JP4001996B2 - Superconducting precursor composite wire and method for producing superconducting composite wire - Google Patents

Superconducting precursor composite wire and method for producing superconducting composite wire Download PDF

Info

Publication number
JP4001996B2
JP4001996B2 JP07560098A JP7560098A JP4001996B2 JP 4001996 B2 JP4001996 B2 JP 4001996B2 JP 07560098 A JP07560098 A JP 07560098A JP 7560098 A JP7560098 A JP 7560098A JP 4001996 B2 JP4001996 B2 JP 4001996B2
Authority
JP
Japan
Prior art keywords
superconducting
layer
wire
composite wire
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07560098A
Other languages
Japanese (ja)
Other versions
JPH11273469A (en
Inventor
亮 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP07560098A priority Critical patent/JP4001996B2/en
Publication of JPH11273469A publication Critical patent/JPH11273469A/en
Application granted granted Critical
Publication of JP4001996B2 publication Critical patent/JP4001996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流損失の低減した酸化物超電導複合線材を得ることを可能とする酸化物超電導体の超電導前駆複合線材、および酸化物超電導複合線材の製造方法に関する。
【0002】
【従来の技術】
酸化物超電導線、例えばBi系超電導線やY系超電導線は、超電導物質生成時に必要な酸素透過性や、加工性、および超電導物質の配向性を確保するために、AgまたはAg合金からなるシースの中に超電導物質の原料粉を封入し、減面加工し、更に圧延加工を施すパウダーインチューブ法により作製されるのが一般的である。
【0003】
このような方法で作製された超電導線を交流で使用する場合、マトリクス部の電気抵抗が小さいと、フィラメント同士が電磁気的に結合して閉回路を形成し、その変動磁場を遮蔽するように流れる電流によりジュール損失(交流損失の一種)が発生する。このジュール損失を低減する方法として、シース材料であるAgまたはAg合金に、Au、Pd、Ptなどの元素を添加し、電気抵抗を増大させて、交流損失を低減する方法がある。
【0004】
Au、Pd、Pt等の貴金属を使う理由は、主として2つある。その一つは、これらの貴金属は、Bi系やY系の超電導物質とは反応し難く、超電導特性に悪影響を及ぼさないためである。もう一つは、これらの貴金属を添加した結果、形成されたAg−Au合金やAg−Pd合金は、加工性に優れており、通常のパウダーインチューブ法を適用することができるためである。
【0005】
【発明が解決しようとする課題】
しかし、Ag−Au合金などは需要が少ないため高価であり、これをマトリクス全体に用いたのでは、得られた線材全体が高価となる。
【0006】
【課題を解決するための手段】
本発明は、このような状況に鑑みなされ、交流損失の低減した酸化物超電導複合線材を安価に作製することを可能とする酸化物超電導体の超電導前駆複合線材を提供することを目的とする。
【0007】
本発明の他の目的は、交流損失の低減した酸化物超電導複合線材を安価に作製することを可能とする酸化物超電導複合線材の製造方法を提供することにある。
上記課題を解決するため、本発明は、酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAu層、Pt層、Pd層、Ir層およびRh層からなる群から選ばれた少なくとも1種の金属層を設け、その外側にAgまたはAg合金を配置したことを特徴とする酸化物超電導体の超電導前駆複合線材を提供する。
【0008】
また、本発明は、酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAgまたはAg合金の層を設け、その外側にAu層、Pt層、Pd層、Ir層およびRh層からなる群から選ばれた少なくとも1種の金属層を配置したことを特徴とする酸化物超電導体の超電導前駆複合線材を提供する。
【0009】
上記金属層は、パイプで形成してもよいが、箔を巻いたり、蒸着、塗布、ディッピング等により形成してもよい。
更に、本発明は、酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAgまたはAg合金の層を設けたものを複数本集合させると共に、この集合したフィラメント群の中に、Au製金属体、Pt製金属体、Pd製金属体、Ir製金属体およびRh製金属体からなる群から選ばれた少なくとも1種の金属体を配置したことを特徴とする酸化物超電導体の超電導前駆複合線材を提供する。
【0010】
金属体を配置する位置は、中心部が望ましいが、複数箇所に分散して配置してもよい。
更にまた、本発明は、上述の超電導前駆複合線材を熱処理することにより、前記前駆物質を酸化物超電導体にするとともに、前記Au、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種の金属を拡散させて、高抵抗の合金層を形成することを特徴とする酸化物超電導複合線材の製造方法を提供する。
【0011】
