JP2002025359A - Oxide superconductive twisted conductor - Google Patents
Oxide superconductive twisted conductorInfo
- Publication number
- JP2002025359A JP2002025359A JP2000212631A JP2000212631A JP2002025359A JP 2002025359 A JP2002025359 A JP 2002025359A JP 2000212631 A JP2000212631 A JP 2000212631A JP 2000212631 A JP2000212631 A JP 2000212631A JP 2002025359 A JP2002025359 A JP 2002025359A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- conductor
- silver
- superconducting
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 55
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 30
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052709 silver Inorganic materials 0.000 claims abstract description 26
- 239000004332 silver Substances 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 14
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 8
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 239000004917 carbon fiber Substances 0.000 claims abstract description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000004804 winding Methods 0.000 claims abstract description 4
- 238000005260 corrosion Methods 0.000 claims description 14
- 230000007797 corrosion Effects 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 239000000470 constituent Substances 0.000 abstract description 3
- 239000011812 mixed powder Substances 0.000 abstract description 2
- 230000008602 contraction Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 7
- 239000012779 reinforcing material Substances 0.000 description 7
- 239000002887 superconductor Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229910000599 Cr alloy Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910004247 CaCu Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は酸化物超電導導体に
係り、特に大容量および大容量の通電によって電磁力の
かかる電力機器、マグネット等に使用する、例えば、電
力貯蔵(SMES)、送電ケーブル、変圧器、限流器を
はじめとする電力機器、及び高エネルギー物理、核融合
用のコイルに使用される酸化物超電導撚線導体に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting conductor, and more particularly to a power storage device (SMES), a power transmission cable, and the like, which are used for power devices, magnets, and the like, which are subjected to electromagnetic force by energizing a large capacity and a large capacity. The present invention relates to a stranded oxide superconducting conductor used for a coil for a transformer, a current limiter and other electric devices, and a coil for high energy physics and nuclear fusion.
【0002】[0002]
【従来の技術】酸化物超電導線材は、一般的に銀又は銀
合金からなるチューブに超電導体の構成元素の酸化物又
は炭酸化物粉末を充填し、これに縮径加工を施すか、更
に圧延加工を施して丸線又はテープ状に加工した後、熱
処理を施すことにより製造されている。2. Description of the Related Art An oxide superconducting wire is generally prepared by filling a tube made of silver or a silver alloy with an oxide or carbonate powder of a constituent element of a superconductor and subjecting the tube to a diameter reduction process or a rolling process. And processed into a round wire or tape shape, followed by heat treatment.
【0003】このような超電導線材の臨界電流値を向上
させるために、チューブ内の酸化物粉末の充填密度を増
加させて加工〜熱処理後の超電導体組織を緻密化するこ
とにより、線材内部の超電導電流の電流経路が寸断され
ないように加工条件を最適化することが行われる。[0003] In order to improve the critical current value of such a superconducting wire, the density of the oxide powder in the tube is increased and the superconductor structure after processing to heat treatment is densified. Processing conditions are optimized so that the current path of the current is not broken.
【0004】しかしながら、超電導線材一本当たりの断
面積は加工限界など種々の要因により限界が存在し、現
状では、線材一本当たりの超電導電流は数十〜数百アン
ペア程度に限定されている。However, the cross-sectional area per superconducting wire is limited by various factors such as processing limits, and at present, the superconducting current per wire is limited to about several tens to several hundreds of amperes.
【0005】上記の大型電力機器やマグネット等にこの
ような超電導線材を応用した設計を行った場合、線材に
要求される超電導電流は数キロ〜数十キロアンペアに達
し、このため、線材を集合化した超電導導体を製造する
必要がある。[0005] When such superconducting wires are applied to the above-mentioned large power devices and magnets, the superconducting current required for the wires reaches several kilograms to several tens of kiloamps, so that the wires are assembled. It is necessary to manufacture a superconducting conductor.
【0006】また、酸化物超電導線材を使用した送電ケ
ーブルにおいては、線材の形状がテープ状であるために
テープを保持するためのフォーマが必要となり、このフ
ォーマの周囲に線材をスパイラル状に巻きつけることに
より送電ケーブルが製造されている。このために導体断
面積に対する超電導線材の断面積は小さな値となり、そ
の結果、通電容量は1〜3キロアンペア程度に止まって
いる。[0006] In a power transmission cable using an oxide superconducting wire, a former for holding the tape is required because the shape of the wire is a tape shape, and the wire is spirally wound around the former. As a result, power transmission cables are manufactured. For this reason, the cross-sectional area of the superconducting wire with respect to the conductor cross-sectional area has a small value, and as a result, the current carrying capacity is limited to about 1 to 3 kA.
