JP2000036221A - Compression molded conductor of oxide superconductor and manufacture thereof - Google Patents
Compression molded conductor of oxide superconductor and manufacture thereofInfo
- Publication number
- JP2000036221A JP2000036221A JP11101212A JP10121299A JP2000036221A JP 2000036221 A JP2000036221 A JP 2000036221A JP 11101212 A JP11101212 A JP 11101212A JP 10121299 A JP10121299 A JP 10121299A JP 2000036221 A JP2000036221 A JP 2000036221A
- Authority
- JP
- Japan
- Prior art keywords
- compression
- alloy
- silver
- oxide superconducting
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 50
- 230000006835 compression Effects 0.000 title claims abstract description 26
- 238000007906 compression Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002887 superconductor Substances 0.000 title abstract description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 42
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052709 silver Inorganic materials 0.000 claims abstract description 38
- 239000004332 silver Substances 0.000 claims abstract description 38
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 32
- 239000000956 alloy Substances 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 12
- 229910019589 Cr—Fe Inorganic materials 0.000 claims abstract description 5
- 239000012779 reinforcing material Substances 0.000 claims description 28
- 238000010304 firing Methods 0.000 claims description 24
- 238000005260 corrosion Methods 0.000 claims description 15
- 230000007797 corrosion Effects 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000000748 compression moulding Methods 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000003973 paint Substances 0.000 claims description 5
- 229910018487 Ni—Cr Inorganic materials 0.000 claims description 4
- 238000010292 electrical insulation Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000007733 ion plating Methods 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims 1
- 239000001913 cellulose Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 230000002787 reinforcement Effects 0.000 abstract 2
- 238000009792 diffusion process Methods 0.000 description 8
- 230000003014 reinforcing effect Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004247 CaCu Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910018106 Ni—C Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 229910000856 hastalloy Inorganic materials 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 235000011499 Ferocactus hamatacanthus Nutrition 0.000 description 1
- 244000154165 Ferocactus hamatacanthus Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は酸化物超電導体に係
り、さらに詳しくは、大電流容量が必要な電力機器や送
電ケーブル等の導体、あるいは大通電容量によって生じ
る大電磁力に抗してその形状の保持が必要な環境下で使
用される酸化物超電導マグネット等の導体に適したラザ
フォード型の酸化物超電導圧縮成型導体およびその製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor, and more particularly, to a conductor such as a power device or a transmission cable requiring a large current capacity, or a large electromagnetic force generated by a large current carrying capacity. The present invention relates to a Rutherford-type oxide superconducting compression-molded conductor suitable for a conductor such as an oxide superconducting magnet used in an environment where shape retention is required, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、酸化物超電導線材としては銀シー
ス法によるものが一般的に知られており、これは銀また
は銀基合金マトリッス中に多数本の酸化物超電導フィメ
ントを配置したものである。この超電導線材は、酸化物
超電導体の構成元素を所定のモル比で配合した混合粉末
や仮焼粉末を銀パイプ中に充填し、これを伸線加工等に
より線状に加工した後、この複数本を銀または銀基合金
パイプ中に収容して更に伸線加工や圧延加工を施した
後、熱処理を施すことにより複合多心線を製造するもの
であり、成形加工により丸線またはテープ状線材とした
ものが使用されている。2. Description of the Related Art Conventionally, a silver sheath method is generally known as an oxide superconducting wire, in which a large number of oxide superconducting filaments are arranged in a silver or silver-based alloy matrix. . This superconducting wire is filled with a mixed powder or a calcined powder in which the constituent elements of the oxide superconductor are compounded at a predetermined molar ratio in a silver pipe, which is formed into a wire shape by wire drawing or the like. The book is housed in a silver or silver-based alloy pipe, subjected to wire drawing or rolling, and then subjected to heat treatment to produce a composite multifilamentary wire. Is used.
【0003】一方、上記とは別に、テープ状基材の表面
に酸化物超電導体の厚膜を形成したテープ状線材も知ら
れている。上記の銀シース法においては、熱処理後の組
織を緻密化させ、超電導電流を寸断されることなく流す
ためには線材1本当たりの断面積に限界があり、これに
よって超電導電流は制限される。On the other hand, apart from the above, a tape-shaped wire in which a thick film of an oxide superconductor is formed on the surface of a tape-shaped substrate is also known. In the above-mentioned silver sheath method, in order to densify the structure after the heat treatment and allow the superconducting current to flow without being cut, there is a limit in the cross-sectional area per one wire, and the superconducting current is thereby limited.