本発明に係る超電導前駆複合線材には、以下の3つの態様がある。
(1)フィラメントの周囲にAu、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種の金属の層を設け、その外側にAgまたはAg合金を配置した構造。
【0012】
(2)フィラメントの周囲にAgまたはAg合金の層を設け、その外側にAu、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種の金属の層を配置した構造。
【0013】
(3)周囲にAgまたはAg合金の層を設けた複数のフィラメント群の中に、Au、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種の金属体を配置した構造。
【0014】
上記(1)および(2)の構造の場合、金属層の厚さは、等価フィラメント径に対して、好ましくは0.05ないし5%、より好ましくは0.05〜3%であるのがよい。
【0015】
金属層の厚さが上記の範囲であれば、熱処理後に得られる高抵抗層の厚さがフィラメント同士の電磁気的結合を遮断するのに十分な厚さとなると共に、コストアップを抑制することが出来る。
【0016】
ここで、等価フィラメント径とは、フィラメントを完全な円形と仮定した場合の、その円の直径である。通常、フィラメントは加工により複雑な形状となるので、仕込みの段階からの加工度を考慮して、相似計算により等価フィラメント径を求める。
【0017】
また、上記(3)の構造の場合、金属体の等価径は、超電導線のフィラメント部を除いた全マトリクス重量の1ないし20重量%になるように定めることが好ましく、1〜10%がより好ましい。
【0018】
金属体の等価径が上記の範囲であれば、熱処理後に得られる高抵抗層がフィラメント同士の電磁気的結合を遮断するのに十分なものになるとともに、コストアップを抑制することが出来る。
【0019】
ここで、等価径とは、金属体を完全な円形と仮定した場合の、その円の直径である。
なお、金属層および金属体は、単一種類の金属からなるものであってもよいが、複数種類の金属を積層したものであってもよい。
【0020】
本発明で使用されるAu、Pt、Pd、IrおよびRhからなる群から選ばれた金属は、いずれも熱処理によりAgとの間で高抵抗の合金を形成する金属である。例えば、Auは、それ自体は低い抵抗を有するが、熱処理により高抵抗のAu−Ag合金を形成する。
【0021】
以上説明した本発明の超電導前駆複合線材は、超電導物質生成のための熱処理に供されるが、その際、Au等又はAgが拡散し、その結果、フィラメントの周囲にAg−Au合金等の高抵抗層が形成される。このように形成された高抵抗層により、交流損失を低減することが可能である。
【0022】
また、本発明によれば、高抵抗層を形成するためのAu、Pt、Pd、IrおよびRhからなる群から選ばれた金属は、複合ビレット組立時に入手容易な純金属の状態で用いるので、マトリクス全体に貴金属を合金化させたものを用いる場合に比べて原料コストを低減出来、かつ製造工程が簡略化される。またマトリクス全体をAg−Au合金化する場合に比べ、Au等の使用量を少なくすることができ、この点でも、安価な製造が可能となる。
【0023】
なお、上記(2)の場合には、当該超電導前駆複合線を更にAgまたはAg合金ビュレット入れて線材化した場合は、Au等の金属層の内側と外側の両面にAgまたはAg合金の層が存在するので、Au−Ag等の合金層は両界面に形成されることになる。そのため、高抵抗の合金層が多量に超電導フィラメントを囲んだ、交流損失の小さい超電導複合線材を製造することが出来る、Au等を速やかに拡散できるという効果が得られる。
【0024】
また、上記(3)の場合は、金属体として、線状、棒状のものを利用出来るので、製造し易いという利点がある。
次に、本願の他の発明は、超電導体となり得る前駆物質からなるフィラメントの周囲にAgまたはAg合金の層を設けたものを複数本集合させると共に、この集合したフィラメント群の中に、Au、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種を含む合金からなる金属体を少なくとも1種配置したことを特徴とする超電導前駆複合線材である。
【0025】
合金としては、Au、Pt、Pd、IrおよびRhを互いに合金化したものの他、それらとAgとの合金も利用出来る。
この超電導前駆複合線材も、熱処理することにより、前記前駆物質を超電導体にするとともに、前記Au、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種を拡散させて、高抵抗の合金層を形成することで、交流損失の少ない超電導複合線材を製造出来る。
【0026】
この発明においても、マトリクス全体をAg−Au等の合金で形成する場合に比べて、Au等の使用量を低減して、コストダウンを図ることが出来る。但し、Au,Pt等を合金化する手間がかかる。しかし、線状、棒状の金属体を利用出来る点では製造し易い。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態として、種々の実施例を示す。
実施例1
Bi2223(Bi2 Sr2 Ca2 Cu310)からなる酸化物超電導原料粉末を、径15mm、長さ500mmの棒状に圧粉したものを、0.1mm肉厚のAuシースで包んで、超電導コア部とした。これを、内径16mm、外径20mm、長さ550mmの純銀パイプに挿入し、径2mmになるまで縮径し、複合多芯線用素線とした。この複合多芯線用素線の複数本を、内径16mm、外径20mm、長さ550mmの純銀パイプに嵌合し、更に縮径加工、圧延を行い、厚さ0.2mm、幅3mmのテープ状に加工し、図1に示す断面構造を得た。
【0028】
図1において、酸化物超電導原料粉末1がAuシース2で包まれており、更に純銀パイプ3に収容されて、複合多芯線用素線4が形成され、この複合多芯線用素線4が複数本、純銀パイプ5内に収容されて超電導前駆複合線材が構成されている。
【0029】
その後、図1に示す断面構造の超電導前駆複合線材に、825℃で超電導生成熱処理を施すことにより、臨界電流密度20kA/cm2 の超電導線を作製した。その際、Auシース2のAu原子は純銀パイプ3のAg中に拡散し、その界面に厚さ1μmのAg−Au合金層を形成していた。
【0030】
このようにして得た超電導線材の交流損失を、磁化法により外部印可磁界10mTで測定したところ、4.3J/m3 であった。
また、純銀パイプの代わりにAg−10%Au合金パイプを用いて、後述する比較例2で製造した場合に比べて、原料費を約50%低減することができた。
【0031】
実施例2
Bi2223(Bi2 Sr2 Ca2 Cu310)からなる酸化物超電導原料粉末を、径15mm、長さ500mmの棒状に圧粉したものを超電導コア部とした。これを、内径16mm、外径20mm、長さ550mmの純銀パイプに挿入し、径2mmになるまで縮径し、複合多芯線用素線とした。この複合多芯線用素線の外側に0.1mmの肉厚のAuシースを巻き付けたもの複数本を、内径16mm、外径20mm、長さ550mmのAgMgパイプに嵌合し、縮径加工、圧延を行い、厚さ0.2mm、幅3mmのテープ状に加工し、図2に示す断面構造を得た。
【0032】
図2において、酸化物超電導原料粉末11が純銀パイプ13で包まれており、更にAuシース12に収容されて、複合多芯線用素線14が形成され、この複合多芯線用素線14が複数本、純銀パイプ15内に収容されて超電導前駆複合線材が構成されている。
【0033】
その後、図2に示す断面構造の超電導前駆複合線材に、825℃で超電導生成熱処理を行うことにより、臨界電流密度20kA/cm2 の超電導線を作製した。その際、Auシース12のAu原子は、純銀パイプ13のAg中および純銀パイプ15のAgに拡散し、それぞれ厚さ1μmのAg−Au合金層を形成していた。
【0034】
このようにして得た超電導線材の交流損失を、磁化法により外部印可磁界10mTで測定したところ、4.3J/m3 であった。
実施例3
Bi2223(Bi2 Sr2 Ca2 Cu310)からなる酸化物超電導原料粉末を、径15mm、長さ500mmの棒状に圧粉したものを超電導コア部とした。これを、内径16mm、外径20mm、長さ550mmの純銀パイプに挿入し、径2mmになるまで縮径し、複合多芯線用素線とした。この複合多芯線用素線の複数本を、内径16mm、外径20mm、長さ550mmの純銀パイプに嵌合した。その際、中心部に径1mmのPt線を配置し、縮径加工、圧延を行い、厚さ0.2mm、幅3mmのテープ状に加工し、図3に示す断面構造を得た。
【0035】
図3において、酸化物超電導原料粉末21が純銀パイプ23で包まれて、複合多芯線用素線24が形成され、この複合多芯線用素線24が複数本、中心部にPt線26を配置した状態で、純銀パイプ25内に収容されて超電導前駆複合線材が構成されている。
【0036】
その後、図3に示す断面構造の超電導前駆複合線材に、825℃で超電導生成熱処理を行い、臨界電流密度20kA/cm2 の超電導線を作製した。その際、複合多芯線用素線24の周りのPt線22のPt原子は、純銀パイプ23のAg中に拡散し、厚さ0.5μmのAg−Pt合金層を形成していた。
【0037】
このようにして得た超電導線材の交流損失を、磁化法により外部印可磁界10mTで測定したところ、5.1J/m3 であった。
比較例1
Bi2223酸化物超電導原料粉末をφ15mm×L500mmの棒状に圧粉したものを超電導コア部とした。これを、内径16mm、外径20mm、長さ550mmの純銀パイプに挿入し、φ2mmまで縮径し、複合多芯線用素線とした。これを、内径16mm、外径20mm、長さ550mmの純銀パイプに嵌合し縮径加工、圧延を行い厚さ0.2mm、幅3mmのテープ状に加工した。この後、825℃で超電導生成熱処理を行い、臨界電流密度20kA/cm2 の超電導線を作製した。
【0038】
この線材の交流損失を磁化法により外部印可磁界10mTで測定したところ、36J/m3 であった。
比較例2
比較例1において、純銀パイプの代わりにAg−10%Au合金パイプを用いた。
【0039】
この線材の交流損失を磁化法により外部印可磁界10mTで測定したところ4.0J/m3 であった。
実施例4
Pt線の代わりにPt−Ag合金線を用いたことを除いて、実施例3と同様の超電導線を作製した。このようにして得た超電導線材の交流損失を、磁化法により外部印可磁界10mTで測定したところ、比較例1,2よりも低い値が得られた。
【0040】
【発明の効果】
以上詳細に説明したように、本発明の超電導前駆複合線材によれば、超電導物質生成のための熱処理において、Au等のAg以外の金属がAg中に拡散し、その結果、フィラメントの周囲にAg−Au合金等の高抵抗層が形成されるので、この高抵抗層により、交流損失を低減することが可能である。
【0041】
また、本発明の超電導前駆複合線材および超電導複合線材の製造方法によれば、高抵抗層を形成するためのAu、Pt、Pd、IrおよびRhからなる群から選ばれた金属は、複合ビレット組立時に入手し易い純金属の状態で嵌合されるので、貴金属を合金化させたものを用いる場合に比べ、原料コストを低減出来ると共に、製造工程が簡略化される。更に、マトリクス全体を合金にする場合に比べて、Au等の高価な貴金属の量を少なくすることができ、その結果、安価な製造が可能となる。
【0042】
Au等の合金からなる金属体を用いたものにあっても、マトリクス全体を合金化する場合に比べ、安価に製造できるという利点がある。更に、金属体を用いたものにあっては、取扱易い線状のものなどを用いることが出来、製造し易いという利点がある。
【図面の簡単な説明】
【図1】実施例1に係る超電導前駆複合線材を示す断面図。
【図2】実施例2に係る超電導前駆複合線材を示す断面図。
【図3】実施例3に係る超電導前駆複合線材を示す断面図。
【符号の説明】
1,11,21…酸化物超電導原料粉末
2,12…Auシース
3,5,13,15,23,25…純銀パイプ
4,14,24…複合多芯線用素線
26…Pt線
[0001]
BACKGROUND OF THE INVENTION
The present invention is an oxide superconductor superconducting precursor composite wire of which makes it possible to obtain a reduced oxide superconducting composite wire of AC loss, and a method of manufacturing the oxide superconducting composite wire.
[0002]
[Prior art]
An oxide superconducting wire, for example, a Bi-based superconducting wire or a Y-based superconducting wire, is a sheath made of Ag or an Ag alloy in order to ensure oxygen permeability, workability, and orientation of the superconducting material necessary for generating the superconducting material. The powder is generally produced by a powder-in-tube method in which a raw material powder of a superconducting material is encapsulated, surface-reduced, and further rolled.
[0003]
When the superconducting wire manufactured by such a method is used in an alternating current, if the electrical resistance of the matrix portion is small, the filaments are electromagnetically coupled to form a closed circuit and flow so as to shield the fluctuating magnetic field. Joule loss (a type of AC loss) is generated by the current. As a method of reducing the Joule loss, there is a method of adding an element such as Au, Pd, or Pt to Ag or an Ag alloy that is a sheath material to increase the electrical resistance, thereby reducing the AC loss.
[0004]
There are mainly two reasons for using noble metals such as Au, Pd, and Pt. One of them is that these noble metals hardly react with Bi-based and Y-based superconducting materials and do not adversely affect the superconducting properties. The other is that, as a result of adding these noble metals, the formed Ag—Au alloy or Ag—Pd alloy is excellent in workability, and a normal powder-in-tube method can be applied.
[0005]
[Problems to be solved by the invention]
However, Ag—Au alloy or the like is expensive because it is less in demand, and if it is used for the entire matrix, the entire obtained wire becomes expensive.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a superconducting precursor composite wire of an oxide superconductor capable of producing an oxide superconducting composite wire with reduced AC loss at low cost.
[0007]
Another object of the present invention is to provide a method for producing an oxide superconducting composite wire that makes it possible to produce an oxide superconducting composite wire with reduced AC loss at low cost.
In order to solve the above problems, the present invention provides at least one selected from the group consisting of an Au layer, a Pt layer, a Pd layer, an Ir layer, and a Rh layer around a filament made of a precursor that can be an oxide superconductor. Provided is a superconducting precursor composite wire of an oxide superconductor characterized in that a metal layer is provided and Ag or an Ag alloy is disposed on the outside thereof .