【0007】この導体をコイルに利用する場合、導体全
体の電流密度が低いこと及び導体自体の可撓性に劣るた
めに現実的であるとは言えず、コイルへの使用には適さ
ない。[0007] When this conductor is used for a coil, it is not practical because the current density of the entire conductor is low and the flexibility of the conductor itself is inferior, and it is not suitable for use in a coil.
【0008】集約すれば、電力機器にBi系超電導導体
を使用をする際に問題となるのは、導体1本当たりの通
電容量が不足していること及び導体の機械的強度及び可
撓性不足の点である。[0008] In summary, when Bi-based superconducting conductors are used in power equipment, the problems are that the current carrying capacity per conductor is insufficient, and the mechanical strength and flexibility of the conductor are insufficient. Is the point.
【0009】上記の問題を解決するために、筆者等のグ
ループはコイルの作製に適した、酸化物超電導線材を使
用した大電流導体の発明を出願している(特願平10−
128900号)。この大電流導体は、耐熱性及び耐酸
化腐食性を有する高強度補強材の外周にセラミックスバ
リア層を設け、その周囲に酸化物超電導線材を撚線加工
により集合化した後、圧縮成形を施した形状の圧縮成形
導体である。In order to solve the above problem, the group of the present inventors has applied for an invention of a large current conductor using an oxide superconducting wire, which is suitable for manufacturing a coil (Japanese Patent Application No. Hei 10-1998).
128900). This high current conductor was provided with a ceramic barrier layer on the outer periphery of a high-strength reinforcing material having heat resistance and oxidation-corrosion resistance, and after forming an oxide superconducting wire around the periphery by stranded wire processing, compression molding was performed. It is a compression molded conductor having a shape.
【0010】上記のバリア層は、絶縁の役割を果たすと
ともに、熱処理中に補強材から構成元素が拡散し、超電
導体を汚染することを防止する役目を果たす。[0010] The above-mentioned barrier layer plays a role of insulating and also a role of preventing the constituent elements from diffusing from the reinforcing material during the heat treatment and contaminating the superconductor.
【0011】[0011]
【発明が解決しようとする課題】上記の大電流導体にお
いては、高強度補強材の採用により、導体の強度は著し
く向上し、600MPa程度の破断強度と3キロアンペ
ア級の通電容量の導体が得られている。In the above-mentioned high-current conductor, the strength of the conductor is remarkably improved by employing a high-strength reinforcing material, and a conductor having a breaking strength of about 600 MPa and a current carrying capacity of 3 kiloampere class is obtained. Have been.
【0012】しかしながら、この導体は中心に補強材を
配置し、補強材の断面積が導体断面積の50%以上を占
めるために、コイルの電流密度を低下させ、また線材の
臨界電流値で導体の通電容量が規定されるために、より
以上の大きな通電容量の導体を製造することは困難であ
り、より大きな通電容量の導体を得るためには導体形状
が大きくなるため、電力機器の大型コイルの容積を更に
増加させるという欠点がある。またコイルの設計次第で
は、構造材料による補強が必要となる場合があり、この
場合は導体の電流密度を更に低下させるという問題があ
り、更に大きな通電容量の達成が困難である。However, in this conductor, a reinforcing material is disposed at the center, and the cross-sectional area of the reinforcing material occupies 50% or more of the conductor cross-sectional area. Therefore, the current density of the coil is reduced, and the conductor has a critical current value of the wire. It is difficult to manufacture a conductor with a larger current carrying capacity because the current carrying capacity of the coil is specified. Has the disadvantage of further increasing the volume. Further, depending on the design of the coil, reinforcement by a structural material may be required. In this case, there is a problem that the current density of the conductor is further reduced, and it is difficult to achieve a larger current carrying capacity.
