JPS61116711A - Manufacture of nb-ti multicore flat superconductor - Google Patents

Manufacture of nb-ti multicore flat superconductor

Info

Publication number
JPS61116711A
JPS61116711A JP59236178A JP23617884A JPS61116711A JP S61116711 A JPS61116711 A JP S61116711A JP 59236178 A JP59236178 A JP 59236178A JP 23617884 A JP23617884 A JP 23617884A JP S61116711 A JPS61116711 A JP S61116711A
Authority
JP
Japan
Prior art keywords
wire
based metal
matrix
wires
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236178A
Other languages
Japanese (ja)
Inventor
鈴木 英元
市原 政光
神定 良昌
伸夫 青木
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59236178A priority Critical patent/JPS61116711A/en
Publication of JPS61116711A publication Critical patent/JPS61116711A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、伸線加工時におけるNb−Ti素線の断線が
少なく、かつ臨界電流密度等の特性が改善されるととも
に、伸線加工後の圧延加工による平角線の製造時にNb
−Ti素線群の配列の乱れや分断を生ずることのないN
b−Ti多芯平角超電導線の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention reduces disconnection of Nb-Ti strands during wire drawing, improves characteristics such as critical current density, and improves performance after wire drawing. Nb is used when manufacturing flat wires by rolling.
- N that does not cause disorder or separation of the arrangement of Ti wire groups
The present invention relates to a method for manufacturing a b-Ti multicore rectangular superconducting wire.

[発明の技術的背景とその問題点1 従来から、超電導線、特にファインマルチ超電導線の製
造方法として、Nb−Ti線の外周にCu被覆を施し、
断面正六角形に成形したコアロッドの多数本をCuバイ
ブ中に緊密に挿入し、このCIJIイブとコアロッド間
の空隙にスペーサとなる断面円形のCuClロット入し
、これに静水圧押出および伸線加工による減面加工を施
し、さらに必要に応じて、この減面加工を施した超電導
線を断面正六角形状に形成し、同様の操作を繰り返して
所望の外径の超電導線とする方法が知られている。
[Technical background of the invention and its problems 1 Conventionally, as a manufacturing method for superconducting wires, especially fine multi-superconducting wires, the outer periphery of Nb-Ti wire is coated with Cu,
A large number of core rods formed with a regular hexagonal cross section are tightly inserted into a Cu vibe, and a CuCl lot with a circular cross section to serve as a spacer is placed in the gap between the CIJI tube and the core rod, and is then processed by hydrostatic extrusion and wire drawing. There is a known method in which a superconducting wire is subjected to an area reduction process, and if necessary, the superconducting wire subjected to this area reduction process is formed into a regular hexagonal cross section, and the same operation is repeated to obtain a superconducting wire with a desired outer diameter. There is.

しかしながら、このような従来の方法では、減面加工の
際にNb−Ti素線の断線が発生し易く、得られる超電
導線の特性が低下したり、場合によっては線材全体の断
線を引き起こすという問題が  ・あり、その改善が望
まれていた。また臨界電流密度等の超電導線としての特
性の改善も望まれていた。
However, with such conventional methods, the Nb-Ti element wire is likely to break during area reduction processing, resulting in a problem that the properties of the obtained superconducting wire may deteriorate, and in some cases, the entire wire may break.・There was a desire for improvement. It was also desired to improve the properties of superconducting wires, such as critical current density.

上記のような断線を生じ難い超電導線の製造方法として
、本出願人は、所定範囲のマトリックス比を有するCu
?*覆Nb−Ti合金線の?1!教本とClロットを、
前記Cu被覆Nb−Ti合金線を中央部に集合してC1
1管中に充填し、これに減面加工を施す超電導線の製造
方法を先に出願した(特願昭58−201957>。
As a method for manufacturing a superconducting wire that does not easily cause wire breakage as described above, the present applicant has developed
? *Nb-Ti alloy wire covered? 1! Textbook and Cl lot,
The Cu-coated Nb-Ti alloy wires are gathered in the center and C1
We previously filed an application for a method for manufacturing superconducting wire that is filled into a single tube and subjected to area reduction processing (Japanese Patent Application No. 58-201957).