[0008]
Further, the present invention provides an Ag or Ag alloy layer around a filament made of a precursor that can be an oxide superconductor, and a group consisting of an Au layer, a Pt layer, a Pd layer, an Ir layer, and an Rh layer on the outside thereof. Provided is a superconducting precursor composite wire of an oxide superconductor , wherein at least one selected metal layer is disposed.
[0009]
The metal layer may be formed by a pipe, but may be formed by winding a foil, vapor deposition, coating, dipping, or the like.
Furthermore, the present invention collects a plurality of Ag or Ag alloy layers around a filament made of a precursor that can be an oxide superconductor, and an Au metal body in the assembled filament group. A superconducting precursor composite wire of an oxide superconductor , comprising at least one metal body selected from the group consisting of a metal body made of Pt, a metal body made of Pt, a metal body made of Ir, and a metal body made of Rh I will provide a.
[0010]
The position where the metal body is disposed is preferably the central portion, but may be dispersed and disposed at a plurality of locations.
Furthermore, the present invention is to heat-treat the above-described superconducting precursor composite wire so that the precursor becomes an oxide superconductor, and at least one selected from the group consisting of Au, Pt, Pd, Ir and Rh. Disclosed is a method for producing an oxide superconducting composite wire, characterized in that a high resistance alloy layer is formed by diffusing seed metals.
[0011]
The superconducting precursor composite wire according to the present invention has the following three aspects.
(1) A structure in which at least one metal layer selected from the group consisting of Au, Pt, Pd, Ir, and Rh is provided around the filament, and Ag or an Ag alloy is disposed on the outside thereof.
[0012]
(2) A structure in which a layer of Ag or an Ag alloy is provided around the filament, and at least one metal layer selected from the group consisting of Au, Pt, Pd, Ir, and Rh is disposed on the outside thereof.
[0013]
(3) A structure in which at least one metal body selected from the group consisting of Au, Pt, Pd, Ir, and Rh is arranged in a plurality of filament groups each provided with an Ag or Ag alloy layer around it.
[0014]
In the case of the structures (1) and (2) above, the thickness of the metal layer is preferably 0.05 to 5%, more preferably 0.05 to 3% with respect to the equivalent filament diameter. .
[0015]
When the thickness of the metal layer is in the above range, the thickness of the high resistance layer obtained after the heat treatment is sufficient to block the electromagnetic coupling between the filaments, and the cost increase can be suppressed. .
[0016]
Here, the equivalent filament diameter is the diameter of the circle when the filament is assumed to be a perfect circle. Usually, since the filament has a complicated shape by processing, the equivalent filament diameter is obtained by similarity calculation in consideration of the degree of processing from the stage of preparation.
[0017]
In the case of the structure (3), the equivalent diameter of the metal body is preferably set to be 1 to 20% by weight of the total matrix weight excluding the filament part of the superconducting wire, and more preferably 1 to 10%. preferable.
[0018]
When the equivalent diameter of the metal body is in the above range, the high resistance layer obtained after the heat treatment is sufficient to cut off the electromagnetic coupling between the filaments, and the cost increase can be suppressed.
[0019]
Here, the equivalent diameter is the diameter of the circle when the metal body is assumed to be a perfect circle.
The metal layer and the metal body may be made of a single type of metal or may be a laminate of a plurality of types of metals.
[0020]
Any metal selected from the group consisting of Au, Pt, Pd, Ir, and Rh used in the present invention is a metal that forms a high resistance alloy with Ag by heat treatment. For example, Au itself has a low resistance, but forms a high resistance Au-Ag alloy by heat treatment.
[0021]
The superconducting precursor composite wire of the present invention described above is subjected to a heat treatment for generating a superconducting substance. At that time, Au or the like or Ag diffuses, and as a result, a high Ag-Au alloy or the like around the filament. A resistance layer is formed. AC loss can be reduced by the high resistance layer thus formed.
[0022]
Further, according to the present invention, the metal selected from the group consisting of Au, Pt, Pd, Ir and Rh for forming the high resistance layer is used in a pure metal state that is easily available at the time of assembling the composite billet. The raw material cost can be reduced and the manufacturing process can be simplified as compared with the case where the entire matrix is alloyed with a noble metal. In addition, compared to the case where the entire matrix is made of an Ag—Au alloy, the amount of Au or the like used can be reduced, and in this respect also, inexpensive manufacturing is possible.
[0023]
In the case of (2) above, when the superconducting precursor composite wire is further made into a wire by putting an Ag or Ag alloy burette, Ag or Ag alloy layers are formed on both the inside and outside of the metal layer such as Au. Since it exists, alloy layers, such as Au-Ag, will be formed in both interfaces. Therefore, an effect of being able to manufacture a superconducting composite wire with a small AC loss, in which a high resistance alloy layer surrounds a large amount of superconducting filaments, and to rapidly diffuse Au or the like can be obtained.
[0024]
In the case of (3), a linear or rod-like metal body can be used, so that there is an advantage that it is easy to manufacture.
Next, another invention of the present application is to collect a plurality of Ag or Ag alloy layers around a filament made of a precursor that can be a superconductor, and Au, A superconducting precursor composite wire characterized by arranging at least one metal body made of an alloy containing at least one selected from the group consisting of Pt, Pd, Ir and Rh.
[0025]
As an alloy, besides Au, Pt, Pd, Ir, and Rh alloyed with each other, an alloy of them with Ag can also be used.
This superconducting precursor composite wire is also heat-treated to make the precursor a superconductor and to diffuse at least one selected from the group consisting of Au, Pt, Pd, Ir, and Rh, and thereby having high resistance. By forming the alloy layer, a superconducting composite wire with little AC loss can be manufactured.
[0026]
Also in this invention, compared with the case where the whole matrix is formed of an alloy such as Ag—Au, the amount of Au used can be reduced and the cost can be reduced. However, it takes time to alloy Au, Pt and the like. However, it is easy to manufacture in that a linear or rod-shaped metal body can be used.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various examples will be shown as embodiments of the present invention.
Example 1
An oxide superconducting raw material powder made of Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 ) is compacted into a rod shape having a diameter of 15 mm and a length of 500 mm, wrapped in a 0.1 mm thick Au sheath, and superconducting The core part. This was inserted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and the diameter was reduced to a diameter of 2 mm to obtain a composite multicore wire. A plurality of the composite multi-core wires are fitted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm and a length of 550 mm, and further subjected to diameter reduction processing and rolling to form a tape having a thickness of 0.2 mm and a width of 3 mm. The cross-sectional structure shown in FIG. 1 was obtained.
[0028]
In FIG. 1, the oxide superconducting raw material powder 1 is wrapped with an Au sheath 2 and further accommodated in a pure silver pipe 3 to form a composite multi-core wire 4, and a plurality of composite multi-core wires 4 are formed. The superconducting precursor composite wire is configured by being accommodated in the pure silver pipe 5.
[0029]
Thereafter, a superconducting wire having a critical current density of 20 kA / cm 2 was produced by subjecting the superconducting precursor composite wire having the cross-sectional structure shown in FIG. 1 to a superconducting heat treatment at 825 ° C. At that time, Au atoms in the Au sheath 2 diffused into Ag of the pure silver pipe 3, and an Ag—Au alloy layer having a thickness of 1 μm was formed at the interface.
[0030]
The AC loss of the superconducting wire thus obtained was measured with an external applied magnetic field of 10 mT by the magnetization method, and found to be 4.3 J / m 3 .
Moreover, the raw material cost was able to be reduced about 50% compared with the case where it manufactured by the comparative example 2 mentioned later using an Ag-10% Au alloy pipe instead of a pure silver pipe.
[0031]
Example 2
A superconducting core portion was prepared by compacting oxide superconducting raw material powder made of Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 ) into a rod shape having a diameter of 15 mm and a length of 500 mm. This was inserted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and the diameter was reduced to a diameter of 2 mm to obtain a composite multicore wire. A plurality of 0.1 mm thick Au sheaths wound around the composite multi-core wire are fitted into an AgMg pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, diameter reduction processing, rolling And processed into a tape shape having a thickness of 0.2 mm and a width of 3 mm to obtain a cross-sectional structure shown in FIG.
[0032]
In FIG. 2, the oxide superconducting raw material powder 11 is encased in a pure silver pipe 13 and further accommodated in an Au sheath 12 to form a composite multi-core wire 14. A plurality of composite multi-core wires 14 are formed. The superconducting precursor composite wire is configured by being accommodated in the pure silver pipe 15.
[0033]
Thereafter, a superconducting wire having a critical current density of 20 kA / cm 2 was produced by performing superconducting heat treatment at 825 ° C. on the superconducting precursor composite wire having the cross-sectional structure shown in FIG. At that time, Au atoms in the Au sheath 12 diffused into Ag of the pure silver pipe 13 and Ag of the pure silver pipe 15 to form an Ag—Au alloy layer having a thickness of 1 μm.
[0034]
The AC loss of the superconducting wire thus obtained was measured with an external applied magnetic field of 10 mT by the magnetization method, and found to be 4.3 J / m 3 .
Example 3
A superconducting core portion was prepared by compacting oxide superconducting raw material powder made of Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 ) into a rod shape having a diameter of 15 mm and a length of 500 mm. This was inserted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and the diameter was reduced to a diameter of 2 mm to obtain a composite multicore wire. Plural pieces of the composite multicore wire were fitted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm. At that time, a Pt wire having a diameter of 1 mm was disposed at the center, and diameter reduction processing and rolling were performed to form a tape having a thickness of 0.2 mm and a width of 3 mm to obtain a cross-sectional structure shown in FIG.
[0035]
In FIG. 3, the oxide superconducting raw material powder 21 is encased in a pure silver pipe 23 to form a composite multi-core wire 24. A plurality of the multi-core wires 24 are arranged, and a Pt wire 26 is arranged in the center. In this state, the superconducting precursor composite wire is configured by being accommodated in the pure silver pipe 25.
[0036]
Thereafter, the superconducting precursor composite wire having the cross-sectional structure shown in FIG. 3 was subjected to a superconducting heat treatment at 825 ° C. to produce a superconducting wire having a critical current density of 20 kA / cm 2 . At that time, the Pt atoms of the Pt wire 22 around the composite multicore wire 24 diffused into the Ag of the pure silver pipe 23 to form an Ag—Pt alloy layer having a thickness of 0.5 μm.
[0037]
The AC loss of the superconducting wire thus obtained was measured with an external applied magnetic field of 10 mT by the magnetization method, and found to be 5.1 J / m 3 .
Comparative Example 1
A superconducting core was prepared by compacting Bi2223 oxide superconducting raw material powder into a rod shape of φ15 mm × L500 mm. This was inserted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and the diameter was reduced to φ2 mm to obtain a composite multicore wire. This was fitted into a pure silver pipe having an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 550 mm, and reduced in diameter and rolled to form a tape having a thickness of 0.2 mm and a width of 3 mm. Thereafter, a superconducting heat treatment was performed at 825 ° C. to produce a superconducting wire having a critical current density of 20 kA / cm 2 .
[0038]
The AC loss of this wire was measured with an external applied magnetic field of 10 mT by the magnetization method, and found to be 36 J / m 3 .
Comparative Example 2
In Comparative Example 1, an Ag-10% Au alloy pipe was used instead of the pure silver pipe.
[0039]
The AC loss of this wire was measured with an external applied magnetic field of 10 mT by the magnetization method and found to be 4.0 J / m 3 .
Example 4
A superconducting wire similar to that of Example 3 was produced except that a Pt—Ag alloy wire was used instead of the Pt wire. When the AC loss of the superconducting wire thus obtained was measured with an external applied magnetic field of 10 mT by the magnetization method, a value lower than those of Comparative Examples 1 and 2 was obtained.
[0040]
【The invention's effect】
As described above in detail, according to the superconducting precursor composite wire of the present invention, in the heat treatment for generating the superconducting material, metals other than Ag such as Au diffuse into Ag, and as a result, Ag around the filaments. Since a high resistance layer such as an Au alloy is formed, AC loss can be reduced by this high resistance layer.
[0041]
Further, according to the superconducting precursor composite wire and the method of manufacturing a superconducting composite wire of the present invention, the metal selected from the group consisting of Au, Pt, Pd, Ir and Rh for forming the high resistance layer is a composite billet assembly. Since fitting is performed in a state of pure metal that is easily available, raw material costs can be reduced and the manufacturing process is simplified as compared with the case of using a precious metal alloyed. Furthermore, the amount of expensive noble metal such as Au can be reduced as compared with the case where the entire matrix is made of an alloy, and as a result, inexpensive manufacturing becomes possible.
[0042]
Even in the case of using a metal body made of an alloy such as Au, there is an advantage that it can be manufactured at a lower cost than when the entire matrix is alloyed. Furthermore, in the thing using a metal body, the linear thing etc. which are easy to handle can be used, and there exists an advantage that it is easy to manufacture.
[Brief description of the drawings]
1 is a cross-sectional view showing a superconducting precursor composite wire according to Example 1. FIG.
2 is a cross-sectional view showing a superconducting precursor composite wire according to Example 2. FIG.