【0004】いずれの超電導線材においても線材1本当
りの電流容量は、液体窒素温度において、数十アンペア
程度〜高々数百アンペア程度であり、上記の大電流容量
の電力機器等において必要な数キロ〜数十キロアンペア
の大容量導体として使用するにはこれらの線材を集合ま
たは撚線化する必要がある。現在、送電ケーブルを想定
した大容量集合導体として、金属製フォーマーの外側に
テープ状線材を螺旋状に巻き付けた構造の1〜3kAの
集合導体が開発されているが、送電ケーブルを対象とし
ているため、大通電容量によって生じる大電磁力に抗し
てその形状の保持が必要な環境下で使用される、例えば
大型コイル等に使用すると導体全体の電流密度が低下す
る上、可撓性も低下するため、適した構造とはなってい
ない。[0004] In any of the superconducting wires, the current capacity per wire is about several tens of amperes to about several hundred amperes at the temperature of liquid nitrogen. These wires must be assembled or stranded for use as large capacity conductors of up to tens of kiloamps. Currently, as a large-capacity collective conductor assuming a power transmission cable, a collective conductor of 1 to 3 kA having a structure in which a tape-shaped wire is spirally wound around the outside of a metal former has been developed, but since it is intended for a power transmission cable, It is used in an environment where its shape needs to be maintained against a large electromagnetic force generated by a large current carrying capacity. For example, when used in a large coil or the like, the current density of the entire conductor is reduced and the flexibility is also reduced. Therefore, the structure is not suitable.
【0005】[0005]
【発明が解決しようとする課題】上記のように、超電導
線材1本当りの電流容量は、液体窒素温度において数十
アンペア程度、液体ヘリウム温度で数百アンペア程度で
あり、超電導磁気エネルギー貯蔵装置(SMES)やビ
ーム応用等の超電導大型コイル用の線材としては、素線
1本当りの電流容量が小さいため、大電力応用機器の設
計に対して満足すべきものとはなっていない。As described above, the current capacity per superconducting wire is about several tens of amperes at the temperature of liquid nitrogen and several hundred amperes at the temperature of liquid helium, and the superconducting magnetic energy storage device ( As a wire material for a superconducting large-sized coil such as SMES) or beam application, the current capacity per strand is small, so that it is not satisfactory for the design of high power application equipment.
【0006】また、銀シース線材においては、マトリッ
スが銀または銀基合金で構成されているため、線材自身
の破断強度は大きいものでも150MPa程度であり、
コイル形状の回路に大電流を通電したときに発生する大
きな電磁力を線材自身の機械的強度で保持することは極
めて困難である。本発明は以上の問題を解決するために
なされたもので、大通電容量で機械的強度に優れ、かつ
コンパクトな酸化物超電導圧縮成型導体およびその製造
方法を提供することをその目的とする。In a silver sheath wire, since the matrix is made of silver or a silver-based alloy, the wire itself has a high breaking strength of about 150 MPa even if it has a high breaking strength.
It is extremely difficult to maintain a large electromagnetic force generated when a large current flows through a coil-shaped circuit with the mechanical strength of the wire itself. The present invention has been made to solve the above problems, and an object of the present invention is to provide a compact oxide superconducting compression molded conductor having a large current carrying capacity, excellent mechanical strength, and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】以上の目的を達成するた
めに、本発明の第1の酸化物超電導圧縮成型導体は、耐
熱性および耐酸化腐食性を有する補強材料の外周に、電
気的絶縁性を有し、かつ機械的歪を緩和する遮蔽層を設
け、その外側に銀または銀基合金マトリックス中に酸化
物超電導フィラメントを配置した超電導線の圧縮成型撚
線層を配置したものである。In order to achieve the above objects, the first oxide superconducting compression molded conductor of the present invention is provided with an electrically insulating material on the outer periphery of a reinforcing material having heat resistance and oxidation corrosion resistance. In this case, a compression-molded stranded wire layer of a superconducting wire in which an oxide superconducting filament is arranged in a silver or silver-based alloy matrix is provided on the outer side of the shielding layer having a property of reducing mechanical strain.
【0008】また、本発明の第2の酸化物超電導圧縮成
型導体は、外周にセラミックス薄膜を設けた耐熱性およ
び耐酸化腐食性を有する補強材料の外側に、銀または銀
基合金マトリックス中に酸化物超電導フィラメントを配
置した超電導線の圧縮成型撚線層を配置したものであ
る。上記第1の発明における遮蔽層は、電気的絶縁性を
有するとともに潤滑層として機械的歪を緩和する機能を
有するもので、セラミックス粉末およびセラミックス繊
維の混合物により形成することができる。後述するよう
に、この遮蔽層は、耐熱シートの焼成によって形成する
ことができ、超電導体生成のための焼成時には補強材料
を構成する元素の拡散を防止する役目を果す。Further, the second oxide superconducting compression molded conductor of the present invention is characterized in that a ceramic thin film is provided on the outer periphery and a heat-resistant and oxidation-resistant corrosion-resistant reinforcing material is oxidized in a silver or silver-based alloy matrix. A superconducting wire on which a superconducting filament is arranged and a compression-molded stranded layer is arranged. The shielding layer according to the first aspect of the present invention has electrical insulating properties and a function of relieving mechanical strain as a lubricating layer, and can be formed of a mixture of ceramic powder and ceramic fibers. As will be described later, this shielding layer can be formed by firing a heat-resistant sheet, and serves to prevent diffusion of elements constituting the reinforcing material during firing for generating a superconductor.
