JPS5832308A - Method of producing compound series composite superconductive wire - Google Patents

Method of producing compound series composite superconductive wire

Info

Publication number
JPS5832308A
JPS5832308A JP56129632A JP12963281A JPS5832308A JP S5832308 A JPS5832308 A JP S5832308A JP 56129632 A JP56129632 A JP 56129632A JP 12963281 A JP12963281 A JP 12963281A JP S5832308 A JPS5832308 A JP S5832308A
Authority
JP
Japan
Prior art keywords
wire
alloy
metal layer
composite
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56129632A
Other languages
Japanese (ja)
Inventor
中林 美明
若本 勝嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56129632A priority Critical patent/JPS5832308A/en
Publication of JPS5832308A publication Critical patent/JPS5832308A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は化合物(Nbs8n)系複合超電導線の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound (Nbs8n)-based composite superconducting wire.

周知のように金属間化合物であるNb、Sn系超電導材
紘他の化合物系超電導材よりも超電導特性や製造上値れ
ておシ、今後核融合伊勢に使用される超電導磁石の超電
導線として期待されている。しかしNb1Sn系超電導
材社、金属間化合物であるため機械的に脆弱であシ、合
金系超電導材のように重性加工の方法によって複合線と
することは困難である。
As is well known, Nb and Sn-based superconducting materials, which are intermetallic compounds, have better superconducting properties and manufacturing value than other compound-based superconducting materials, and are expected to be used as superconducting wires for superconducting magnets to be used in the future for nuclear fusion Ise. ing. However, since Nb1Sn-based superconducting materials are intermetallic compounds, they are mechanically fragile, and unlike alloy-based superconducting materials, it is difficult to make them into composite wires using heavy processing methods.

Nb1Sn系超電導材の製造方法紘一般には、ブロンス
法と呼ばれるもので、Cu−8〜14 ”t/c、Sn
合金をマトリックスとし、歯棒を埋設配置したものを縮
径加工と熱処理を繰り返し、所望の寸法とした後、拡散
熱処理しNb、Sn系の超電導線とする方法である。こ
の方法紘熱問および冷間加工性の制約上Sn量が141
!以下に規制されているため、Nb、8mの生成量が少
なく、したがって臨界電流は低い。またマトリックスが
Cu−8〜l 4 ”tloSnである丸め、縮径加工
過程中で断面減少率(加工率)が20〜301Gで加工
性回復のための熱処理(焼鈍)が必要であって、所望の
寸法までに薮10回の熱処理を要する。これによって安
価にかつ大量にNbBSn系複合超電導線を製作するこ
とは不利なことである。
The manufacturing method for Nb1Sn-based superconducting material is generally called the Bronze method.
This is a method in which an alloy is used as a matrix and a tooth bar is embedded, and the wire is repeatedly subjected to diameter reduction processing and heat treatment to obtain a desired size, and then diffusion heat treatment is performed to obtain a Nb or Sn-based superconducting wire. Due to the limitations of heat and cold workability in this method, the amount of Sn is 141.
! Since the amount of Nb, 8m produced is small, the critical current is low. In addition, during the rounding and diameter reduction process in which the matrix is Cu-8~l4''tloSn, the cross-section reduction rate (processing rate) is 20~301G, and heat treatment (annealing) is required to recover workability. 10 times of heat treatment is required to reach the size of .This makes it disadvantageous to manufacture NbBSn-based composite superconducting wires at low cost and in large quantities.

一方、上記ブロンズ法を改良したNb18n線材の製造
方法としては、歯棒と8nまたは5n−Cu合金棒をC
u″qトリックス(母相)に束に配し、中間の軟化焼鈍
処理なしに所望の寸法まで伸線し、これを樵々の熱処理
を加えてNb5Sn :$の超電導線を製造する方法が
ある。しかし仁の方法では適切でない線材に対してId
 Nb、Sn反応の供給となるanは多心線横断面中の
数点〜数十点よ)拡散するため、 Snよシ遠い歯縁は
Nb、anの生成が十分でなく複合線の臨界電流は低く
なる。ま九マトリックスのCuとNbに材料強度の差が
あるため運線の形状が長さ方向に不均一となる場合もあ
夛、Nb、8nの生成からも不利となる等の欠点があっ
たン この発明は上記のような従来のものの欠点を除、1石た
めになされたもので、掻棒とSn?1n−Cu合金状に
配し、これを加工過程で熱処理することなく所望の寸法
まで伸線した後に熱処理を加えることによl) Nb、
Sn系の複合超電導線を製造する方法を提供することを
目的としている。
On the other hand, as a manufacturing method of Nb18n wire rod which is an improvement of the above-mentioned bronze method, a tooth bar and an 8n or 5n-Cu alloy rod are
There is a method of manufacturing Nb5Sn: $ superconducting wire by placing it in a bundle in the u''q trix (matrix), drawing it to the desired dimensions without intermediate softening annealing treatment, and then applying heat treatment by a woodcutter. However, with Jin's method, Id
Since an, which supplies the Nb and Sn reactions, diffuses from several points to several tens of points in the cross section of the multi-core wire, the generation of Nb and an, which is far away from Sn, is insufficient and the critical current of the composite wire. becomes lower. Due to the difference in material strength between Cu and Nb in the matrix, there are cases where the shape of the running lines becomes non-uniform in the length direction, and there are disadvantages such as disadvantages from the formation of Nb and 8n. This invention was made to solve the above-mentioned drawbacks of the conventional ones, and was made to solve the problem of scratching sticks and Sn? Nb,
It is an object of the present invention to provide a method for manufacturing a Sn-based composite superconducting wire.

以下この発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、予めドローベンチ引板または押出し加
工で用意された母相(マトリックス)がCu−3−51
05nOCu=Sn合金2であ択これに多数の冷心線が
線束に堀込まれ丸外径34■の管を作成する。
In Figure 1, the matrix prepared in advance by a draw bench pull plate or extrusion process is Cu-3-51.
05nOCu=Sn alloy 2 is selected, and a large number of cold core wires are drilled into the wire bundle to create a round tube with an outer diameter of 34 cm.

次に歯心呻lの中空部3に第2図に示すように直径12
■のan棒4を挿入し、管の外側に外径50謡、内径4
0■の安定化の九めのCu管および外径3911m、内
径35−のT1からなる拡散隔壁金属管5を被覆した後
、この複合素材をド寵−ベンチャ伸線機によ〕引抜加工
をする。拡散隔壁金属管5としてはTaの他に、V 、
、 Nb 、 、Ti 、 Zr等が有効である。
Next, in the hollow part 3 of the tooth center groove, as shown in FIG.
■ Insert the an rod 4 into the outside of the tube with an outer diameter of 50 and an inner diameter of 4.
After covering the ninth Cu tube with a stabilization of 0 mm and the diffusion barrier metal tube 5 made of T1 with an outer diameter of 3911 m and an inner diameter of 35 mm, this composite material was subjected to drawing processing using a do-venture wire drawing machine. do. In addition to Ta, the diffusion barrier metal tube 5 is made of V,
, Nb, , Ti, Zr, etc. are effective.

複合素材を伸線し所望の寸法にした後、これを真空中ま
九は不活性雰囲気中で650〜850℃で数10〜数1
00時間加熱すると、 Sn棒4はCu−Sn合金2中
に拡散して高8nfi&のブロンズを形成し、さらに励
と反応してその表面に十分な厚さのNbaSn層を長さ
方向に連続的に生成する。この際、拡散隔壁金属管5紘
、8nの外側への移行を阻止し、これによシ、良導体金
属6の純[杜十分に保たれ、安定化金属としての役目を
果す。複合金属の加熱過程では600℃以下では中心部
に包含される8n棒がまず溶融してCu−Sn合金2中
に拡散し、650℃以上でtiNbとamとの反応によ
J) NbaSnの生成が行なわれる。
After drawing the composite material to the desired dimensions, it is heated in a vacuum at 650 to 850°C in an inert atmosphere.
When heated for 00 hours, the Sn rod 4 diffuses into the Cu-Sn alloy 2 to form a bronze with a high 8nfi, and further reacts with the excitation to form a sufficiently thick NbaSn layer on its surface continuously in the length direction. to be generated. At this time, migration of the diffusion barrier metal tubes 5 and 8n to the outside is prevented, thereby keeping the good conductor metal 6 sufficiently pure and serving as a stabilizing metal. In the process of heating the composite metal, at temperatures below 600°C, the 8n rod contained in the center first melts and diffuses into the Cu-Sn alloy 2, and at temperatures above 650°C, the reaction between TiNb and am causes the formation of NbaSn. will be carried out.

第3図線上記のように製作された複合超電導線の横断面
図を示し、第4図は第3図の一部拡大図であって、均一
組成となったCu−Sn合金2の中にNb棒lに密着生
成したNb3Si 7の状態を示している。この発明の
製造方法状複合素材がいずれも延性に富む材料であシ、
母相はCu−8m合金であるため適度な引張シ強さが有
シ、tた伸線加工が合金系複合超電導線に比べて同等か
あるいはさらに容易である。さらに歯棒l紘その周辺を
Cu−Sn合金2で囲まれているので8nよ〕遠い連線
に対してSnの供給(Sn拡散距離)の補完tなし、そ
の上Cu−8n合金2はCuに比較して冷線との強度差
が少なく、これによシ歯縁が均一に伸線加工できる。し
かも伸線加工中では母相がCu−Sn合金であ、り、C
u母相よシも強度が高く細線化されても全く断線するこ
ともなく、長尺!i!を得ることができる。
Fig. 3 shows a cross-sectional view of the composite superconducting wire manufactured as described above, and Fig. 4 is a partially enlarged view of Fig. 3, in which Cu-Sn alloy 2 with a uniform composition is It shows the state of Nb3Si 7 formed in close contact with Nb rod 1. All of the composite materials according to the manufacturing method of this invention are highly ductile materials,
Since the matrix is a Cu-8m alloy, it has an appropriate tensile strength, and the wire drawing process is equivalent to or easier than that of alloy-based composite superconducting wire. Furthermore, since the tooth rod L is surrounded by Cu-Sn alloy 2, there is no supplementary supply of Sn (Sn diffusion distance) for the distant continuous line, and furthermore, Cu-8n alloy 2 is Cu-Sn alloy 2. There is less difference in strength between cold wire and cold wire, which allows the tooth edges to be drawn evenly. Moreover, during wire drawing, the parent phase is a Cu-Sn alloy, and C
The strength of the matrix is high, and even when the wire is thinned, it will not break at all, and it is long! i! can be obtained.

第5図はCukよびCu−1,0、3,5’9$sn合
金の引張1強さ一加工率の関係を表わしている。これに
よればCuに対しCu−ann合金方が引張1強さが高
い仁とは明白であシ、ま九伸1加工率が99一台でも加
工が可能で、したがって加工過程中に熱処理を必要とし
ないことが理解される。第6図社第2図のものを外径0
.5−まで細線化後、750℃で100時間加熱した1
2本心線入シの複合線の臨界電流密度の印加磁場に対す
る値である。これによれば従来のNb、sn 4Iに比
べてこの発明のものが十分に高い値を示し、品質的に優
れていることがわかる。
FIG. 5 shows the relationship between tensile strength and processing rate of Cuk and Cu-1,0,3,5'9$sn alloy. According to this, it is clear that the Cu-Ann alloy has a higher tensile strength than Cu, and it can be processed even with a machining rate of 99, so heat treatment is not required during the processing process. It is understood that it is not necessary. Fig. 6 The one in Fig. 2 has an outer diameter of 0.
.. 1 heated at 750°C for 100 hours after thinning to 5-
This is the value of the critical current density of a composite wire with two cores in relation to the applied magnetic field. According to this, it can be seen that the material of the present invention shows a sufficiently higher value than the conventional Nb and sn 4I, and is superior in terms of quality.

なお、この発明の他の実施例として、Nb1l[1の本
数やSn棒4を歯棒1の外周部または中間部゛に配置し
たり、全体の形状を角形、テープ状にすることや、隔壁
金属管5および良導体金属6の内部を扇形、矩形、六角
形、六角形等に分割し束ねて配置したもの等が種々考え
られるが、いずれもこの発明から逸脱する4ので杜ない
In addition, as other embodiments of the present invention, the number of Nb1l[1] or the Sn rods 4 may be arranged on the outer periphery or the middle part of the tooth bar 1, the overall shape may be square or tape-like, or the partition wall may be Various configurations are possible in which the inside of the metal tube 5 and the good conductor metal 6 are divided into fan shapes, rectangles, hexagons, hexagons, etc. and bundled and arranged, but all of them deviate from the scope of the present invention and are therefore not covered herein.

以上説明したようにこの発明の化金物系複合超電導線の
製一方法で唸、均一な極細多芯線の製作が容易なこと、
反応成分となる8nの供給が調節可能でかつ安定した臨
界電流の高い超電導線が製作できること、Cu−an合
金の母相化によシ線全体の強度が向上し、伸線過程中の
断線がなく長尺線が得られること、およびねじシャより
線、編組線への適用が可能なこと等の効果がある。
As explained above, it is easy to manufacture a uniform ultrafine multifilamentary wire using the method for manufacturing a chemical composite superconducting wire of the present invention.
The supply of 8n, which is a reactive component, can be adjusted, and a superconducting wire with a stable and high critical current can be manufactured.The strength of the entire wire is improved by using Cu-an alloy as a matrix, and wire breakage during the wire drawing process is prevented. It has the advantage of being able to obtain a long wire without any problems, and being able to be applied to threaded wires and braided wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明における中間素材の横断面図、第2図
は第1図からさらに製作が進んだ中間素材の横断面図、
第3図は完成した最終線材の横断面図、第4図は第3図
の一部拡大図、第5図aCuおよびCu−Sn合金の引
張シ強さ/加工率の特性図、第6図は臨界電流密度/磁
界111Mの特性図である。 l・・・Nb棒、2・・・Cu−an合金、3・・・中
空部、4・・・Sn棒、5・・・拡散隔壁金属管、6・
・・良導体金属、7・・・Nb1Snの生成物。 なお、図中、同−符号紘同一又は相当部分を示す。 代理人   葛  野  信  − 第5因 j)a工率(%)□
FIG. 1 is a cross-sectional view of an intermediate material according to the present invention, and FIG. 2 is a cross-sectional view of an intermediate material whose production has progressed further from that of FIG. 1.
Figure 3 is a cross-sectional view of the completed final wire, Figure 4 is a partially enlarged view of Figure 3, Figure 5 is a characteristic diagram of tensile strength/processing rate of aCu and Cu-Sn alloys, Figure 6 is a characteristic diagram of critical current density/magnetic field 111M. l...Nb rod, 2...Cu-an alloy, 3...hollow part, 4...Sn rod, 5...diffusion barrier metal tube, 6...
... Good conductor metal, 7... Product of Nb1Sn. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - 5th factor j) a work rate (%) □

Claims (2)

【特許請求の範囲】[Claims] (1)Sn系またはan−Cu合金系金属層、あるいは
Ga系を死線Ga−Cu系金属層、冷系ま九紘V系のい
ずれか一種の金属線と、加工によシ容易に変形すゐ金属
層よシなる母相を並置した構成を有する複合線を得る工
程と、この複合線を熱処理することによってNb@gn
あるいFiV、Ga超電導化合物を生成させる工程とか
らなる化金物系複合超電導線の製造方法において、上記
容易に変形する金属層がCu−〇、1〜4W−8n合金
あるいはCu−0,1−10”%Ga合金であることを
特徴とする化金物系複合超電導線の製造方法。
(1) A Sn-based or an-Cu alloy metal layer, or a Ga-based metal layer can be easily deformed by processing, such as a dead line Ga-Cu-based metal layer or a cold-type metal wire. 2) A step of obtaining a composite wire having a structure in which a metal layer and a parent phase are juxtaposed, and heat treating this composite wire to form Nb@gn
Alternatively, in a method for manufacturing a compound-based composite superconducting wire comprising a step of generating a FiV, Ga superconducting compound, the easily deformable metal layer is a Cu-0,1-4W-8n alloy or a Cu-0,1- A method for manufacturing a metal compound composite superconducting wire, characterized in that it is a 10''% Ga alloy.
(2)Sn系またa8n−Cu合金系金属層あるい拡G
&またはQa−Cu合金系金属層のCu濃度が0〜2G
”%であることを特徴とする特許請求の範囲第1項記載
の化合物系複合超電導線の製造方法。
(2) Sn-based or a8n-Cu alloy-based metal layer or expanded G
& or the Cu concentration of the Qa-Cu alloy metal layer is 0 to 2G
The method for producing a compound-based composite superconducting wire according to claim 1, wherein
JP56129632A 1981-08-19 1981-08-19 Method of producing compound series composite superconductive wire Pending JPS5832308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56129632A JPS5832308A (en) 1981-08-19 1981-08-19 Method of producing compound series composite superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56129632A JPS5832308A (en) 1981-08-19 1981-08-19 Method of producing compound series composite superconductive wire

Publications (1)

Publication Number Publication Date
JPS5832308A true JPS5832308A (en) 1983-02-25

Family

ID=15014289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56129632A Pending JPS5832308A (en) 1981-08-19 1981-08-19 Method of producing compound series composite superconductive wire

Country Status (1)

Country Link
JP (1) JPS5832308A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142584A (en) * 1978-04-27 1979-11-06 Mitsubishi Electric Corp Preparation of compound superconductive wire or coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142584A (en) * 1978-04-27 1979-11-06 Mitsubishi Electric Corp Preparation of compound superconductive wire or coil

Similar Documents

Publication Publication Date Title
CA1036337A (en) Method of manufacturing an intermetallic superconductor
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US6543123B1 (en) Process for making constrained filament niobium-based superconductor composite
EP0234071B1 (en) Method of fabricating superconductive electrical conductor
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JPS5823110A (en) Method of producing nb3sn superconductive wire material
US6932874B2 (en) Method for increasing the copper to superconductor ratio in a superconductor wire
US7089647B2 (en) Increasing the copper to superconductor ratio of a superconductor wire by cladding with copper-based strip
JPS5832308A (en) Method of producing compound series composite superconductive wire
JPS5827605B2 (en) 100% of the population
JP4386306B2 (en) Method for producing Nb3Al compound-based superconducting wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JP3059570B2 (en) Superconducting wire and its manufacturing method
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JPH09204828A (en) Manufacture of nb3al superconducting wire
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPS60101815A (en) Method of producing nb3sn superconductive wire material
JPH04129106A (en) Manufacture of superconductive wire material made of nb3-sn compound
JPH05325680A (en) Manufacture of nb3sn type superconductive wire rod
JPS62229720A (en) Manufacture of nb3 sn superconductor wire
JPS596004B2 (en) V3SI
JPH0428120A (en) Manufacture of nb3 sn compound superconductive wire