【0013】さらに、圧縮成型導体の製造には高度な撚
線技術を必要とする上、撚線の際に線材に自己径曲げに
相当する可撓性が必要となる。従って、この撚線に耐え
る線材は、銀比の高い構造にする必要があることから、
汎用的とはいえない。Further, the production of the compression-molded conductor requires an advanced twisting technique, and also requires the wire to have flexibility corresponding to self-diameter bending at the time of twisting. Therefore, since the wire material that can withstand this stranded wire needs to have a structure with a high silver ratio,
Not universal.
【0014】一般的に用いられている、ロープ型の撚線
方法は簡便で、撚線時に線材にかかる負担も少ないが、
中心補強線に用いる材料によっては、補強材からの元素
の拡散によって線材中の超電導体(フィラメント)が汚
染され、超電導特性を劣化させる原因となるという問題
がある。[0014] The generally used rope-type twisting method is simple, and the burden on the wire material during twisting is small.
Depending on the material used for the central reinforcing wire, there is a problem that superconductors (filaments) in the wire are contaminated by diffusion of elements from the reinforcing material, which causes deterioration of superconducting characteristics.
【0015】本発明は、以上の問題点を解決するために
なされたもので、機械的強度及び可撓性に優れるととも
に、超電導体生成の熱処理時に超電導特性を劣化させる
ことがなく、かつ大容量化が可能なロープ型の酸化物超
電導撚線導体を提供することをその目的とする。The present invention has been made to solve the above problems, and has excellent mechanical strength and flexibility, does not deteriorate superconductivity during heat treatment for forming a superconductor, and has a large capacity. It is an object of the present invention to provide a rope-type oxide superconducting stranded conductor that can be formed into a rope.
【0016】[0016]
【課題を解決するための手段】以上の目的を達成するた
めに、本発明の酸化物超電導撚線導体は、耐熱性及び耐
酸化腐食性を有する補強線の周囲に,銀又は銀マトリッ
クス中に多数本の酸化物超電導フィラメントを配置した
多芯構造の超電導素線の複数本を撚り合わせたものであ
る。In order to achieve the above object, a stranded oxide superconducting wire conductor according to the present invention is provided in a silver or silver matrix around a reinforcing wire having heat resistance and oxidation corrosion resistance. A plurality of superconducting element wires having a multi-core structure in which a number of oxide superconducting filaments are arranged are twisted.
【0017】上記の補強線としては、Bi系超電導体を
生成させるための焼成温度に耐える耐熱性及び耐酸化腐
食性を有する材料であることが必要であり、高純度銀に
Al、Mg、Mn、Sb、Ni、Zr、Au、Pdから
選択された1種以上の元素を添加した銀合金を用いるこ
とができる。この場合の銀合金の添加元素量は、0.0
2〜1.0wt%であることが好ましい。添加元素量が
1.0wt%を越えると合金の伸び量が極端に低下して
割れや断線が生じ、また、添加元素量が0.02wt%
未満では、添加による強化の効果が認められないためで
ある。The above-mentioned reinforcing wire must be a material having heat resistance and oxidation-corrosion resistance to withstand the sintering temperature for forming a Bi-based superconductor. , Sb, Ni, Zr, Au, and Pd can be used. In this case, the additive element amount of the silver alloy is 0.0
Preferably it is 2 to 1.0 wt%. If the amount of the added element exceeds 1.0 wt%, the elongation of the alloy is extremely reduced, causing cracks and disconnections, and the amount of the added element is 0.02 wt%.
If it is less than 10, the effect of strengthening by addition is not recognized.
【0018】上記の銀合金の代わりに、補強線として耐
熱性及び耐酸化腐食性を有するNi基耐蝕性合金を使用
することもできる。この場合には、補強線の外周に拡散
遮蔽層を設ける必要がある。Ni基耐蝕性合金として
は、Ni−Cr合金、Ni−Cr−Fe合金又はハステ
ロイ等が使用され、酸素中で900℃の超電導体の焼成
工程に耐え、この処理後に十分な強度と可撓性を有する
ことが必要である。Instead of the silver alloy, a Ni-based corrosion-resistant alloy having heat resistance and oxidation-corrosion resistance can be used as a reinforcing wire. In this case, it is necessary to provide a diffusion shielding layer on the outer periphery of the reinforcing wire. As the Ni-based corrosion resistant alloy, Ni-Cr alloy, Ni-Cr-Fe alloy, Hastelloy, or the like is used, which withstands the firing process of the superconductor at 900 ° C in oxygen, and has sufficient strength and flexibility after this process. It is necessary to have
【0019】上記の拡散遮蔽層は、プラズマコート、テ
ープ巻き、自動酸化等の手法で作製することができる。
プラスマコート法で用いるセラミックス材料は、Mg
O、ZrO、Y2 O3 、Al2 O3 等、Bi系超電導材
料との反応性が低いものが好ましく、膜厚は10〜30
0μmの範囲が好ましい。膜厚が10μm未満である
と、拡散防止効果が低下する上、膜厚に不均一が起こり
易く、また、膜厚が300μmを越えると、焼成時の補
強材の表面が酸化することにより、膜の欠落が起こる可
能性が生ずるためである。The above-mentioned diffusion shielding layer can be formed by a technique such as plasma coating, tape winding, or automatic oxidation.