しかしながら、この方法においては、線材加工中の断線
の発生頻度およびこれに関連した上述の緒特性は改善さ
れるが、コイル成型時の占積率、巻線作業性、機械的安
定性に優れる平角線製造時の圧延および引抜加工におい
て、Nb−Ti合金素線の配置が乱れ、従って上記の改
善された緒特性を維持することが困難であるという難点
を有することが判明した。
However, although this method improves the frequency of wire breakage during wire processing and the above-mentioned characteristics related to this, it does It has been found that the arrangement of the Nb-Ti alloy strands is disturbed during rolling and drawing during wire manufacture, making it difficult to maintain the above-mentioned improved wire characteristics.

上記のような平角加工時の超電導素線の配置の乱れを防
止するためには線材の中央部に適当な面積のマトリック
スを有する必要があり、上述の方法ではこれを達成する
ことができない。
In order to prevent the arrangement of the superconducting strands from being disturbed during rectangular processing as described above, it is necessary to have a matrix of an appropriate area in the center of the wire, and this cannot be achieved with the above-mentioned method.

(発明の目的) 本発明は以上の難点を改善するためになされたもので、
所定範囲のマトリックス比を有する複合線を円筒状に配
置するとともに、この外周のマトリックスの厚みを一定
以下とし、かつ熱処理後の冷間加工率を所定%以下とす
ることにより、平角加工性および超電導特性に優れた多
芯構造のNb−Ti多芯平角超電導線の製造方法を提供
することを目的とする。
(Object of the invention) The present invention has been made to improve the above-mentioned difficulties.
By arranging composite wires having a matrix ratio in a predetermined range in a cylindrical shape, keeping the thickness of the matrix on the outer periphery below a certain level, and setting the cold working rate after heat treatment below a certain percentage, rectangular workability and superconductivity can be improved. It is an object of the present invention to provide a method for manufacturing a Nb-Ti multicore rectangular superconducting wire having a multicore structure with excellent properties.

(発明の概要) 本発明のε11またはC11基合金(以下CI系金嘱と
称す。)マトリックス中に多数本のNb−Ti合金素線
を配置して成る平角超電導線の製造方法は、 (イ)Nb−Ti合金の外周にCIJI金属を被覆し、
マトリックス比(マトリックス断面積/1’Jb−Ti
合金断面積)0.7〜3.5の断面略正角形の複合線を
製造する工程と、 (ロ)前記複合線の多数本をほぼ円筒状に配置し、この
円筒の内側、あるいは内側および外側に前記複合線と同
断面形状の011系金属線を配置し、これらをCI系金
金属管中充填する工程と、(ハ)前記複合線およびCu
系金属線の充填された011系金属管に断面減少加工を
施して、少なくとも線径の12%以下の厚さのCu系金
属が線材外周部に配置された線材を製造する工程と、(
ニ)この線材に、超電導特性改善のための熱処理を施す
工程と、 (ホ)熱処理後の線材に70%以下の断面減少率で冷間
加工を施す工程と、 (へ〉この冷間加工後の線材にアスペクト比1.8以上
の圧延加工を施す工程とから成ることを特徴としている
(Summary of the Invention) The method for manufacturing a rectangular superconducting wire in which a large number of Nb-Ti alloy wires are arranged in an ε11 or C11-based alloy (hereinafter referred to as CI-based metal) matrix of the present invention is as follows: ) The outer periphery of the Nb-Ti alloy is coated with CIJI metal,
Matrix ratio (matrix cross-sectional area/1'Jb-Ti
(b) arranging a large number of said composite wires in a substantially cylindrical shape, and forming a composite wire inside the cylinder or inside and outside the cylinder; arranging 011 metal wires having the same cross-sectional shape as the composite wire on the outside and filling them into a CI gold metal tube; (c) placing the composite wire and Cu
A step of manufacturing a wire in which a Cu-based metal having a thickness of at least 12% of the wire diameter is arranged on the outer periphery of the wire by subjecting a 011-based metal tube filled with the 011-based metal wire to a cross-sectional reduction process;
d) A step of subjecting this wire to heat treatment to improve superconducting properties; (e) A step of subjecting the wire after heat treatment to cold working with a reduction in area of 70% or less; (f) After this cold working The method is characterized in that it consists of a step of rolling a wire rod with an aspect ratio of 1.8 or more.

本発明において、複合線のマトリックス比、超電導線外
周部のマトリックスの厚さおよび熱処理後の断面減少率
を上記のように限定したのは、次の理由による。
In the present invention, the matrix ratio of the composite wire, the thickness of the matrix at the outer periphery of the superconducting wire, and the cross-sectional reduction rate after heat treatment are limited as described above for the following reasons.

即ち、熱処理後の冷間加工の断面減少率が約75%以上
と高い場合には複合線のマトリックス比が小さいほどフ
ィラメントの断線率が小さいが、その後の平角線への圧
延加工時のアスペクト比が1.8以上となると、圧延後
の平角線断面においてNb −Ti フィラメント群の
配列の乱れや分断を生じたり、あるいは内部に空隙を生
ずるため、アスペクト比が1.8以上の平角線を圧延加
工によって形成するためには、複合線のマトリックスを
上記の範囲とし、かつマトリックス厚さを線径の12%
以下とづるとともに熱処理後の断面減少率を70%以下
に抑える必要がある。
In other words, when the cross-section reduction rate in cold working after heat treatment is high, about 75% or more, the smaller the matrix ratio of the composite wire is, the lower the filament breakage rate is, but the aspect ratio during subsequent rolling into a rectangular wire is If the aspect ratio is 1.8 or more, the Nb-Ti filament group may be disarranged or broken in the cross section of the flat wire after rolling, or voids may be formed inside. In order to form the composite wire by processing, the matrix of the composite wire should be within the above range, and the matrix thickness should be 12% of the wire diameter.
In addition to the following, it is necessary to suppress the area reduction rate after heat treatment to 70% or less.

本発明においては、複合線のマトリックス比をできるだ
け大きくし、かつ熱処理後の冷間加工を断線の生じない
範囲に抑えることにより、アスペクト比の大きな平角圧
延加工を施すことが可能となる。
In the present invention, by increasing the matrix ratio of the composite wire as much as possible and suppressing the cold working after heat treatment to a range where wire breakage does not occur, it is possible to perform rectangular rolling with a large aspect ratio.

複合線のマトリックス比は3.5を越えると伸線加工中
の断線率がやはり大きくなるため、0.7〜3.5の範
囲とする必要がある。
If the matrix ratio of the composite wire exceeds 3.5, the wire breakage rate during wire drawing will increase, so it is necessary to set the matrix ratio in the range of 0.7 to 3.5.

上述の熱処理は、300〜500℃で80〜180時間
の条件で行なわれるが、特に300〜370℃で90〜
150時間の範囲が適している。
The above heat treatment is carried out at 300 to 500°C for 80 to 180 hours, but especially at 300 to 370°C for 90 to 180 hours.
A range of 150 hours is suitable.

し発明の実施例] 実施例1 GOO127のCu被覆Nb−Ti合金線を断面正六角
形に加工し、この336本と同断面形状のCu線の18
1本を外径80nφ、内径72nφのCu管中に収容し
た。この際Cu管の内側にCD被?JNtl−Ti合金
線がほぼ円筒状に配列するように配置し、Cu管とCu
被覆Nb−Ti合金線の間にCu線を充填した。このC
u管の先後端をCu合金で密閉した後、静水圧押出加工
を施して外径38龍φの複合ロッドを得た。この複合ロ
ッドに伸線加工および熱処理(300℃〜370℃X9
0〜150時間)を施した後、さらに伸線加工を施して
外径1.Onφの超電導線を製造した。
Examples of the invention] Example 1 A GOO127 Cu-coated Nb-Ti alloy wire was processed to have a regular hexagonal cross section, and 18 of the 336 Cu wires with the same cross-sectional shape were processed.
One tube was housed in a Cu tube with an outer diameter of 80 nφ and an inner diameter of 72 nφ. At this time, is the CD covered inside the Cu tube? The JNtl-Ti alloy wires are arranged in a substantially cylindrical shape, and the Cu tube and Cu
Cu wire was filled between the coated Nb-Ti alloy wires. This C
After the front and rear ends of the U-tube were sealed with a Cu alloy, hydrostatic extrusion was performed to obtain a composite rod with an outer diameter of 38 mm. This composite rod undergoes wire drawing and heat treatment (300℃~370℃X9
0 to 150 hours), the wire is further drawn to an outer diameter of 1. Onφ superconducting wire was manufactured.

この線材について熱処理後の加工率とNb−Tiフィラ
メントの断線率の関係および加工率O%の値で規格化し
た臨界電流密度比と熱処理後の加工率との関係を求めた
For this wire, the relationship between the processing rate after heat treatment and the disconnection rate of the Nb-Ti filament, and the relationship between the critical current density ratio normalized by the value of processing rate 0% and the processing rate after heat treatment were determined.

尚この超電導線のマトリックス比は4.3、Nb−Ti
フィラメント径は23.7μ田φであり、超電導線外周
部のマトリックス厚さは線材外径の5%であった。
The matrix ratio of this superconducting wire is 4.3, Nb-Ti
The filament diameter was 23.7 μm and the matrix thickness at the outer periphery of the superconducting wire was 5% of the wire outer diameter.

次に熱処理後の冷間加工により線径1.85m1φの線
材を得た後、これに精密ロール圧延を施してアスペクト
比の異なる平角線を製造し、その断面構造を調査した。
Next, a wire rod with a wire diameter of 1.85 m1φ was obtained by cold working after heat treatment, and then precision roll rolling was performed to produce rectangular wires with different aspect ratios, and their cross-sectional structures were investigated.

実施例2 Cu比0.73のCu被覆Nb−Tr合金線の336本
とこれと同断面形状のCu線の487本を用い、池は実
施例1と同様の方法で超電導線を製造した。
Example 2 Ike manufactured a superconducting wire in the same manner as in Example 1 using 336 pieces of Cu-coated Nb-Tr alloy wire with a Cu ratio of 0.73 and 487 pieces of Cu wire with the same cross-sectional shape.

尚この超電導線のマトリックス比は4.6、Nb−Ti
フィラメント径は23,1μ璽φであり、超電導線外周
部のマトリックス厚さは線材外径の11.7%であった
The matrix ratio of this superconducting wire is 4.6, Nb-Ti
The filament diameter was 23.1 μm diameter, and the matrix thickness at the outer periphery of the superconducting wire was 11.7% of the wire outer diameter.

比較例1 CIJ比0.50のCu被覆Nb−Ti合金線の336
本とこれと同断面形状のCu線の595本を用い、他は
実施例1と同様の方法で超電導線を製造した。
Comparative Example 1 336 Cu-coated Nb-Ti alloy wire with CIJ ratio of 0.50
A superconducting wire was manufactured in the same manner as in Example 1 except for using a book and 595 Cu wires having the same cross-sectional shape.

尚この超電導線のマトリックス比は4.4、Nb −T
i フィラメント径は23.5μlφであり、超?li
l線外周部のマトリックス厚さは線材外径の12.8%
であった。
The matrix ratio of this superconducting wire is 4.4, Nb-T
i The filament diameter is 23.5μlφ, which is super? li
The matrix thickness at the outer periphery of the l-wire is 12.8% of the wire outer diameter.
Met.

比較例2 Cu比0.29のCu 1iNb−Ti合金線の336
本とこれと同断面形状のCu線の709本を用い、他は
実施例1と同様の方法で超電導線を製造した。
Comparative Example 2 336 of Cu 1iNb-Ti alloy wire with Cu ratio of 0.29
A superconducting wire was manufactured in the same manner as in Example 1 except for using a book and 709 Cu wires having the same cross-sectional shape as the book.

尚この超N導線のマトリックス比は4,1、Nb−Ti
フィラメント径は24.2μ璽φであり、超g 1線外
周部のマトリックス厚さは線材外径の13.3%であっ
た。
The matrix ratio of this super N conducting wire is 4.1, Nb-Ti
The filament diameter was 24.2 μm, and the matrix thickness at the outer peripheral portion of the ultra-g1 wire was 13.3% of the wire outer diameter.

以上実施例および比較例についての、圧延後の断面状態
を次表に示す。
The cross-sectional states of the above examples and comparative examples after rolling are shown in the following table.

以  下  余  白 さらにフィラメントの配列状態を、第1図(a)(実施
例1.アスペクト比1.92>、(b)(実施例2.ア
スペクト比2.03)、(C)(比較例1.アスペクト
比2.11)および(d)(比較例2.アスペクト比2
.11>に、熱処理後の加工率とフィラメントの断線率
の関係を第2図に、熱処理後の加工率と臨界電流密度比
の関係を第3図(外部磁界8T)に示す。
The arrangement of the filaments is shown in Figure 1 (a) (Example 1. Aspect ratio 1.92>, (b) (Example 2. Aspect ratio 2.03), (C) (Comparative example). 1. Aspect ratio 2.11) and (d) (Comparative example 2. Aspect ratio 2)
.. 11>, the relationship between the processing rate after heat treatment and the filament breakage rate is shown in FIG. 2, and the relationship between the processing rate after heat treatment and the critical current density ratio is shown in FIG. 3 (external magnetic field 8T).

尚フィラメントの断線率は硝酸でCU安定化材を溶解し
た後、流水中にNb−Ti素線を浸漬し、落ちてくるN
b−Ti素線の数と使用したNb−Ti素線の本数との
百分率を求めたものである。
The breakage rate of the filament was determined by dissolving the CU stabilizing material with nitric acid, then immersing the Nb-Ti wire in running water.
The percentage of the number of b-Ti wires and the number of Nb-Ti wires used is determined.

第1図ないし第3図から明らかなように、本発明方法に
より得られた平角超電導線はNb −Ti素線の断線お
よび配列の乱れが少なく、臨界電流密度等の特性に優れ
ている。
As is clear from FIGS. 1 to 3, the rectangular superconducting wire obtained by the method of the present invention has fewer disconnections and disordered arrangement of Nb--Ti strands, and has excellent properties such as critical current density.

[発明の効果] 以上の実施例からも明らかなように、本発明によれば、
伸線加工時における断線が減少し、作業性が向上すると
ともに臨界電流密度や平角加工後の配列状態に優れた平
角超電導線を得ることができる。
[Effect of the invention] As is clear from the above examples, according to the present invention,
Wire breakage during wire drawing is reduced, workability is improved, and a rectangular superconducting wire with excellent critical current density and alignment after rectangular processing can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明方法によって得られた平
角超電導線のフィラメントの配列状態を示す断面図であ
り、同図(c)、(d>は本発明以外の方法によって得
られた平角ff1tl線のフィラメントの配列状態を示
す断面図、第2図は本発明の一実施例および比較例の方
法によって製造された多芯超電導線の熱処理後の加工率
とフィラメントの断線率との関係を示すグラフ、第3図
は同様の方法によって製造された多芯超電導線の熱処理
後の加工率と臨界電流密度比の関係を示すグラフである
FIGS. 1(a) and 1(b) are cross-sectional views showing the arrangement of filaments in a rectangular superconducting wire obtained by the method of the present invention, and FIGS. FIG. 2 is a cross-sectional view showing the filament arrangement state of the flat rectangular FF1TL wire, and FIG. FIG. 3 is a graph showing the relationship between processing rate and critical current density ratio after heat treatment of a multicore superconducting wire manufactured by a similar method.

Claims (1)

【特許請求の範囲】 CuまたはCu基合金(以下Cu系金属と称す。 )マトリックス中に多数本のNb−Ti合金素線を配置
して成る平角超電導線の製造方法において、(イ)Nb
−Ti合金の外周にCu系金属を被覆し、マトリックス
比(マトリックス断面積/Nb−Ti合金断面積)0.
7〜3.5の断面略正六角形の複合線を製造する工程と
、 (ロ)前記複合線の多数本をほぼ円筒状に配置し、この
円筒の内側、あるいは内側および外側に前記複合線と同
断面形状のCu系金属線を配置し、これらをCu系金属
管中に充填する工程と、(ハ)前記複合線およびCu系
金属線の充填されたCu系金属管に断面減少加工を施し
て、少なくとも線径の12%以下の厚さのCu系金属が
線材外周部に配置された線材を製造する工程と、(ニ)
この線材に、超電導特性改善のための熱処理を施す工程
と、 (ホ)熱処理後の線材に70%以下の断面減少率で冷間
加工を施す工程と、 (ヘ)この冷間加工後の線材にアスペクト比(幅/高さ
)1.80以上の圧延加工を施す工程とから成ることを
特徴とするNb−Ti多芯平角超電導線の製造方法。
[Claims] A method for manufacturing a rectangular superconducting wire in which a large number of Nb-Ti alloy wires are arranged in a Cu or Cu-based alloy (hereinafter referred to as Cu-based metal) matrix, comprising (a) Nb
-The outer periphery of the Ti alloy is coated with a Cu-based metal, and the matrix ratio (matrix cross-sectional area/Nb-Ti alloy cross-sectional area) is 0.
(b) arranging a large number of the composite wires in a substantially cylindrical shape, and placing the composite wires on the inside of the cylinder, or on the inside and outside of the cylinder; arranging Cu-based metal wires with the same cross-sectional shape and filling them into a Cu-based metal tube; and (c) performing cross-sectional reduction processing on the Cu-based metal tube filled with the composite wire and the Cu-based metal wire. (d) manufacturing a wire in which a Cu-based metal having a thickness of at least 12% or less of the wire diameter is disposed on the outer periphery of the wire;
A step of subjecting this wire to heat treatment to improve superconducting properties; (e) a step of cold working the wire after heat treatment with a reduction in area of 70% or less; and (f) a step of cold working the wire after this cold working. 1. A method for producing a rectangular Nb-Ti multicore rectangular superconducting wire, comprising the step of rolling the wire to an aspect ratio (width/height) of 1.80 or more.
JP59236178A 1984-11-09 1984-11-09 Manufacture of nb-ti multicore flat superconductor Pending JPS61116711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236178A JPS61116711A (en) 1984-11-09 1984-11-09 Manufacture of nb-ti multicore flat superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236178A JPS61116711A (en) 1984-11-09 1984-11-09 Manufacture of nb-ti multicore flat superconductor

Publications (1)

Publication Number Publication Date
JPS61116711A true JPS61116711A (en) 1986-06-04

Family

ID=16996922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236178A Pending JPS61116711A (en) 1984-11-09 1984-11-09 Manufacture of nb-ti multicore flat superconductor

Country Status (1)

Country Link
JP (1) JPS61116711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329215A (en) * 1989-06-26 1991-02-07 Sumitomo Electric Ind Ltd Nb3al multicore superconductive wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112295A (en) * 1976-03-17 1977-09-20 Furukawa Electric Co Ltd:The Manufacture of super-conduction wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112295A (en) * 1976-03-17 1977-09-20 Furukawa Electric Co Ltd:The Manufacture of super-conduction wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329215A (en) * 1989-06-26 1991-02-07 Sumitomo Electric Ind Ltd Nb3al multicore superconductive wire

Similar Documents

Publication Publication Date Title
CA1131894A (en) Composite construction process and superconductor produced thereby
US4419145A (en) Process for producing Nb3 Sn superconductor
US4153986A (en) Method for producing composite superconductors
JPS61116711A (en) Manufacture of nb-ti multicore flat superconductor
JPS60199522A (en) Manufacture of superconductive alloy wire
JPH0329215A (en) Nb3al multicore superconductive wire
JPS61115612A (en) Production of nb-ti multicore superconductive wire
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP3050580B2 (en) Method for producing Nb-Ti alloy superconducting wire
JPS60101813A (en) Method of producing superconductive wire
JPH02177217A (en) Manufacture of nb3al superconducting wire
JP2001052547A (en) Nb3 COMPOUND-BASED SUPERCONDUCTIVE CABLE AND ITS MANUFACTURING METHOD
JP3154246B2 (en) Extruded billet for AC superconducting wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPS6212607B2 (en)
JPS59105215A (en) Method of producing nb-ti alloy superconductive wire
JPH0135451B2 (en)
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132113A (en) Manufacture of nb3x multi-core superconducting wire
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPS61230210A (en) Manufacture of nb-ti based superconducting wire
JPH0316725B2 (en)
JPH0315285B2 (en)
JPH05334929A (en) Manufacture of nb3sn superconductor