【0009】また、上記第2の発明におけるセラミック
ス薄膜は、蒸着またはイオンプレーティング法により形
成することができ、この薄膜は、電気的絶縁性を有する
とともに潤滑層としても機能し、また超電導体生成のた
めの焼成時には補強材料を構成する元素の拡散を防止す
る役目を果す。以上の発明における耐熱性および耐酸化
腐食性を有する補強材料として、Ni−Cr−Fe合金
(インコネル材)、Ni−Cr合金またはNi基耐食合
金(ハステロイ)のいずれか一種を用いることができ
る。これらの補強材料は、超電導体生成の酸素雰囲気中
で約900℃の焼成工程に耐え、この処理後に十分な強
度と可撓性を有する。The ceramic thin film according to the second aspect of the present invention can be formed by vapor deposition or ion plating. This thin film not only has electrical insulation properties but also functions as a lubricating layer. During firing for the purpose of the present invention, it plays a role of preventing diffusion of elements constituting the reinforcing material. Any one of Ni-Cr-Fe alloy (Inconel material), Ni-Cr alloy, or Ni-based corrosion-resistant alloy (Hastelloy) can be used as the reinforcing material having heat resistance and oxidation-corrosion resistance in the above invention. These reinforcing materials withstand a firing step of about 900 ° C. in an oxygen atmosphere generated by a superconductor and have sufficient strength and flexibility after this treatment.
【0010】また、以上の発明における超電導フィラメ
ントのフィラメント数、超電導線撚線の本数、撚りピッ
チ等は特に限定されず、設計事項により決定される。以
上述べた酸化物超電導圧縮成型導体は、以下の方法によ
り製造することができ、これは本発明の第3および第4
の発明を構成する。即ち、本発明の第3の酸化物超電導
圧縮成型導体の製造方法は、耐熱性および耐酸化腐食性
を有する補強材料の外側に耐熱シートを配置し、その外
側に、銀または銀基合金マトリックス中に焼成により超
電導酸化物を形成する物質からなるフィラメントを配置
した線材を撚合わせ、次いで、全体に圧縮成型を施した
後、焼成するものであり、一方、本発明の第4の酸化物
超電導圧縮成型導体の製造方法は、耐熱性および耐酸化
腐食性を有する補強材料の外周にセラミックス薄膜を形
成するか、または焼成によりセラミックス層を形成する
セラミックス塗料を塗布した後、その外側に、銀または
銀基合金マトリックス中に焼成により超電導酸化物を形
成する物質からなるフィラメントを配置した線材を撚合
わせ、次いで、全体に圧縮成型を施した後、焼成するも
のである。In the above invention, the number of superconducting filaments, the number of superconducting strands, the twist pitch, and the like are not particularly limited and are determined by design items. The above-described oxide superconducting compression molded conductor can be manufactured by the following method, which is the third and fourth aspects of the present invention.
Constituting the invention. That is, in the third method for producing an oxide superconducting compression molded conductor of the present invention, a heat-resistant sheet is arranged outside a reinforcing material having heat resistance and oxidation-corrosion resistance, and a silver or silver-based alloy matrix is formed outside the heat-resistant sheet. A wire having a filament formed of a substance that forms a superconducting oxide by firing is twisted, and then subjected to compression molding, followed by firing. On the other hand, the fourth oxide superconducting compression of the present invention is performed. The method of manufacturing a molded conductor is to form a ceramic thin film on the outer periphery of a reinforcing material having heat resistance and oxidation and corrosion resistance, or to apply a ceramic paint for forming a ceramic layer by firing, and then apply silver or silver to the outside thereof. Twist a wire with a filament made of a substance that forms a superconducting oxide by firing in a base alloy matrix, and then apply compression molding to the whole. After, which is then burned.
【0011】上記第3の発明における耐熱シートは、セ
ラミックス粉末、セラミックス繊維および残部が有機バ
インダーからなる混合物により形成することができる。
この耐熱シートは、セラミックス粉末5〜50wt%、
セラミックス繊維5〜55wt%および残部がセルロー
ス系有機バインダーの混合物により形成することが好適
する。[0011] The heat-resistant sheet according to the third aspect of the invention can be formed of a mixture of ceramic powder, ceramic fibers, and the remainder comprising an organic binder.
This heat-resistant sheet has a ceramic powder of 5 to 50 wt%,
It is preferable that 5 to 55% by weight of the ceramic fibers and the remainder are formed of a mixture of a cellulosic organic binder.
【0012】上記のセラミックス粉末としては、ZrO
2 、MgO、Y2 O3 またはAl2O3 等の高純度粉末
(純度98%以上)が、またセラミックス繊維として
は、Al2 O3 等が使用される。このような耐熱シート
は、超電導体生成のための焼成時に、補強材料に含まれ
るNiやFeが補強材料から超電導線材へ拡散すること
を防止するとともに、有機バインダーが燃焼して消失し
た後はセラミックス粉末とセラミックス繊維の混合物と
なって残存し、緩衝材となって超電導線材と補強材料と
の間の熱融着を防止する。この時、セラミックス繊維は
形状保持材として働く。As the above ceramic powder, ZrO
2 , high-purity powder (98% or more in purity) such as MgO, Y 2 O 3 or Al 2 O 3 , and Al 2 O 3 or the like as ceramic fibers. Such a heat-resistant sheet not only prevents Ni and Fe contained in the reinforcing material from diffusing from the reinforcing material into the superconducting wire at the time of firing for generation of the superconductor, but also forms a ceramic after the organic binder is burned and disappears. It remains as a mixture of powder and ceramic fibers and acts as a buffer to prevent thermal fusion between the superconducting wire and the reinforcing material. At this time, the ceramic fibers work as a shape maintaining material.