The ceramic material used in the plasma coat method is Mg
O, ZrO, Y 2 O 3 , Al 2 O 3, and the like having low reactivity with the Bi-based superconducting material are preferable, and the film thickness is 10 to 30.
A range of 0 μm is preferred. When the film thickness is less than 10 μm, the effect of preventing diffusion is reduced, and the film thickness tends to be non-uniform. When the film thickness exceeds 300 μm, the surface of the reinforcing material at the time of firing is oxidized, so that the film thickness is reduced. This is because there is a possibility that data loss occurs.
【0020】以上の酸化物超電導撚線導体において、強
度の向上のために超電導素線の一部を、耐熱性及び耐酸
化腐食性を有する補強線(銀合金)又は外周に拡散遮蔽
層を設けた耐熱性及び耐酸化腐食性を有する補強線(N
i基耐蝕性合金)に置換することもできる。In the above-mentioned stranded oxide superconducting stranded conductor, a part of the superconducting wire is provided with a reinforcing wire (silver alloy) having heat resistance and oxidation corrosion resistance or a diffusion shielding layer on the outer periphery in order to improve the strength. Reinforcing wire (N
i-based corrosion-resistant alloy).
【0021】また、酸化物超電導撚線導体の更なる補強
のために、導体の周囲に炭素繊維あるいはセラミックス
繊維を巻回することが可能である。炭素繊維はカイノー
ル系、アクリル系、ピッチ系のいずれを選択しても良
い。セラミックス繊維とはSiC系の繊維が望ましい。
これらの補強層は、線材と補強線を撚り合わせた後、熱
処理を行い、その後に形成することが必要である。In order to further reinforce the stranded oxide superconducting conductor, carbon fibers or ceramic fibers can be wound around the conductor. The carbon fiber may be any of a kainol type, an acrylic type, and a pitch type. The ceramic fiber is preferably a SiC-based fiber.
These reinforcing layers need to be formed after twisting the wire and the reinforcing wire, and then performing a heat treatment.
【0022】本発明で用いられる超電導素線は、銀又は
銀マトリックス中に多数本のBi系酸化物超電導フィラ
メントを配置した多芯構造の線材である。このBi系酸
化物超電導フィラメントは、Bi2 Sr2 CaCu2 O
x(Bi−2212)あるいはBi2 Sr2 Ca2 Cu
3 Oy(Bi−2223)により形成される。超電導素
線の線材径は撚線加工ができる限り、任意に選択するこ
とができる。線材のシース材料は、純銀あるいは銀合金
で、機械強度が必要な場合は強化銀を用いることが望ま
しい。この強化銀には上述の補強線と同様の組成を有す
る銀合金が使用される。The superconducting element wire used in the present invention is a multifilamentary wire in which a number of Bi-based oxide superconducting filaments are arranged in silver or a silver matrix. This Bi-based oxide superconducting filament is made of Bi 2 Sr 2 CaCu 2 O
x (Bi-2212) or Bi 2 Sr 2 Ca 2 Cu
3 Oy (Bi-2223). The wire diameter of the superconducting wire can be arbitrarily selected as long as the stranded wire can be processed. The sheath material of the wire is preferably pure silver or a silver alloy, and when mechanical strength is required, it is desirable to use reinforced silver. For this reinforced silver, a silver alloy having the same composition as the above-described reinforcing wire is used.
【0023】[0023]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。Embodiments of the present invention will be described below.
【0024】図1は、本発明の酸化物超電導撚線導体の
一実施例の断面図を示したもので、酸化物超電導撚線導
体1は補強線2の周囲に,銀又は銀マトリックス中に多
数本の酸化物超電導フィラメントを配置した多芯構造の
超電導素線3の複数本を撚り合わて形成したものであ
る。FIG. 1 is a cross-sectional view of one embodiment of the stranded oxide superconducting conductor according to the present invention. The stranded oxide superconducting conductor 1 is provided around a reinforcing wire 2 in a silver or silver matrix. It is formed by twisting a plurality of superconducting element wires 3 having a multi-core structure in which a number of oxide superconducting filaments are arranged.
【0025】図2は、本発明の酸化物超電導撚線導体の
他の実施例の断面図を示したもので、酸化物超電導撚線
導体1´は外周に拡散遮蔽層2aを設けた補強線2の周
囲に,銀又は銀マトリックス中に多数本の酸化物超電導
フィラメントを配置した多芯構造の超電導素線3の複数
本を撚り合わせ、さらにこの外周に炭素繊維又はセラミ
ックス繊維の巻回層4を形成したものである。FIG. 2 is a sectional view of another embodiment of the stranded oxide superconducting conductor according to the present invention. The stranded oxide superconducting conductor 1 'is a reinforcing wire having a diffusion shielding layer 2a provided on the outer periphery. A plurality of superconducting wires 3 having a multi-core structure in which a number of oxide superconducting filaments are arranged in silver or a silver matrix are twisted around the wire 2, and a wound layer 4 of carbon fiber or ceramic fiber is further wrapped around the wire. Is formed.
【0026】[0026]
【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.
【0027】実施例1 外径φ15mm、内径φ13mmの純銀パイプ中に、B
i2 O3 、SrCO3、CaCO3 及びCuOの各粉末
を、Bi:Sr:Ca:Cu=2:2:1:2の元素数
比で配合した混合粉末を充填し、これに縮径加工を施し
て対辺間距離1.43mmの断面六角形のシングル線を
製造した。Example 1 B was placed in a pure silver pipe having an outer diameter of 15 mm and an inner diameter of 13 mm.
A mixed powder in which each powder of i 2 O 3 , SrCO 3 , CaCO 3 and CuO is blended at an element number ratio of Bi: Sr: Ca: Cu = 2: 2: 1: 2 is filled and reduced in diameter. To produce a single wire having a hexagonal cross section with a distance between opposite sides of 1.43 mm.
【0028】このシングル線の61本を、その側面を当
接して再度銀パイプ中に収容して縮径加工を施し、外径
φ3.9mmとした丸線の7本を束ね、銀合金パイプ中
に収容した後、縮径加工を施して外径φ0.8mmの超
電導素線を製造した。Sixty-one of these single wires were again accommodated in a silver pipe with their side surfaces in contact with each other and reduced in diameter, and seven round wires with an outer diameter of 3.9 mm were bundled into a silver alloy pipe. After that, a superconducting wire having an outer diameter of 0.8 mm was manufactured by reducing the diameter.
【0029】一方、補強線は、外径φ0.8mmのAg
−0.3wt%Mg合金を用い、この補強線を中心とし
て上記の超電導素線の6本を撚りピッチ35mmで撚り
合わせ、次いで酸素雰囲気中で最高温度850℃で12
0時間焼成して酸化物超電導撚線導体を製造した。On the other hand, the reinforcing wire is made of Ag having an outer diameter of 0.8 mm.
Using a 0.3 wt% Mg alloy, six superconducting wires described above are twisted at a twisting pitch of 35 mm around the reinforcing wire, and then 12 ° C at a maximum temperature of 850 ° C. in an oxygen atmosphere.
It was fired for 0 hour to produce an oxide superconducting stranded conductor.
【0030】実施例2 実施例1の補強線として、外径φ0.8mmのNi−2
0wt%Cr合金の外周に30μmの膜厚のZrOから
なる拡散遮蔽層を設け、他は実施例1と同様にして酸化
物超電導撚線導体を製造した。Example 2 As a reinforcing wire of Example 1, Ni-2 having an outer diameter of 0.8 mm was used.
A 30 μm-thick diffusion shielding layer made of ZrO was provided on the outer periphery of the 0 wt% Cr alloy, and the other steps were the same as in Example 1 to produce a stranded oxide superconducting conductor.
【0031】実施例3 実施例1の補強線として、外径φ0.8mmのNi−2
0wt%Cr合金の外周に30μmの膜厚のAl2 O3
らなる拡散遮蔽層を設け、他は実施例1と同様にして酸
化物超電導撚線導体を製造した。Example 3 As a reinforcing wire of Example 1, Ni-2 having an outer diameter of 0.8 mm was used.
Al 2 O 3 having a thickness of 30 μm is formed on the outer periphery of a 0 wt% Cr alloy.
A superconducting twisted-wire conductor was manufactured in the same manner as in Example 1, except that a diffusion shielding layer was provided.
【0032】実施例4 実施例1の補強線として、外径φ0.8mmのNi−2
0wt%Cr合金の外周に30μmの膜厚のZrOから
なる拡散遮蔽層を設け、この補強線を中心として実施例
1で示した超電導素線の6本を撚り合わせ、次いで酸素
雰囲気中で最高温度850℃で120時間焼成した後、
さらにこの外周に外径φ0.2mmのピッチ系の炭素繊
維を巻回して酸化物超電導撚線導体を製造した。Example 4 As a reinforcing wire of Example 1, Ni-2 having an outer diameter of 0.8 mm was used.
A diffusion shielding layer made of ZrO having a thickness of 30 μm was provided on the outer periphery of the 0 wt% Cr alloy, and the six superconducting wires shown in Example 1 were twisted around this reinforcing wire, and then the maximum temperature was obtained in an oxygen atmosphere. After firing at 850 ° C for 120 hours,
Further, a pitch-based carbon fiber having an outer diameter of 0.2 mm was wound around the outer periphery to produce a stranded oxide superconducting conductor.
【0033】比較例1 実施例1の補強線として、外径φ0.8mmのNi−2
0wt%Cr合金を用い、他は実施例1と同様にして酸
化物超電導撚線導体を製造した。Comparative Example 1 As a reinforcing wire of Example 1, Ni-2 having an outer diameter of 0.8 mm was used.
A stranded oxide superconducting conductor was manufactured in the same manner as in Example 1 except that a 0 wt% Cr alloy was used.
【0034】比較例2 実施例1の補強線の代わりに、外径φ0.8mmの純銀
線を用い、他は実施例1と同様にして酸化物超電導撚線
導体を製造した。Comparative Example 2 A stranded oxide superconducting conductor was produced in the same manner as in Example 1 except that a pure silver wire having an outer diameter of 0.8 mm was used instead of the reinforcing wire of Example 1.
【0035】以上の実施例1〜4及び比較例1及び2の
酸化物超電導撚線導体の超電導特性(臨界電流値:I
c)及び機械的強度を表1に示す。The superconducting characteristics (critical current value: I) of the oxide superconducting stranded conductors of Examples 1 to 4 and Comparative Examples 1 and 2 described above.
Table 1 shows c) and the mechanical strength.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【図1】本発明の酸化物超電導撚線導体の一実施例の断
面図である。FIG. 1 is a cross-sectional view of one embodiment of the stranded oxide superconducting conductor of the present invention.
【図2】本発明の酸化物超電導撚線導体の他の実施例の
断面図である。FIG. 2 is a sectional view of another embodiment of the stranded oxide superconducting wire conductor of the present invention.
1、1´…酸化物超電導撚線導体 2…補強線 2a…拡散遮蔽層2a 3…超電導素線 4…炭素繊維又はセラミックス繊維の巻回層 1, 1 ': oxide superconducting stranded wire conductor 2: reinforcing wire 2a: diffusion shielding layer 2a 3: superconducting wire 4: winding layer of carbon fiber or ceramic fiber
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 直樹 名古屋市緑区大高町字北関山20番地の1 中部電力株式会社電力技術研究所内 (72)発明者 長谷川 隆代 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 青木 裕二 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 小泉 勉 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 Fターム(参考) 5G321 AA05 BA01 BA03 CA09 CA16 CA50 CA52 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoki Hirano 20-1, Kitakanyama, Midori-ku, Nagoya-shi 2-1, 1-1 Oda Sakae Showa Electric Wire & Cable Co., Ltd. (72) Inventor Yuji Aoki 2-1-1, Oda Ei, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Showa Electric Wire & Cable Co., Ltd. (72) Inventor Tsutomu Koizumi Kanagawa Prefecture F-term (reference) in Showa Electric Wire & Cable Co., Ltd. 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-ku 5G321 AA05 BA01 BA03 CA09 CA16 CA50 CA52
Claims (8)
周囲に,銀又は銀マトリックス中に多数本の酸化物超電
導フィラメントを配置した多芯構造の超電導素線の複数
本を撚り合わせたことを特徴とする酸化物超電導撚線導
体。1. A multifilamentary superconducting element wire in which a number of oxide superconducting filaments are arranged in a silver or silver matrix around a reinforcing wire having heat resistance and oxidation resistance. A stranded oxide superconducting wire conductor, characterized in that:
周囲に,銀又は銀マトリックス中に多数本の酸化物超電
導フィラメントを配置した多芯構造の超電導素線の複数
本を撚り合わせ、この外周に炭素繊維又はセラミックス
繊維を巻回したことを特徴とする酸化物超電導撚線導
体。2. A multifilamentary superconducting element wire in which a number of oxide superconducting filaments are arranged in a silver or silver matrix around a reinforcing wire having heat resistance and oxidation corrosion resistance, A stranded oxide superconducting conductor, wherein a carbon fiber or a ceramic fiber is wound around the outer periphery.
Sb、Ni、Zr、Au、Pdから選択された1種以上
の元素を添加した銀合金からなることを特徴とする請求
項1又は2記載の酸化物超電導撚線導体。3. The reinforcing wire is made of high purity silver, Al, Mg, Mn,
The stranded oxide superconducting conductor according to claim 1 or 2, wherein the conductor is made of a silver alloy to which at least one element selected from Sb, Ni, Zr, Au, and Pd is added.
wt%であることを特徴とする請求項3記載の酸化物超
電導撚線導体。4. The silver alloy has an additive element content of 0.02 to 1.0.
4. The stranded oxide superconducting wire conductor according to claim 3, wherein the amount is wt.
化腐食性を有する補強線の周囲に,銀又は銀マトリック
ス中に多数本の酸化物超電導フィラメントを配置した多
芯構造の超電導素線の複数本を撚り合わせたことを特徴
とする酸化物超電導撚線導体。5. A superconducting element having a multi-core structure in which a number of oxide superconducting filaments are arranged in a silver or silver matrix around a heat-resistant and oxidation-resistant corrosion-resistant reinforcing wire provided with a diffusion shielding layer on the outer periphery. An oxide superconducting stranded wire conductor comprising a plurality of twisted wires.
化腐食性を有する補強線の周囲に,銀又は銀マトリック
ス中に多数本の酸化物超電導フィラメントを配置した多
芯構造の超電導素線の複数本を撚り合わせ、この外周に
炭素繊維又はセラミックス繊維を巻回したことを特徴と
する酸化物超電導撚線導体。6. A superconducting element having a multi-core structure in which a number of oxide superconducting filaments are arranged in silver or a silver matrix around a heat-resistant and oxidation-resistant corrosion-resistant reinforcing wire provided with a diffusion shielding layer on the outer periphery. A stranded oxide superconducting wire conductor, characterized by twisting a plurality of wires and winding a carbon fiber or a ceramic fiber around the wire.
を特徴とする請求項5又は6記載の酸化物超電導撚線導
体。7. The stranded oxide superconducting conductor according to claim 5, wherein the reinforcing wire is made of a Ni-based corrosion resistant alloy.
食性を有する補強線又は外周に拡散遮蔽層を設けた耐熱
性及び耐酸化腐食性を有する補強線に置換したことを特
徴とする請求項1、2、5又は6いずれか1項記載の酸
化物超電導撚線導体。8. A superconducting element wire is characterized in that a part of the superconducting wire is replaced by a heat-resistant and oxidation-resistant corrosion-resistant reinforcing wire or a heat-resistant and oxidation-resistant corrosion-resistant reinforcing wire provided with a diffusion shielding layer on the outer periphery. The oxidized superconducting stranded conductor according to any one of claims 1, 2, 5, and 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212631A JP4542240B2 (en) | 2000-07-13 | 2000-07-13 | Oxide superconducting stranded conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212631A JP4542240B2 (en) | 2000-07-13 | 2000-07-13 | Oxide superconducting stranded conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002025359A true JP2002025359A (en) | 2002-01-25 |
JP4542240B2 JP4542240B2 (en) | 2010-09-08 |
Family
ID=18708527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000212631A Expired - Fee Related JP4542240B2 (en) | 2000-07-13 | 2000-07-13 | Oxide superconducting stranded conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4542240B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009026755A (en) * | 2007-07-17 | 2009-02-05 | Nexans | Superconductive electrical cable |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102117682B (en) * | 2011-02-28 | 2012-07-11 | 西北有色金属研究院 | Preparation method of Bi-2212 high-temperature superconductivity wire |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452343A (en) * | 1987-08-21 | 1989-02-28 | Sanyo Electric Co | Manufacture of cable-shaped superconductor |
JPH01134809A (en) * | 1987-11-18 | 1989-05-26 | Toshiba Corp | Superconductive wire material |
JPH06196031A (en) * | 1992-12-22 | 1994-07-15 | Natl Res Inst For Metals | Manufacture of oxide superconductive wire |
JPH06283056A (en) * | 1993-03-30 | 1994-10-07 | Hitachi Cable Ltd | Oxide superconductive wire |
JP2000036221A (en) * | 1998-05-12 | 2000-02-02 | Chubu Electric Power Co Inc | Compression molded conductor of oxide superconductor and manufacture thereof |
-
2000
- 2000-07-13 JP JP2000212631A patent/JP4542240B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6452343A (en) * | 1987-08-21 | 1989-02-28 | Sanyo Electric Co | Manufacture of cable-shaped superconductor |
JPH01134809A (en) * | 1987-11-18 | 1989-05-26 | Toshiba Corp | Superconductive wire material |
JPH06196031A (en) * | 1992-12-22 | 1994-07-15 | Natl Res Inst For Metals | Manufacture of oxide superconductive wire |
JPH06283056A (en) * | 1993-03-30 | 1994-10-07 | Hitachi Cable Ltd | Oxide superconductive wire |
JP2000036221A (en) * | 1998-05-12 | 2000-02-02 | Chubu Electric Power Co Inc | Compression molded conductor of oxide superconductor and manufacture thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009026755A (en) * | 2007-07-17 | 2009-02-05 | Nexans | Superconductive electrical cable |
Also Published As
Publication number | Publication date |
---|---|
JP4542240B2 (en) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3658844B2 (en) | Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same | |
US4965245A (en) | Method of producing oxide superconducting cables and coils using copper alloy filament precursors | |
JP2897776B2 (en) | Electrical conductor in wire or cable form | |
AU779553B2 (en) | Oxide high-temperature superconducting wire and method of producing the same | |
CN1400612A (en) | Preparation method of ultrafine high-temp. superconducting wire material | |
JP4542240B2 (en) | Oxide superconducting stranded conductor | |
JP3885358B2 (en) | Oxide high-temperature superconducting wire and method for producing the same | |
JP3881158B2 (en) | Oxide superconducting large capacity conductor | |
JP4150129B2 (en) | Oxide superconducting compression molded conductor and manufacturing method thereof | |
JP4423708B2 (en) | Oxide superconducting wire and method for producing oxide superconducting multicore wire | |
JPH10302559A (en) | Reducing coupling method for matrix htc superconducting multi-stranded wire consisting of silver as main component, and multi-stranded wire obtained thereby | |
JP3635210B2 (en) | Oxide superconducting compression molded conductor and manufacturing method thereof | |
JP3881322B2 (en) | Oxide superconducting compression molded conductor and method for producing the same | |
JP2012009174A (en) | Oxide superconducting cable | |
JP4203313B2 (en) | Bi-based rectangular oxide superconductor | |
JP4745592B2 (en) | Bi2Sr2CaCu2O8 oxide superconductor | |
JP4659176B2 (en) | Oxide superconducting wire and method for producing the same | |
JPH04264315A (en) | Manufacture of large-capacity oxide superconducting conductor | |
JP3757617B2 (en) | Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof | |
JP2637427B2 (en) | Superconducting wire manufacturing method | |
JP3667028B2 (en) | Oxide superconducting wire for alternating current and method for producing the same | |
McInturff | Conductor fabrication for Isabelle dipole magnets | |
JP2006237010A (en) | Oxide high-temperature superconducting wire rod and its manufacturing method | |
JPH117845A (en) | Superconductive wire | |
JPH05114320A (en) | Manufacture of ceramics superconductive conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060424 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060629 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100625 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |