JPS61264609A - Manufacture externally reinforced compound superconductor - Google Patents

Manufacture externally reinforced compound superconductor

Info

Publication number
JPS61264609A
JPS61264609A JP60106454A JP10645485A JPS61264609A JP S61264609 A JPS61264609 A JP S61264609A JP 60106454 A JP60106454 A JP 60106454A JP 10645485 A JP10645485 A JP 10645485A JP S61264609 A JPS61264609 A JP S61264609A
Authority
JP
Japan
Prior art keywords
wire
superconducting
copper
externally reinforced
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60106454A
Other languages
Japanese (ja)
Other versions
JPH0355011B2 (en
Inventor
能登 宏七
福塚 淑郎
昌孝 野口
睦 安倍
浅野 吉男
田宮 哲雄
富春 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60106454A priority Critical patent/JPS61264609A/en
Publication of JPS61264609A publication Critical patent/JPS61264609A/en
Publication of JPH0355011B2 publication Critical patent/JPH0355011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は外部補強化合物超電導線の製造方法に関し、さ
らに詳しくは、拡散接合により品質の優れた外部補強化
合物超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for manufacturing an externally reinforced compound superconducting wire, and more particularly to a method for manufacturing an externally reinforced compound superconducting wire with excellent quality by diffusion bonding.

[従来技術] 従来より、NbzSn、V 3G a等の超電導線は8
T以上の高磁界の発生用線材として実用化されており、
また、核融合出炉等の大型マグネットのための大容量導
体に使用される線材として開発が行なわれている。
[Prior art] Conventionally, superconducting wires such as NbzSn, V3G a, etc.
It has been put into practical use as a wire for generating high magnetic fields of T or higher.
Further, it is being developed as a wire rod to be used as a large-capacity conductor for large magnets such as those used in nuclear fusion reactors.

このような大容量導体の場合には、導体に大きな電磁力
が働べため冷間加工により強度を上昇させた無酸素銅お
よびステンレス鋼、モリブデン等で補強して耐ストレス
性を向上させていた。
In the case of such large-capacity conductors, because a large electromagnetic force acts on the conductor, they are reinforced with oxygen-free copper, stainless steel, molybdenum, etc. whose strength is increased by cold working to improve stress resistance. .

また、Nb*Sn等の化合物系超電導多芯線材は、もと
もと脆い性質を有しているので、小型マグネットにおい
てはNb3Sn等の化合物を生成させるだめの熱処理を
行なっていない線材を使用してマグネットを巻線した後
、化合物を生成するための熱処理を行なっている(Wi
nd and React法)。
In addition, superconducting multicore wires based on compounds such as Nb*Sn are inherently brittle, so in small magnets, wires that have not been heat-treated to produce compounds such as Nb3Sn are used to build magnets. After winding, heat treatment is performed to generate a compound (Wi
and React method).

一方、大型マグネットにおいては実用性を考慮すると上
記説明したWind and React法を採用する
ことは困難であり、そのため熱処理により化合物を生成
させた導体を使用してマグネットの巻線を行なっている
(React and Wind法)。
On the other hand, in consideration of practicality, it is difficult to adopt the Wind and React method described above for large magnets, and therefore magnet wires are wound using conductors that have been heat-treated to generate compounds (React method). and wind method).

このReact and Wind法の場合、内部補強
法と外部補強法の2種類があり、外部補強法で一般的に
実用化されている導体の構造としては、第1図に示すよ
うな断面形状を有する門型銅埋込導体構造のものが多く
、この構造体の製造方法とじて一般的に、門型無酸素銅
の冷間加工材(四部)に、熱処理により化合物を生成さ
せた超電導多芯線をはんだ付けにより接合して長尺材を
製造している。
In the case of this React and Wind method, there are two types: internal reinforcement method and external reinforcement method.The conductor structure that is generally put into practical use by the external reinforcement method has a cross-sectional shape as shown in Figure 1. Many have a gate-shaped copper-embedded conductor structure, and the manufacturing method for this structure is generally to add superconducting multifilamentary wires that have been heat-treated to form a compound in cold-worked gate-shaped oxygen-free copper material (four parts). Long materials are manufactured by joining them by soldering.

この構造体における門型無酸素銅には高強度および高電
気型導度が要求される。
The gate-shaped oxygen-free copper in this structure is required to have high strength and high electrical conductivity.

このような、化合物系多芯線を使用した門型銅埋込導体
を製造する場合に、通常は熱処理を行なって化合物を生
成させた線材を門型銅条の凹部に埋込み、同時にはんだ
付けを行なっている。このはんだ付けの時に、門型銅条
は軟化を避けるためにできるだけ低温で、かつ、短時間
ではんだ付けを行なう必要がある。
When manufacturing such a gate-shaped copper-embedded conductor using a compound-based multicore wire, the wire rod, which has been heat-treated to form a compound, is usually buried in the recess of the gate-shaped copper strip and soldered at the same time. ing. During this soldering, it is necessary to solder the gate-shaped copper strip at as low a temperature as possible and in a short time to avoid softening.

さらに、熱処理により化合物を生成させた複合多芯線材
は極めて脆いため、門型銅条に埋込む際の作業性が悪く
、具体的には該線材に約0.5%以上の歪が加えられる
と超電導特性が着しく劣化することは知られており、従
って、該線材を埋込み、はんだ付は作業を行なう時には
、該線材に0.5%以上の歪が加わらないようにしなけ
ればならない。
Furthermore, the composite multi-filament wire material produced by heat treatment is extremely brittle, making it difficult to work with when embedding it in gate-shaped copper strips. Specifically, the wire material is subject to a strain of approximately 0.5% or more. It is known that the superconducting properties of the wire will deteriorate over time. Therefore, when embedding and soldering the wire, it is necessary to avoid applying strain of 0.5% or more to the wire.

また、はんだ付けの場合に門型銅条と超電導多芯線との
間のはんだ層に気泡が残ることが多く、そのため該線材
の冷却が不充分となって超電導特性を損なうことになる
Furthermore, during soldering, air bubbles often remain in the solder layer between the gate-shaped copper strip and the superconducting multifilamentary wire, resulting in insufficient cooling of the wire and impairing the superconducting properties.

[発明が解決しようとする問題点] 本発明は上記に説明したように、従来技術における門型
銅条と超電導多芯線との埋込み、はんだ付けにおける種
々の問題点を解消したものであって、本発明者が研究お
よび検討を重ねた結果、外部補強材にA1□03を分散
させた銅を使用し、また、超電導多芯線の未拡散熱処理
のものを使用することによって、埋込み作業およびはん
だ付は等によって超電導特性が劣化することがない外部
補強化合物超電導線の製造方法を開発したのである。
[Problems to be Solved by the Invention] As explained above, the present invention solves various problems in embedding and soldering of gate-shaped copper strips and superconducting multicore wires in the prior art, As a result of repeated research and consideration by the present inventor, we have found that by using copper in which A1□03 is dispersed as the external reinforcing material, and by using non-diffusion heat-treated superconducting multifilamentary wire, it has been found that the embedding and soldering We have developed a method for manufacturing externally reinforced compound superconducting wires that does not cause deterioration of superconducting properties due to corrosion.

[問題点を解決するための手段1 本発明に係る外部補強化合物超電導線の製造方法の特徴
とするところは、A1□03分散強化銅を外部補強材と
して用い、これと未拡散熱処理状態の超電導複合芯線を
複合一体化し、次いで、拡散熱処理を行なうことにある
[Means for Solving the Problems 1] The method for manufacturing an externally reinforced compound superconducting wire according to the present invention is characterized by using A1□03 dispersion-strengthened copper as an external reinforcing material, and combining this with non-diffused heat-treated superconducting wire. The purpose of this method is to integrate the composite core wire into a composite and then perform a diffusion heat treatment.

本発明に係る外部補強化合物超電導線の製造方法(以下
単に本発明に係る方法ということがある)について以下
詳細に説明する。
The method for manufacturing an externally reinforced compound superconducting wire according to the present invention (hereinafter sometimes simply referred to as the method according to the present invention) will be described in detail below.

本発明に係る方法において使用するAl2O3分散強化
銅は、胴中に0.1〜5wt%程度のA I 203を
分散させたちのであって、銅粉末とA ! 20 :+
粉末とを粉末冶金法により製造するか、銅粉末を錯体処
理して銅粉末表面にAl2O3膜を生成させる錯体法で
製造するか、或いは、Cu−A1系溶製材に内部酸化法
を適用して製造する。
The Al2O3 dispersion-strengthened copper used in the method of the present invention has about 0.1 to 5 wt% of A I 203 dispersed in the shell, and the copper powder and A! 20:+
The copper powder is manufactured by a powder metallurgy method, the copper powder is complex-treated to form an Al2O3 film on the surface of the copper powder, or the copper powder is manufactured by a complex method in which an Al2O3 film is generated on the surface of the copper powder, or the internal oxidation method is applied to Cu-A1-based ingot material. Manufacture.

このAl2O,分散強化銅は、第2図に示すように、高
温における熱処理によっても強度の低下が少ない。同じ
第2図に示しである無酸素銅と比較しても明らかである
。また、第3図に示すように、電気伝導度が高温の熱処
理によっても常温と略同程度である。
As shown in FIG. 2, this Al2O and dispersion-strengthened copper exhibits little decrease in strength even when subjected to heat treatment at high temperatures. This is clear when compared with oxygen-free copper, which is also shown in FIG. Further, as shown in FIG. 3, the electrical conductivity remains approximately the same as that at room temperature even after high-temperature heat treatment.

このことから、A 1203分散強化銅は化合物超電導
線およびNbTi合金系超電導線等の安定化材および補
強材として最適な材料である。
For this reason, A1203 dispersion-strengthened copper is an optimal material as a stabilizing material and reinforcing material for compound superconducting wires, NbTi alloy superconducting wires, and the like.

本発明に係る方法において、複合一体化は、A1201
分散強化銅と未拡散熱処理状態の超電導複合多芯線の両
者を組立て、ろう付は或いは30%以下程度の冷開抽伸
、圧延等の塑性加工により減面圧着して一体化とする。
In the method according to the invention, the composite integration comprises A1201
Both the dispersion-strengthened copper and the non-diffusion heat-treated superconducting composite multifilament wire are assembled and integrated by brazing or by reducing the area by plastic working such as cold-open drawing or rolling of about 30% or less.

また、本発明に係る方法において、拡散熱処理は生成す
る化合物によって異なるが、N b 3 S nやV3
Ga等の場合には500〜900 ’Cの温度で行なう
のカリA当である。
In addition, in the method according to the present invention, the diffusion heat treatment differs depending on the compound to be produced, but Nb3Sn and V3
In the case of Ga, etc., it is recommended to carry out the reaction at a temperature of 500 to 900'C.

本発明に係る外部補強化合物超電導線の製造方法を説明
する。
A method for manufacturing an externally reinforced compound superconducting wire according to the present invention will be explained.

(1)化合物超電導芯線の伸線加工。(1) Wire drawing processing of compound superconducting core wire.

(2)門型A l 20−分散銅条の加工。(2) Processing of gate-shaped A1 20-dispersed copper strip.

(3)門型A 1203分散銅の四部に未拡散熱処理状
態の化合物超電導多芯線を埋込むことによって組立て、
ろう付は或いは減面密着加工を行なう。
(3) Gate type A 1203 Assembled by embedding multifilamentary compound superconducting multifilamentary wires in an undiffused heat-treated state in the four parts of dispersed copper,
Perform brazing or surface reduction adhesion processing.

(4)この構造体を化合物生成のための拡散熱処理を行
なう。
(4) This structure is subjected to diffusion heat treatment to generate a compound.

本発明に係る方法はこのような工程によって、外部補強
超電導線を製造することができるので、従来のように化
合物超電導多芯線の伸線加工後に拡散熱処理を行なわず
、また、組立ての際の該芯線の取扱いにもあまり慎重に
なる必要がなく、超電導特性が劣化するという問題がな
い。
Since the method according to the present invention can produce an externally reinforced superconducting wire through such steps, there is no need to perform diffusion heat treatment after drawing a compound superconducting multifilamentary wire as in the conventional method, and there is no need for diffusion heat treatment during assembly. There is no need to be very careful in handling the core wire, and there is no problem of deterioration of superconducting properties.

また、本発明に係る方法においては、化合物を生成して
いない未反応、即ち、未拡散熱処理状態の超電導多芯線
を組立てるので超電導特性の劣化する恐れがなく、ろう
付は或いは冷間加工により未拡散熱処理状態の超電導多
芯線と門型のALO3分散強化銅が充分に密着している
ので、熱処理によって拡散接合され極めて優れた品質の
外部補強化合物超電導線を製造することがで外る。
In addition, in the method according to the present invention, since the superconducting multifilamentary wire is assembled in an unreacted, undiffused heat-treated state where no compounds are generated, there is no risk of deterioration of the superconducting properties, and the unreacted superconducting multifilamentary wire is not heated by brazing or cold working. Since the superconducting multifilamentary wire in the diffusion heat-treated state and the gate-shaped ALO3 dispersion-strengthened copper are in close contact with each other, it is possible to produce an externally reinforced compound superconducting wire of extremely excellent quality by diffusion bonding by heat treatment.

[実施例1 本発明に係る外部補強化合物超電導線の製造方法の実施
例を説明する。
[Example 1] An example of the method for manufacturing an externally reinforced compound superconducting wire according to the present invention will be described.

実施例 第1図に示すように、外径1.5X4.0mm2のNb
3Sn超電導多芯線1(芯線数10,285本、bro
nze/ N b= 2 、8、Cu/noncu= 
0 、33 )とWi=4.2mm、 ti=1,5m
n+、、W=10.0mm、 t”4.5mn+の門型
Al2O,分散強化銅2との組立てを行なっjこ後、減
面加工を行なって4.15X9.2mm口の門型銅埋込
導体とした。
Example As shown in Figure 1, Nb with an outer diameter of 1.5 x 4.0 mm2
3Sn superconducting multicore wire 1 (10,285 cores, bro
nze/N b= 2, 8, Cu/noncu=
0,33) and Wi=4.2mm, ti=1.5m
n+, W = 10.0mm, t”4.5mmn+ portal type Al2O, after assembling with dispersion strengthened copper 2, perform surface reduction processing and embed portal type copper with 4.15 x 9.2mm opening. It was used as a conductor.

この導体を660’CX300HrArガス中で熱処理
を行なって製品とした。
This conductor was heat treated in 660'CX300HrAr gas to produce a product.

ここで使用した補強材としてのAI。03分散強化胴中
のA1□03111t%量は0,8u+t%であり、錯
体処理法により製造した粉末を無酸素銅ケース中に圧縮
充填して真空対じをした後、800 ’Cの温度で熱間
静水圧押出しを行なったものを抽伸加工により門型条と
した。
AI as a reinforcing material used here. The amount of A1□03111t% in the 03 dispersion-strengthened shell was 0.8u+t%, and the powder produced by the complex treatment method was compressed and filled into an oxygen-free copper case, sealed in a vacuum, and then heated at a temperature of 800'C. The hot isostatically extruded material was drawn into a gate-shaped strip.

熱処理後のA I 203分散強化銅部の引張強さは3
2kg/mm2.4.2Kにおける比抵抗は1.05X
IO”ΩcIII、IITにおける残留抵抗は15゜9
μΩmであった。
The tensile strength of the A I 203 dispersion strengthened copper part after heat treatment is 3
2kg/mm2.The specific resistance at 4.2K is 1.05X
The residual resistance at IO”ΩcIII, IIT is 15°9
It was μΩm.

そして、超電導複合多芯線と門型A l 20 ]分散
強化銅補強材とは完全に拡散接合していた。
The superconducting composite multifilamentary wire and the gate-shaped A l 20 ] dispersion-strengthened copper reinforcing material were completely diffusion-bonded.

また、上記組立てた導体を700℃X100Hrの熱処
理を行なってNb、Snを生成させた。
Further, the assembled conductor was subjected to heat treatment at 700° C. for 100 hours to generate Nb and Sn.

熱処理後のAl2O3分散強化銅の引張強さは30kg
/mm2.4.2Kにおける比抵抗は8.9×10−8
Ωcm、11Tにおける残留抵抗は11.5μ52mで
あった。
The tensile strength of Al2O3 dispersion strengthened copper after heat treatment is 30kg
/mm2.The specific resistance at 4.2K is 8.9×10-8
The residual resistance at Ωcm and 11T was 11.5μ52m.

[発明の効果1 以上説明したように、本発明に係る外部補強化合物超電
導線の製造方法は上記の構成を有しているので、超電導
多芯線の取扱いやろう付けによる超電導特性が劣化する
ことがなく、また、超電導多芯線とA I 203分散
強化銅とは複合一体化しており、強度および電気伝導度
も優れているものが製造できるという効果を有している
[Effect of the invention 1] As explained above, since the method for manufacturing an externally reinforced compound superconducting wire according to the present invention has the above-mentioned configuration, the superconducting properties can be prevented from deteriorating due to handling or brazing of the superconducting multifilamentary wire. Furthermore, the superconducting multifilamentary wire and the A I 203 dispersion-strengthened copper are integrated into a composite structure, which has the effect of producing products with excellent strength and electrical conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る外部補強化合物超電導線の製造方
法の説明図、第2図および第3図は本発明に係る外部補
強化合物超電導線の製造方法における補強材としてのA
1□03分散強化銅の焼鈍温度および引張強さと電気伝
導度を示す図である。
FIG. 1 is an explanatory diagram of the method for manufacturing an externally reinforced compound superconducting wire according to the present invention, and FIGS. 2 and 3 are illustrations of A as a reinforcing material in the method for manufacturing an externally reinforced compound superconducting wire according to the present invention.
FIG. 1 is a diagram showing the annealing temperature, tensile strength, and electrical conductivity of 1□03 dispersion-strengthened copper.

Claims (1)

【特許請求の範囲】[Claims] Al_2O_3分散強化銅を外部補強材として用い、こ
れと未拡散熱処理状態の超電導複合多芯線を複合一体化
し、次いで、拡散熱処理を行なうことを特徴とする外部
補強化合物超電導線の製造方法。
A method for producing an externally reinforced compound superconducting wire, which comprises using Al_2O_3 dispersion-strengthened copper as an external reinforcing material, integrating the same with a non-diffusion heat-treated superconducting composite multifilamentary wire, and then performing diffusion heat treatment.
JP60106454A 1985-05-18 1985-05-18 Manufacture externally reinforced compound superconductor Granted JPS61264609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106454A JPS61264609A (en) 1985-05-18 1985-05-18 Manufacture externally reinforced compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106454A JPS61264609A (en) 1985-05-18 1985-05-18 Manufacture externally reinforced compound superconductor

Publications (2)

Publication Number Publication Date
JPS61264609A true JPS61264609A (en) 1986-11-22
JPH0355011B2 JPH0355011B2 (en) 1991-08-22

Family

ID=14434040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106454A Granted JPS61264609A (en) 1985-05-18 1985-05-18 Manufacture externally reinforced compound superconductor

Country Status (1)

Country Link
JP (1) JPS61264609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990411A (en) * 1988-06-09 1991-02-05 Kabushiki Kaisha Toshiba Compound superconducting wire and method of manufacturing the same
JP2017517899A (en) * 2014-03-12 2017-06-29 ルヴァータ ウォーターベリー インコーポレイテッドLuvata Waterbury, Inc Method and system for manufacturing superconductors for reaction and integration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138600B2 (en) 2013-06-12 2017-05-31 ジャパンスーパーコンダクタテクノロジー株式会社 Magnetic field generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990411A (en) * 1988-06-09 1991-02-05 Kabushiki Kaisha Toshiba Compound superconducting wire and method of manufacturing the same
US5100481A (en) * 1988-06-09 1992-03-31 Kabushiki Kaisha Toshiba Compound superconducting wire and method of manufacturing the same
JP2017517899A (en) * 2014-03-12 2017-06-29 ルヴァータ ウォーターベリー インコーポレイテッドLuvata Waterbury, Inc Method and system for manufacturing superconductors for reaction and integration
US9941033B2 (en) 2014-03-12 2018-04-10 Luvata Waterbury, Inc. Methods and systems for preparing superconductors for reaction and integration

Also Published As

Publication number Publication date
JPH0355011B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
JPS61131307A (en) Manufacture of superconductive wire
JPS63225409A (en) Compound superconductive wire and its manufacture
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPS61264609A (en) Manufacture externally reinforced compound superconductor
US5504984A (en) Methods of manufacturing Nb3 Al superconducting wire and coil
JP3522306B2 (en) Bi-based oxide superconducting wire and method for producing the same
JP3534428B2 (en) Manufacturing method of oxide high temperature superconducting wire
JP2998398B2 (en) Superconducting wire joining method
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP3273953B2 (en) Method for producing niobium-tin superconducting wire
JPH0492316A (en) Manufacture of compound linear material
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPS61201766A (en) Manufacture of cu-stabilized nb-ti superconducting wire
JP3716309B2 (en) Manufacturing method of Nb3Sn wire
JPH07254446A (en) Compound superconducting wire and conductor jointing structure and jointing method
JPH03247708A (en) Metal-oxide superconducting combined material and manufacture thereof
JPH03245506A (en) Manufacture of superconducting complex with electrode
JPH01711A (en) superconducting coil
JPH05258626A (en) Composite tube for sheath and manufacture of superconductive wire using the same
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH03192613A (en) Oxide superconducting wire material and manufacture thereof
JPS63225410A (en) Compound superconductive wire and its manufacture
JPH08339726A (en) Manufacture of nb3sn system superconductive wire