【0013】また、この耐熱シートは、最終的には滑り
によって機械的な歪みを緩和するとともに、電気的絶縁
層として機能する。上記の耐熱シートは、400μm以
上とすることが好ましい。これによって拡散による劣化
を20%以下にすることが可能になる。また、上記第4
の発明におけるセラミックス薄膜または焼成によりセラ
ミックス層を形成するセラミックス塗料は上記の耐熱シ
ートと同様の働きをするものであるが、セラミックス薄
膜は蒸着またはイオンプレーティング等により形成する
ことができ、一方、超電導体生成のための焼成によりセ
ラミックス層を形成するセラミックス塗料はドクターブ
レード法等により塗布することができる。[0013] The heat-resistant sheet ultimately alleviates mechanical distortion due to slippage and functions as an electrical insulating layer. It is preferable that the above-mentioned heat-resistant sheet has a thickness of 400 μm or more. This makes it possible to reduce the deterioration due to diffusion to 20% or less. In addition, the fourth
The ceramic thin film in the invention of the invention or the ceramic paint which forms a ceramic layer by firing has the same function as the above-mentioned heat-resistant sheet, but the ceramic thin film can be formed by vapor deposition or ion plating. A ceramic paint for forming a ceramic layer by firing for body formation can be applied by a doctor blade method or the like.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は、本発明の酸化物超電導圧縮成型導
体1の横断面図を示したもので、2は補強材料、3は遮
蔽層、4は銀または銀基合金マトリックス4a中に多数
本の超電導フィラメント4bを配置した断面丸形の超電
導線材である。Embodiments of the present invention will be described below. FIG. 1 shows a cross-sectional view of an oxide superconducting compression molded conductor 1 of the present invention, 2 is a reinforcing material, 3 is a shielding layer, 4 is a large number of superconducting filaments in a silver or silver-based alloy matrix 4a. 4b is a superconducting wire having a round cross-section in which 4b is arranged.
【0015】補強材料2は、Ni−Cr−Fe合金(イ
ンコネル材)、Ni−Cr合金またはNi基耐食合金
(ハステロイ)のいずれか一種をテープ状に加工したも
ので、遮蔽層3は、セラミックス粉末およびセラミック
ス繊維の混合物により形成されている。以上の酸化物超
電導圧縮成型導体1は、以下のようにして製造される。
まず、補強材料2の外側にセラミックス粉末、セラミッ
クス繊維および残部がセルロース系有機バインダーから
なる混合物により作製した耐熱シートを螺旋状に重ね巻
きして補強材料2の表面を被覆し、その外側に銀または
銀基合金マトリックス中に焼成により超電導酸化物を形
成する物質からなる多数のフィラメントを配置した断面
丸形の線材を補強材料表面に密着させながら撚線加工し
た後、平角ダイスまたはタークスヘッドロールを用いて
所定形状に圧縮成型を施し、次いで、超電導酸化物生成
の焼成処理を施す。The reinforcing material 2 is made of a Ni-Cr-Fe alloy (Inconel material), a Ni-Cr alloy or a Ni-based corrosion-resistant alloy (Hastelloy), and is processed into a tape shape. It is formed of a mixture of powder and ceramic fibers. The above-described oxide superconducting compression molded conductor 1 is manufactured as follows.
First, a heat-resistant sheet made of a mixture of ceramic powder, ceramic fibers, and the remainder composed of a cellulosic organic binder is spirally wound around the outside of the reinforcing material 2 to cover the surface of the reinforcing material 2, and silver or silver is coated on the outside. After twisting a round-shaped wire rod with a large number of filaments made of a substance that forms a superconducting oxide by firing in a silver-based alloy matrix while closely contacting the reinforcing material surface, using a flat die or a turks head roll Then, compression molding is performed to a predetermined shape, and then firing treatment for generating superconducting oxide is performed.
【0016】[0016]
【実施例】以下、本発明の一実施例および比較例につい
て説明する。 実施例1 幅6mm、厚さ0.3mmの断面形状を有するNi−C
r−Fe合金600からなる補強テープの外側に、幅6
mm、厚さ0.1mmの断面形状を有する耐熱シートを
螺旋状に巻き付けた。このときの隣接テープの重なりは
3mm(1/2ラップ)とした。EXAMPLES Examples and comparative examples of the present invention will be described below. Example 1 Ni-C having a cross-sectional shape of 6 mm in width and 0.3 mm in thickness
Outside the reinforcing tape made of the r-Fe alloy 600, the width 6
A heat-resistant sheet having a sectional shape of 0.1 mm in thickness and 0.1 mm in thickness was spirally wound. At this time, the overlap between adjacent tapes was 3 mm (1/2 wrap).
【0017】耐熱シートは、MgOが45wt%、Al
2 O3 が10wt%で残部がセルロース系有機バインダ
ーからなる混合物により作製した。この耐熱シートの引
張り強さは、シートの縦方向で2.1kgf/20m
m、横方向で1.3kgf/20mmであった。上記の
耐熱シートを被覆した補強テープの外側に外径φ0.8
mmの線材の18本を40mmのピッチで巻き付けた。The heat-resistant sheet is composed of 45 wt% MgO, Al
It was prepared from a mixture containing 10 wt% of 2 O 3 and the balance being a cellulosic organic binder. The tensile strength of this heat-resistant sheet is 2.1 kgf / 20 m in the longitudinal direction of the sheet.
m and 1.3 kgf / 20 mm in the lateral direction. Outside diameter φ0.8 outside the reinforcing tape coated with the heat-resistant sheet
Eighteen mm wires were wound at a pitch of 40 mm.
【0018】この線材は、銀マトリックス中に焼成によ
りBi2 Sr2 CaCu2 OX 超電導導酸化物を形成す
る物質からなる多数のフィラメントを配置したものであ
る。次いで、この複合導体に引抜加工を施して、幅7m
m、厚さ1mmの平角形状の圧縮成型導体を製造した
後、焼成した。焼成条件は、酸素雰囲気下で、最高焼成
温度800℃で120時間であった。This wire has a large number of filaments made of a substance forming a Bi 2 Sr 2 CaCu 2 O X superconducting oxide by firing in a silver matrix. Next, the composite conductor is subjected to a drawing process to a width of 7 m.
After producing a compression molded conductor in a rectangular shape having a thickness of 1 mm and a thickness of 1 mm, it was fired. The firing conditions were a maximum firing temperature of 800 ° C. for 120 hours in an oxygen atmosphere.
【0019】このようにして製造した酸化物超電導圧縮
成型導体の臨界電流値を液体ヘリウム温度(4.2K)
で測定した結果、3,495Aを示した。また、導体の
破断強度は250MPaであった。また、元素分析の結
果、補強テープから超電導線材への元素の拡散は全く検
出されなかった。The critical current value of the oxide superconducting compression-molded conductor thus manufactured was determined by measuring the liquid helium temperature (4.2 K).
As a result of the measurement, 3,495 A was shown. The breaking strength of the conductor was 250 MPa. As a result of elemental analysis, no element diffusion from the reinforcing tape to the superconducting wire was detected at all.
【0020】実施例2 幅6mm、厚さ0.3mmの断面形状を有するNi−C
r−Fe合金600からなる補強テープの外側に、20
0〜400μmの厚さに耐熱シートを螺旋状に巻き付け
た。また、比較のために耐熱シートを設けずに他は同様
の方法を用いた導体も同時に製造した。Example 2 Ni-C having a cross-sectional shape of 6 mm in width and 0.3 mm in thickness
Outside the reinforcing tape made of r-Fe alloy 600, 20
The heat-resistant sheet was spirally wound to a thickness of 0 to 400 µm. Further, for comparison, a conductor using the same method except that no heat-resistant sheet was provided was also manufactured at the same time.
【0021】耐熱シートは、MgOが45wt%、Al
2 O3 が10wt%で残部がセルロース系有機バインダ
ーからなる混合物により作製した。この耐熱シートの引
張り強さは、シートの縦方向で2.1kgf/20m
m、横方向で1.3kgf/20mmであった。上記の
耐熱シートを被覆した補強テープの外側に外径φ1mm
の線材の19本を55mmの撚ピッチで巻き付けた。The heat-resistant sheet is composed of 45 wt% MgO, Al
It was prepared from a mixture containing 10 wt% of 2 O 3 and the balance being a cellulosic organic binder. The tensile strength of this heat-resistant sheet is 2.1 kgf / 20 m in the longitudinal direction of the sheet.
m and 1.3 kgf / 20 mm in the lateral direction. Outside diameter φ1mm outside the reinforcing tape coated with the above heat-resistant sheet
Of the wire rods were wound at a twist pitch of 55 mm.
【0022】この線材は、銀マトリックス中に焼成によ
りBi2 Sr2 CaCu2 OX 超電導導酸化物を形成す
る物質からなる仮焼粉末を充填し、縮径加工を施した後
にこれの多数本を束ねて銀合金パイプ中に収容し、更に
外径φ1mmまで縮径加工を施すことにより、銀マトリ
ックス中に多数のフィラメントを配置したものである。
次いで、この複合導体に圧縮加工を施して、幅7.3
mm、厚さ1.7mmの平角形状の圧縮成型導体を製造
した後、焼成した。This wire rod is filled with a calcined powder made of a substance forming a Bi 2 Sr 2 CaCu 2 O X superconducting oxide by firing in a silver matrix, and after reducing the diameter, a large number of these wires are used. A large number of filaments are arranged in a silver matrix by being bundled and housed in a silver alloy pipe and further subjected to diameter reduction processing to an outer diameter of 1 mm.
Next, the composite conductor is subjected to compression processing to have a width of 7.3.
After producing a rectangular-shaped compression-molded conductor having a thickness of 1.7 mm and a thickness of 1.7 mm, it was fired.
【0023】焼成条件は、酸素雰囲気下で、最高焼成温
度850℃で120時間であった。図2に耐熱シート、
即ち、バリア層の厚さと圧縮成型導体の劣化の度合いの
関係を示した。ここでの基準となる劣化のない導体のI
c(臨界電流値)は、圧縮成型後に線材を圧縮成型導体
から取り出し、同一条件で焼成したものであり、補強テ
ープの構成元素の拡散が全くない場合を想定したもので
ある。The firing conditions were a maximum firing temperature of 850 ° C. for 120 hours in an oxygen atmosphere. FIG. 2 shows a heat-resistant sheet,
That is, the relationship between the thickness of the barrier layer and the degree of deterioration of the compression molded conductor was shown. Here, the reference I of the conductor without deterioration is used.
c (critical current value) is a value obtained by removing the wire from the compression-molded conductor after compression-molding and baking it under the same conditions, and assumes that there is no diffusion of the constituent elements of the reinforcing tape.
【0024】図2から明らかなように、バリア層の厚さ
の増大に伴って、Icの劣化の度合いは低減され、40
0μm以上でほぼ飽和する。バリア層の厚さ400μm
の場合の酸化物超電導圧縮成型導体のIcを液体ヘリウ
ム温度(4.2K)で測定した結果、3,500Aを示
した。 比較例 実施例1の実施例における補強テープの外側に耐熱シー
トを被覆せずに、他は実施例と同様の方法により酸化物
超電導圧縮成型導体を製造した。As is apparent from FIG. 2, as the thickness of the barrier layer increases, the degree of degradation of Ic decreases, and
Almost saturated at 0 μm or more. 400 μm thickness of barrier layer
As a result of measuring Ic of the oxide superconducting compression molded conductor in the case of (1) at a liquid helium temperature (4.2 K), it was found to be 3,500 A. Comparative Example An oxide superconducting compression-molded conductor was manufactured in the same manner as in the example except that the heat-resistant sheet was not coated on the outside of the reinforcing tape in the example of the example 1.
【0025】この導体の破断強度は実施例と同程度の値
を示したが、液体ヘリウム温度(4.2K)での臨界電
流値は2,100Aであった。また、元素分析の結果、
補強テープから超電導線材への元素の拡散が認められ
た。The rupture strength of this conductor was almost the same as that of the embodiment, but the critical current value at liquid helium temperature (4.2 K) was 2,100 A. Also, as a result of elemental analysis,
Diffusion of elements from the reinforcing tape to the superconducting wire was observed.
【0026】[0026]
【発明の効果】以上の説明で明らかなように、本発明の
酸化物超電導圧縮成型導体によれば、線材の集合化と圧
縮成型を施したことにより、コンパクトな導体断面積と
大電流容量を得ることができる。また、中心部に補強材
料を配置したことにより、従来の酸化物超電導導体に比
較して機械的強度を大幅に向上させることができる。As is apparent from the above description, according to the oxide superconducting compression-molded conductor of the present invention, a compact conductor cross-sectional area and a large current capacity can be obtained by performing the assembly and compression molding of the wires. Obtainable. Further, by arranging the reinforcing material at the center, the mechanical strength can be greatly improved as compared with the conventional oxide superconductor.
【0027】また、補強材料の外周に遮蔽層またはセラ
ミックス薄膜を設けたことにより、電気的絶縁性および
機械的歪を緩和する潤滑層としての効果を奏する。ま
た、その製造方法において、補強材料の外側に耐熱シー
トの巻回、セラミックス薄膜の形成または焼成によりセ
ラミックス層を形成するセラミックス塗料の塗布によ
り、超電導体生成のための焼成時に、補強材料に含まれ
るNiやFeが補強材料から超電導線材へ拡散すること
による臨界電流値の低下を防ぐことができる。Further, the provision of the shielding layer or the ceramic thin film on the outer periphery of the reinforcing material has an effect as a lubricating layer for relaxing electrical insulation and mechanical strain. Also, in the manufacturing method, the heat-resistant sheet is wound on the outside of the reinforcing material, and a ceramic thin film is formed or fired for forming a superconductor by forming a ceramic layer by applying a ceramic paint to be included in the reinforcing material. It is possible to prevent a reduction in critical current value due to diffusion of Ni or Fe from the reinforcing material into the superconducting wire.
【0028】さらに、耐熱シート、即ち、バリア層の厚
さを400μm以上とすることにより、拡散による劣化
を防止することが可能になる。Further, by setting the thickness of the heat-resistant sheet, that is, the thickness of the barrier layer to 400 μm or more, it becomes possible to prevent deterioration due to diffusion.
【図1】本発明の酸化物超電導圧縮成型導体の一実施例
を示す横断面図である。FIG. 1 is a cross-sectional view showing one embodiment of an oxide superconducting compression molded conductor of the present invention.
【図2】本発明の酸化物超電導圧縮成型導体のバリア層
の厚さと圧縮成型導体の劣化の度合いの関係を示すグラ
フである。FIG. 2 is a graph showing the relationship between the thickness of the barrier layer of the oxide superconducting compression molded conductor of the present invention and the degree of deterioration of the compression molded conductor.
1………酸化物超電導圧縮成型導体 2………補強材料 3………遮蔽層 4………超電導線材 4a……銀または銀基合金マトリックス 4b……超電導フィラメント 1 ... oxide superconducting compression molded conductor 2 ... reinforcing material 3 ... shielding layer 4 ... superconducting wire 4a ... silver or silver-based alloy matrix 4b ... superconducting filament
───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 裕治 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社川崎研究所内 (72)発明者 長谷川 隆代 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社川崎研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Aoki 2-1-1 Odaei, Kawasaki-ku, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Electric Wire & Cable Co., Ltd. Kawasaki Laboratory (72) Inventor Takayo Hasegawa Kawasaki-ku, Kawasaki-shi, Kanagawa Sakae Oda 2-1-1 Showa Electric Wire & Cable Co., Ltd. Kawasaki Laboratory
Claims (11)
料の外周に、電気的絶縁性を有し、かつ機械的歪を緩和
する遮蔽層を設け、その外側に銀または銀基合金マトリ
ックス中に酸化物超電導フィラメントを配置した超電導
線材の圧縮成型撚線層を配置したことを特徴とする酸化
物超電導圧縮成型導体。1. A shielding layer having electrical insulation properties and relieving mechanical strain is provided on the outer periphery of a reinforcing material having heat resistance and oxidation corrosion resistance, and a silver or silver-based alloy matrix is provided outside the shielding layer. An oxide superconducting compression-molded conductor comprising a superconducting wire having a compression-molded stranded wire layer in which an oxide superconducting filament is disposed.
よび耐酸化腐食性を有する補強材料の外側に、銀または
銀基合金マトリックス中に酸化物超電導フィラメントを
配置した超電導線材の圧縮成型撚線層を配置したことを
特徴とする酸化物超電導圧縮成型導体。2. A compression-molded stranded wire layer of a superconducting wire in which an oxide superconducting filament is arranged in a silver or silver-based alloy matrix outside a heat-resistant and oxidation-corrosion-resistant reinforcing material provided with a ceramic thin film on the outer periphery. An oxide superconducting compression-molded conductor, characterized in that:
料は、Ni−Cr−Fe合金、Ni−Cr合金またはN
i基耐食合金のいずれか一種よりなる請求項1または2
記載の酸化物超電導圧縮成型導体。3. The reinforcing material having heat resistance and oxidation corrosion resistance is made of a Ni—Cr—Fe alloy, a Ni—Cr alloy or N
3. An alloy according to claim 1, wherein the alloy is one of an i-based corrosion resistant alloy.
An oxide superconducting compression molded conductor as described in the above.
ックス繊維の混合物からなる請求項1記載の酸化物超電
導圧縮成型導体。4. The oxide superconducting compression molded conductor according to claim 1, wherein the shielding layer comprises a mixture of ceramic powder and ceramic fibers.
レーティング法により形成されてなる請求項2記載の酸
化物超電導圧縮成型導体。5. The oxide superconducting compression molded conductor according to claim 2, wherein the ceramic thin film is formed by vapor deposition or ion plating.
料の外側に耐熱シートを配置し、その外側に、銀または
銀基合金マトリックス中に焼成により超電導酸化物を形
成する物質からなるフィラメントを配置した線材を撚合
わせ、次いで、全体に圧縮成型を施した後、焼成するこ
とを特徴とする酸化物超電導圧縮成型導体の製造方法。6. A heat-resistant sheet is disposed outside a reinforcing material having heat resistance and oxidation-corrosion resistance, and a filament made of a substance that forms a superconducting oxide by firing in a silver or silver-based alloy matrix is disposed outside the heat-resistant sheet. A method for producing an oxide superconducting compression molded conductor, comprising twisting the arranged wires, compression molding the whole, and then firing.
料の外周にセラミックス薄膜を形成するか、または焼成
によりセラミックス層を形成するセラミックス塗料を塗
布した後、その外側に、銀または銀基合金マトリックス
中に焼成により超電導酸化物を形成する物質からなるフ
ィラメントを配置した線材を撚合わせ、次いで、全体に
圧縮成型を施した後、焼成することを特徴とする酸化物
超電導圧縮成型導体の製造方法。7. A ceramic thin film is formed on the outer periphery of a reinforcing material having heat resistance and oxidation corrosion resistance, or a ceramic paint for forming a ceramic layer is applied by firing, and then silver or a silver-based alloy is coated on the outside thereof. A method for manufacturing an oxide superconducting compression-molded conductor, comprising twisting a wire in which a filament made of a substance forming a superconducting oxide by firing in a matrix is arranged, then performing compression molding on the whole, and then firing. .
料は、Ni−Cr−Fe合金、Ni−Cr合金またはN
i基耐食合金のいずれか一種よりなる請求項6または7
記載の酸化物超電導圧縮成型導体の製造方法。8. The reinforcing material having heat resistance and oxidation corrosion resistance is made of a Ni—Cr—Fe alloy, a Ni—Cr alloy or N
8. The alloy according to claim 6, wherein the alloy is any one of an i-based corrosion resistant alloy.
A method for producing the oxide superconducting compression molded conductor according to the above.
ックス繊維および残部が有機バインダーの混合物からな
る請求項6記載の酸化物超電導圧縮成型導体の製造方
法。9. The method for producing an oxide superconducting compression-molded conductor according to claim 6, wherein the heat-resistant sheet comprises a mixture of ceramic powder, ceramic fibers and an organic binder.
0wt%、セラミックス繊維5〜55wt%および残部
がセルロース系有機バインダーの混合物からなる請求項
9記載の酸化物超電導圧縮成型導体の製造方法。10. The heat-resistant sheet is composed of ceramic powders 5 to 5.
The method for producing an oxide superconducting compression-molded conductor according to claim 9, wherein 0 wt%, 5 to 55 wt% of ceramic fibers, and the balance are a mixture of a cellulose-based organic binder.
μm以上である請求項10記載の酸化物超電導圧縮成型
導体の製造方法。11. The heat-resistant sheet before heat treatment has a thickness of 400
The method for producing an oxide superconducting compression-molded conductor according to claim 10, wherein the diameter is not less than μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10121299A JP3635210B2 (en) | 1998-05-12 | 1999-04-08 | Oxide superconducting compression molded conductor and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12890098 | 1998-05-12 | ||
JP10-128900 | 1998-05-12 | ||
JP10121299A JP3635210B2 (en) | 1998-05-12 | 1999-04-08 | Oxide superconducting compression molded conductor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000036221A true JP2000036221A (en) | 2000-02-02 |
JP3635210B2 JP3635210B2 (en) | 2005-04-06 |
Family
ID=26442120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10121299A Expired - Fee Related JP3635210B2 (en) | 1998-05-12 | 1999-04-08 | Oxide superconducting compression molded conductor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3635210B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002015629A (en) * | 2000-06-30 | 2002-01-18 | Fujikura Ltd | Superconductive cable |
JP2002025359A (en) * | 2000-07-13 | 2002-01-25 | Chubu Electric Power Co Inc | Oxide superconductive twisted conductor |
WO2005050674A1 (en) * | 2003-11-21 | 2005-06-02 | Sumitomo Electric Industries, Ltd. | Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same |
-
1999
- 1999-04-08 JP JP10121299A patent/JP3635210B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002015629A (en) * | 2000-06-30 | 2002-01-18 | Fujikura Ltd | Superconductive cable |
JP4722258B2 (en) * | 2000-06-30 | 2011-07-13 | 株式会社フジクラ | Superconducting cable |
JP2002025359A (en) * | 2000-07-13 | 2002-01-25 | Chubu Electric Power Co Inc | Oxide superconductive twisted conductor |
JP4542240B2 (en) * | 2000-07-13 | 2010-09-08 | 中部電力株式会社 | Oxide superconducting stranded conductor |
WO2005050674A1 (en) * | 2003-11-21 | 2005-06-02 | Sumitomo Electric Industries, Ltd. | Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3635210B2 (en) | 2005-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3983521A (en) | Flexible superconducting composite compound wires | |
US4531982A (en) | Superconductor manufacturing process | |
JP2897776B2 (en) | Electrical conductor in wire or cable form | |
GB1573506A (en) | Superconducting compound stranded cable and method of manufacturing the same | |
EP0672292B1 (en) | Insulation for superconductors | |
US7162287B2 (en) | Oxide high-temperature superconducting wire and method of producing the same | |
EP1577903B1 (en) | Method for producing nb3al superconductive wire and nb3al superconductive wire obtained by said method | |
JP3635210B2 (en) | Oxide superconducting compression molded conductor and manufacturing method thereof | |
JP4150129B2 (en) | Oxide superconducting compression molded conductor and manufacturing method thereof | |
JPH11312420A (en) | High-temperature oxide superconducting wire and its manufacture | |
JP4542240B2 (en) | Oxide superconducting stranded conductor | |
WO2023089919A1 (en) | Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire | |
KR101017779B1 (en) | APPARATUS AND METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES AND MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES THEREOF | |
JPH0765646A (en) | Oxide superconducting cable and manufacture of strand | |
JP3881322B2 (en) | Oxide superconducting compression molded conductor and method for producing the same | |
JP2854596B2 (en) | Compound superconducting conductor and method for producing the same | |
JP2742436B2 (en) | Method for producing compound superconducting stranded wire | |
JPH11273469A (en) | Superconductive precursor composite wire and manufacture of superconductive composite wire | |
JP4096406B2 (en) | Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method | |
JPH0696626A (en) | Ac superconductive wire and manufacture thereof | |
JP2004200098A (en) | Manufacturing method of oxide superconductive wire rod | |
JPH117845A (en) | Superconductive wire | |
JPH04298914A (en) | Compound superconductor | |
JPH10162663A (en) | Aluminum stabilized superconductor | |
JPH01149316A (en) | Manufacture of ceramic superconductive wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041228 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130107 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |