密度比の関係を第2図に示す。
FIG. 1 shows the relationship between the processing rate after heat treatment and the filament breakage rate for the Examples and Comparative Examples, and FIG. 2 shows the relationship between the processing rate after heat treatment and the critical current density ratio.

なお、フィラメントの断線率は硝酸でCu安定化材を溶
解した後、流水中にNb−Ti素線を浸漬し、落ちてく
るNb−Ti素線の数と使用したNb−Ti素線の本数
との百分率を求めたものである。
The filament breakage rate is determined by dissolving the Cu stabilizing material with nitric acid, immersing the Nb-Ti wire in running water, and calculating the number of Nb-Ti wires that fall and the number of Nb-Ti wires used. The percentage is calculated.

第1図ないし第2図のグラフから明らかなように、本発
明方法により得られた超電導線はNb−Ti素線の断線
が少なく、臨界電流密度等の特性に優れている。
As is clear from the graphs in FIGS. 1 and 2, the superconducting wire obtained by the method of the present invention has fewer disconnections of Nb-Ti strands and is excellent in properties such as critical current density.

[発明の効果コ 以上の実施例からも明らかなように、本発明によれば、
伸線加工時における断線が減少し、作業性が向上すると
ともに臨界電流密度も優れた特性を有する超電導線を得
ることができる。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention,
It is possible to obtain a superconducting wire that reduces wire breakage during wire drawing, improves workability, and has excellent critical current density characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例および比較例の方法によって
製造された多芯超電導線の熱処理後の加工率とフィラメ
ントの断線率との関係を示すグラフ、第2図は同様の方
法によって製造された多芯超電導線の熱処理後の加工率
と臨界電流密度比の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the processing rate after heat treatment and the filament breakage rate of multicore superconducting wires manufactured by the method of one example of the present invention and the comparative example, and FIG. 2 is a graph showing the relationship between processing rate and critical current density ratio after heat treatment of the multicore superconducting wire.

Claims (1)

【特許請求の範囲】 CuまたはCu基合金(以下Cu系金属と称す。 )マトリックス中に多数本のNb−Ti合金素線を配置
して成る超電導線の製造方法において、(イ)Nb−T
i合金の外周にCu系金属を被覆し、マトリックス比(
マトリックス断面積/Nb−Ti合金断面積)0.25
〜0.6の断面略正六角形の複合線を製造する工程と、 (ロ)前記複合線の多数本をほぼ円筒状に配置し、この
円筒の内側、あるいは内側および外側に前記複合線と同
断面形状のCu系金属線を配置し、これらをCu系金属
管中に充填する工程と、(ハ)前記複合線およびCu系
金属線の充填されたCu系金属管に断面減少加工を施し
て、少なくとも線径の10%以上の厚さのCu系金属が
線材外周部に配置された線材を製造する工程とから成る
ことを特徴とするNb−Ti多芯超電導線の製造方法。
[Claims] A method for manufacturing a superconducting wire in which a large number of Nb-Ti alloy wires are arranged in a Cu or Cu-based alloy (hereinafter referred to as Cu-based metal) matrix, comprising: (a) Nb-T
The outer periphery of the i-alloy is coated with Cu-based metal, and the matrix ratio (
Matrix cross-sectional area/Nb-Ti alloy cross-sectional area) 0.25
A process of manufacturing a composite wire having a substantially regular hexagonal cross section with a cross section of ~0.6; (b) arranging a large number of the composite wires in a substantially cylindrical shape, and placing the composite wires on the inside of the cylinder, or on the inside and outside of the cylinder; arranging Cu-based metal wires having a cross-sectional shape and filling them into a Cu-based metal tube; and (c) performing cross-sectional reduction processing on the Cu-based metal tube filled with the composite wire and the Cu-based metal wire. A method for producing a Nb-Ti multicore superconducting wire, comprising the steps of: producing a wire in which a Cu-based metal having a thickness of at least 10% or more of the wire diameter is disposed on the outer periphery of the wire.
JP59236176A 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire Granted JPS61115612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236176A JPS61115612A (en) 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236176A JPS61115612A (en) 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire

Publications (2)

Publication Number Publication Date
JPS61115612A true JPS61115612A (en) 1986-06-03
JPH0579408B2 JPH0579408B2 (en) 1993-11-02

Family

ID=16996891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236176A Granted JPS61115612A (en) 1984-11-09 1984-11-09 Production of nb-ti multicore superconductive wire

Country Status (1)

Country Link
JP (1) JPS61115612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112111A (en) * 1988-10-21 1990-04-24 Mitsubishi Electric Corp Manufacture of nbti extra fine multicore superconductive wire
US5292605A (en) * 1990-05-18 1994-03-08 Xinix, Inc. Method for control of photoresist develop processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023195A (en) * 1973-06-27 1975-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023195A (en) * 1973-06-27 1975-03-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112111A (en) * 1988-10-21 1990-04-24 Mitsubishi Electric Corp Manufacture of nbti extra fine multicore superconductive wire
US5292605A (en) * 1990-05-18 1994-03-08 Xinix, Inc. Method for control of photoresist develop processes

Also Published As

Publication number Publication date
JPH0579408B2 (en) 1993-11-02

Similar Documents

Publication Publication Date Title
JPS61194155A (en) Production of nb3sn superconductive wire
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JPS61115612A (en) Production of nb-ti multicore superconductive wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPH07118232B2 (en) Superconducting wire manufacturing method
JP3050580B2 (en) Method for producing Nb-Ti alloy superconducting wire
JPS61116711A (en) Manufacture of nb-ti multicore flat superconductor
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH05334929A (en) Manufacture of nb3sn superconductor
JPS59105215A (en) Method of producing nb-ti alloy superconductive wire
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPH0648606B2 (en) Manufacturing method of Sn superconducting wire of Nb under 3 by internal diffusion method
JPS63271818A (en) Manufacture of nb3sn superconductive wire by external diffusion method
JPS625990B2 (en)
JPS61227309A (en) Manufactue of nb3 sn superconducting wire by external diffusion
JPH0266813A (en) Manufacture of nb3al superconducting wire
JPH07176227A (en) Manufacture of nb3sn superconductive wire for alternating current
JPH06333449A (en) Manufacture of superconductive wire
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPH0815016B2 (en) Νb ▲ 3 ▼ Manufacturing method of Sn multi-core superconducting wire
JPH0135451B2 (en)
JPH0969316A (en) Nb3 sn superconductive wire material
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JPH09171727A (en) Manufacture of metal-based superconductive wire