3 is a cross-sectional view showing a superconducting precursor composite wire according to Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11,21 ... Oxide superconducting raw material powder 2,12 ... Au sheath 3,5,13,15,23,25 ... Pure silver pipe 4,14,24 ... Element wire 26 for composite multi-core wire ... Pt wire

Claims (5)

酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAu層、Pt層、Pd層、Ir層およびRh層からなる群から選ばれた少なくとも1種の金属層を設け、その外側にAgまたはAg合金を配置したことを特徴とする酸化物超電導体の超電導前駆複合線材。 At least one metal layer selected from the group consisting of an Au layer, a Pt layer, a Pd layer, an Ir layer, and an Rh layer is provided around a filament made of a precursor that can be an oxide superconductor, and Ag or Ag is formed on the outside thereof. An oxide superconductor superconducting precursor composite wire characterized by comprising an alloy. 酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAgまたはAg合金の層を設け、その外側にAu層、Pt層、Pd層、Ir層およびRh層からなる群から選ばれた少なくとも1種の金属層を配置したことを特徴とする酸化物超電導体の超電導前駆複合線材。 At least one selected from the group consisting of an Au layer, a Pt layer, a Pd layer, an Ir layer, and an Rh layer is provided around a filament made of a precursor that can be an oxide superconductor, and an Ag or Ag alloy layer is provided around the filament. A superconducting precursor composite wire of an oxide superconductor , characterized by disposing a metal layer. 酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAgまたはAg合金の層を設けたものを複数本集合させると共に、この集合したフィラメント群の中に、Au製金属体、Pt製金属体、Pd製金属体、Ir製金属体およびRh製金属体からなる群から選ばれた少なくとも1種の金属体を配置したことを特徴とする酸化物超電導体の超電導前駆複合線材。Assembling a plurality of Ag or Ag alloy layers around a filament made of a precursor that can be an oxide superconductor, and in the assembled filament group, an Au metal body, a Pt metal body, A superconducting precursor composite wire of an oxide superconductor, wherein at least one metal body selected from the group consisting of a Pd metal body, an Ir metal body, and an Rh metal body is disposed. 酸化物超電導体となり得る前駆物質からなるフィラメントの周囲にAgまたはAg合金の層を設けたものを複数本集合させると共に、この集合したフィラメント群の中に、Au、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種を含む合金からなる金属体を少なくとも1種配置したことを特徴とする酸化物超電導体の超電導前駆複合線材。 A plurality of Ag or Ag alloy layers provided around a filament made of a precursor material that can be an oxide superconductor are assembled, and the assembled filament group includes Au, Pt, Pd, Ir, and Rh. A superconducting precursor composite wire of an oxide superconductor , wherein at least one metal body made of an alloy containing at least one selected from the group consisting of the above is disposed. 請求項1ないし4のいずれかに記載の超電導前駆複合線材を熱処理することにより、前記前駆物質を酸化物超電導体にするとともに、前記Au、Pt、Pd、IrおよびRhからなる群から選ばれた少なくとも1種を拡散させて、高抵抗の合金層を形成することを特徴とする酸化物超電導複合線材の製造方法。The superconducting precursor composite wire according to any one of claims 1 to 4 is heat-treated so that the precursor is an oxide superconductor and is selected from the group consisting of Au, Pt, Pd, Ir, and Rh. A method for producing an oxide superconducting composite wire, characterized in that at least one kind is diffused to form a high-resistance alloy layer.
JP07560098A 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire Expired - Fee Related JP4001996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07560098A JP4001996B2 (en) 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07560098A JP4001996B2 (en) 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire

Publications (2)

Publication Number Publication Date
JPH11273469A JPH11273469A (en) 1999-10-08
JP4001996B2 true JP4001996B2 (en) 2007-10-31

Family

ID=13580868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07560098A Expired - Fee Related JP4001996B2 (en) 1998-03-24 1998-03-24 Superconducting precursor composite wire and method for producing superconducting composite wire

Country Status (1)

Country Link
JP (1) JP4001996B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60042732D1 (en) * 1999-11-08 2009-09-24 Sumitomo Electric Industries HIGH TEMPERATURE OXIDE SUPERCONDITIONER WIRE AND METHOD FOR THE PRODUCTION THEREOF.
JPWO2004081953A1 (en) * 2003-03-12 2006-06-15 関西ティー・エル・オー株式会社 Manufacturing method of high-temperature superconducting wire
JP2006260854A (en) * 2005-03-15 2006-09-28 Sumitomo Electric Ind Ltd Manufacturing method of superconductive wire rod

Also Published As

Publication number Publication date
JPH11273469A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
EP0054421B1 (en) Method of manufacture of multifilamentary intermetallic superconductors
JPH02276111A (en) Compound superconductor and its manufacture
JP4001996B2 (en) Superconducting precursor composite wire and method for producing superconducting composite wire
US20040157746A1 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3885358B2 (en) Oxide high-temperature superconducting wire and method for producing the same
CA2033325C (en) Superconducting wire and method of manufacturing the same
US4153986A (en) Method for producing composite superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP3095399B2 (en) Method for manufacturing compound superconducting conductor
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JPH0146963B2 (en)
JP2854596B2 (en) Compound superconducting conductor and method for producing the same
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JPH04298914A (en) Compound superconductor
JPH03257715A (en) Oxide superconductive wire rod and manufacture thereof
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof
JP2845905B2 (en) Compound conducting wire for alternating current
JPS604573B2 (en) Manufacturing method of compound hollow superconducting magnet
JPH0337914A (en) Superconductive fiber material
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH0554741A (en) Manufacture of compound superconducting wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees