JP2001057118A - SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF - Google Patents

SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF

Info

Publication number
JP2001057118A
JP2001057118A JP11231554A JP23155499A JP2001057118A JP 2001057118 A JP2001057118 A JP 2001057118A JP 11231554 A JP11231554 A JP 11231554A JP 23155499 A JP23155499 A JP 23155499A JP 2001057118 A JP2001057118 A JP 2001057118A
Authority
JP
Japan
Prior art keywords
copper
diffusion preventing
niobium
superconducting wire
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11231554A
Other languages
Japanese (ja)
Other versions
JP4237341B2 (en
Inventor
Shigeo Nakayama
茂雄 中山
Minoru Yamada
穣 山田
Tomoyuki Hattori
伴之 服部
Tsutomu Kurusu
努 来栖
Akira Murase
暁 村瀬
Yasuji Morii
保次 森井
Hisaki Sakamoto
久樹 坂本
Shinichiro Meguro
信一郎 目黒
Takeshi Endo
壮 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Toshiba Corp
Original Assignee
Furukawa Electric Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Toshiba Corp filed Critical Furukawa Electric Co Ltd
Priority to JP23155499A priority Critical patent/JP4237341B2/en
Publication of JP2001057118A publication Critical patent/JP2001057118A/en
Application granted granted Critical
Publication of JP4237341B2 publication Critical patent/JP4237341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To cause no lowering of critical current density and no lowering of a residual resistance ratio by providing a niobium complex containing a niobium filament, stabilized copper of pure copper, a reinforcement and two layered diffusion preventing materials. SOLUTION: First and second diffusion preventing materials 3, 6 exist on the inner peripheral surface and the outer peripheral surface of a pipe of alumina dispersion-strengthened copper forming a reinforcement 5 respectively. The first diffusion preventing material 3 prevents lowering of critical current density due to reduction of Sn concentration in bronze by preventing Sn from being diffused from the bronze to the alumina dispersion-strengthened copper by heat treatment to produce Nb3Sn, the second diffusion preventive material 6 prevents unreacted Al in the alumina dispersion-strengthened copper from being diffused to stabilized copper, and accordingly these two layered diffusion preventing materials 3, 6 have role to maintain purity of the stabilized copper 4 respectively. The second diffusion preventing material 6 is required between the reinforcement 5 and the stabilized copper 4. The thickness of the stabilized copper 4 can be suppressed to a minimum by the diffusion preventing layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、NbSn化合物
超電導線およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Nb 3 Sn compound superconducting wire and a method for producing the same.

【0002】[0002]

【従来の技術】現在、実用化されている超電導線として
は、NbSnやNbAl等の化合物系超電導線を用
いたものや、合金系Nb―Ti超電導線を用いたものが
知られている。それらの線を用いて送電ケーブルや電力
をほとんど消費することなく強磁界の形成が可能な超電
導コイル等への実用化が進められている。
2. Description of the Related Art At present, superconducting wires that have been put into practical use include those using a compound superconducting wire such as Nb 3 Sn and Nb 3 Al, and those using an alloy Nb—Ti superconducting wire. ing. Practical application to a power transmission cable and a superconducting coil capable of forming a strong magnetic field with little consumption of electric power by using these wires has been promoted.

【0003】このように化合物超電導線を用いた超電導
線は、予めSnを添加してあるCu系マトリックスを使
用するブロンズ法や、Sn棒やNb棒をそれぞれ配置し
たCu系マトリックスを使用する内部Sn拡散法、Nb
チューブの中にSn棒を挿入し、Cu系マトリックスを
使用するNbチューブ法等によって製造されている。
[0003] As described above, a superconducting wire using a compound superconducting wire is formed by a bronze method using a Cu-based matrix to which Sn is added in advance, or an internal Sn using a Cu-based matrix in which Sn bars and Nb bars are arranged. Diffusion method, Nb
It is manufactured by inserting an Sn rod into a tube and using an Nb tube method using a Cu-based matrix.

【0004】前述のブロンズ法を適用したNbSn化
合物超電導線は、図7の横断面図に示すように、複数の
Cu―Sn合金(ブロンズ)チューブ1と各チューブ1
内にそれぞれ埋設されたNb芯線(ニオブ・フィラメン
ト)2とからなるニオブ・ブロンズ複合体10と、拡散
防止材3、安定化材4、例えば安定化銅が同心円状に配
置されている。
As shown in the cross sectional view of FIG. 7, a Nb 3 Sn compound superconducting wire to which the above-described bronze method is applied is composed of a plurality of Cu—Sn alloy (bronze) tubes 1 and each tube 1.
A niobium-bronze composite 10 composed of a Nb core wire (niobium filament) 2 embedded in each of them, and a diffusion preventing material 3 and a stabilizing material 4, for example, stabilizing copper, are arranged concentrically.

【0005】このような構成の超電導線は、例えば以下
のようにして製造される。まずCu―Sn合金チューブ
1内にNb芯線2を埋設した複合体を多数複合し、拡散
防止材3、安定化材4とを一体化した後、スエージング
マシン等によって所定の外径まで減面加工を施す。この
後、NbSnの生成温度で熱処理を施すことによっ
て、Nb芯線2とニオブ・ブロンズ複合体10中のSn
とを反応させて、Nb芯線2の外周側にNbSn超電
導体層を形成する。
A superconducting wire having such a configuration is manufactured, for example, as follows. First, a large number of composites in which a Nb core wire 2 is embedded in a Cu—Sn alloy tube 1 are combined, and a diffusion preventing material 3 and a stabilizing material 4 are integrated. Then, the surface is reduced to a predetermined outer diameter by a swaging machine or the like. Apply processing. Thereafter, the Nb core wire 2 and the Sn in the niobium bronze composite 10 are subjected to a heat treatment at the Nb 3 Sn generation temperature.
To form an Nb 3 Sn superconductor layer on the outer peripheral side of the Nb core wire 2.

【0006】前述のように超電導線の断面構成の中で、
超電導時の安定性を保持するために安定化材を構成する
安定化銅4を必ず設けるが、隣接するニオブ・ブロンズ
複合体10中のSnの安定化銅4への拡散による安定化
銅4の純度低下を防止するため、安定化銅4とニオブ・
ブロンズ複合体10との間に拡散防止材3を設けてい
る。
As described above, in the cross-sectional structure of the superconducting wire,
In order to maintain the stability at the time of superconductivity, the stabilizing copper 4 constituting the stabilizing material is always provided. However, the Sn in the adjacent niobium bronze composite 10 diffuses into the stabilizing copper 4 to stabilize the copper 4. Stabilized copper 4 and niobium
The diffusion preventing material 3 is provided between the anti-diffusion material 3 and the bronze composite 10.

【0007】ところで、前述したようなNbSn等の
化合物超電導体を用いた超電導線は、長手方向の引張り
力や曲げ歪が加わった際に臨界電流密度等の超電導特性
が低下するという欠点を有している。例えば、引張り特
性は0.2%耐力で、160MPa程度しかなく、高い
フープ力によって線材に160MPa以上の大きな引張
り力が掛る高磁界マグネットの設計、製作には到底採用
できず、工業化への大きな難点となっていた。
A superconducting wire using a compound superconductor such as Nb 3 Sn as described above has a disadvantage that the superconducting characteristics such as the critical current density decrease when a tensile force or bending strain is applied in the longitudinal direction. Have. For example, the tensile properties are 0.2% proof stress, only about 160MPa, and it cannot be adopted at all in the design and manufacture of high magnetic field magnets that apply a large tensile force of 160MPa or more to the wire due to high hoop force, which is a great difficulty for industrialization. Had become.

【0008】最近では、10T以上の大型かつ高磁界コ
イルの要求も増えているが、そうしたコイルの作製が事
実上困難であった。
Recently, there has been an increasing demand for large-sized and high-field coils of 10 T or more, but it has been practically difficult to manufacture such coils.

【0009】そこで、引張り特性等の機械的特性を改善
するためにNbSnの生成温度でも軟化しにくい例え
ばアルミナ分散強化銅を補強材として組み込んだものを
製作した。なお、このアルミナ分散強化銅は、Cu中に
Al粒子を1〜2重量%程度の範囲で分散させる
ことによって、分散強化させた強化Cu合金であり、例
えば酸化銅粉末とアルミナ粉末との混合物を還元焼結さ
せることによって得られる。その結果、引張り特性は
0.2%耐力で260MPaとなり、従来より大幅に強
度が上がり改善された。
Therefore, in order to improve mechanical properties such as tensile properties, a structure was manufactured in which, for example, alumina dispersion-strengthened copper, which hardly softens even at the Nb 3 Sn generation temperature, was incorporated as a reinforcing material. The alumina dispersion-strengthened copper is a reinforced Cu alloy that is dispersion-strengthened by dispersing Al 2 O 3 particles in Cu in a range of about 1 to 2% by weight, for example, copper oxide powder and alumina powder. Obtained by subjecting a mixture of the above to reduction sintering. As a result, the tensile property was 260 MPa at a 0.2% proof stress, and the strength was greatly improved and improved as compared with the conventional art.

【0010】しかし、NbSn生成熱処理条件が65
0℃で240時間と長時間であることから、アルミナ分
散強化銅に含まれている未反応の残留Alが安定化銅に
拡散するため、安定化銅の純度が悪くなり、線材として
の残留抵抗比が小さくなる。
However, the Nb 3 Sn formation heat treatment condition is 65
Since the time is as long as 240 hours at 0 ° C., the unreacted residual Al contained in the alumina dispersion strengthened copper diffuses into the stabilized copper, so that the purity of the stabilized copper is deteriorated and the residual resistance as a wire is reduced. The ratio becomes smaller.

【0011】すなわち、安定化銅の電気伝導率及び熱伝
導率が悪くなる。こうした線材では、常電導に転移した
ときに、その大きな抵抗のために、多量の発熱が生じ
て、通電中に超電導線が焼き切れる事故が発生する。
That is, the electrical conductivity and the thermal conductivity of the stabilized copper deteriorate. In such a wire, when it transits to normal conduction, a large resistance generates a large amount of heat, and an accident occurs in which the superconducting wire burns out during energization.

【0012】この対策として、安定化銅の厚さを十分厚
くして長時間の熱処理時間に対して安定化銅がSnで拡
散されない領域を設けることにより、安定化銅の純度を
維持して超電導線としての安定性を維持できるようにす
る方法もある。
As a countermeasure, the thickness of the stabilized copper is made sufficiently large to provide a region in which the stabilized copper is not diffused by Sn for a long heat treatment time, thereby maintaining the purity of the stabilized copper and maintaining the superconductivity. There is also a method for maintaining the stability as a line.

【0013】しかし、この方法では、安定化銅の厚さが
厚くなりすぎて線材断面積が増すため、この線をマグネ
ットとして巻いた場合の重量はかなり大きくなり、冷却
のための冷媒量が増したり、大型冷凍機が必要になった
りすることで実用的には扱いにくくなる欠点がある。ま
た、ブロンズ中のSnがアルミナ分散強化銅へ拡散する
ため、ブロンズ中のSn濃度が低下しNb3Snの生成
量が減り、臨界電流密度の低下を生じる等超電導特性を
低下させる新たな問題点が生じていた。
However, in this method, since the thickness of the stabilizing copper becomes too thick and the cross-sectional area of the wire increases, the weight of the wire wound as a magnet becomes considerably large, and the amount of refrigerant for cooling increases. And the necessity of a large-sized refrigerator has a drawback that it becomes practically difficult to handle. Further, since Sn in bronze diffuses into alumina dispersion-strengthened copper, the Sn concentration in bronze decreases, the amount of Nb3Sn decreases, and a new problem arises that lowers the superconductivity such as lowering the critical current density. I was

【0014】本発明はこのような課題に対処するために
なされたもので、化合物超電導体にアルミナ分散強化銅
などの強化材を用いても、臨界電流密度の低下も残留抵
抗比の低下も引き起こさないNbSn化合物超電導線
およびその製造方法を提供することを目的としている。
The present invention has been made to address such a problem, and even if a reinforcing material such as alumina dispersion strengthened copper is used for a compound superconductor, the critical current density and the residual resistance ratio are reduced. and its object is to provide a free Nb 3 Sn compound superconducting wire and its manufacturing method.

【0015】[0015]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、ニオブ・フィラメント
を内包するニオブ・ブロンズ複合体と、純銅からなる安
定化銅と、強化材と、2層の拡散防止材を備えたことを
特徴とするNbSn化合物超電導線である。
In order to achieve the above object, an invention according to claim 1 comprises a niobium bronze composite containing a niobium filament, a stabilized copper made of pure copper, a reinforcing material, An Nb 3 Sn compound superconducting wire comprising two layers of a diffusion preventing material.

【0016】前記目的を達成するため、請求項2に対応
する発明は、ニオブ・フィラメントを内包するニオブ・
ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、第1及び第2の拡散防止材が同心円状に配置される
ものであって、その横断面において中心から外周側に向
けて、前記ニオブ・ブロンズ複合体、前記第1の拡散防
止材、前記強化材、前記第2の拡散防止材、前記安定化
銅を順次配列したことを特徴とするNbSn化合物超
電導線である。
According to a second aspect of the present invention, there is provided a niobium filament containing a niobium filament.
A bronze composite, stabilized copper made of pure copper, a reinforcing material, and first and second diffusion preventing materials are arranged concentrically, and in the cross section, from the center to the outer peripheral side, An Nb 3 Sn compound superconducting wire, wherein the niobium-bronze composite, the first diffusion preventing material, the reinforcing material, the second diffusion preventing material, and the stabilized copper are sequentially arranged.

【0017】前記目的を達成するため、請求項3に対応
する発明は、ニオブ・フィラメントを内包するニオブ・
ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、第1及び第2の拡散防止材が同心円状に配置される
ものであって、その横断面において、中心から外周側に
向けて、前記ニオブ・ブロンズ複合体、前記第1の拡散
防止材、前記安定化銅、前記第2の拡散防止材、前記強
化材を順次配列したことを特徴とするNbSn化合物
超電導線である。
According to a third aspect of the present invention, there is provided a niobium filament containing a niobium filament.
A bronze composite, stabilized copper made of pure copper, a reinforcing material, and first and second diffusion preventing materials are arranged concentrically, and in a cross section thereof, from the center toward the outer peripheral side. , The niobium-bronze composite, the first diffusion preventing material, the stabilized copper, the second diffusion preventing material, and the reinforcing material are arranged in this order in an Nb 3 Sn compound superconducting wire.

【0018】前記目的を達成するため、請求項4に対応
する発明は、ニオブ・フィラメントを内包するニオブ・
ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、第1及び第2の拡散防止材が同心円状に配置される
ものであって、その横断面において、中心から外周側に
向けて、前記安定化銅、前記第1の拡散防止材、前記ニ
オブ・ブロンズ複合体、前記第2の拡散防止材、前記強
化材を順次配列したことを特徴とするNbSn化合物
超電導線である。
According to a fourth aspect of the present invention, there is provided a niobium filament containing a niobium filament.
A bronze composite, stabilized copper made of pure copper, a reinforcing material, and first and second diffusion preventing materials are arranged concentrically, and in the cross section, from the center toward the outer peripheral side. , The stabilized copper, the first diffusion preventing material, the niobium-bronze composite, the second diffusion preventing material, and the reinforcing material are sequentially arranged, and the Nb 3 Sn compound superconducting wire is characterized in that:

【0019】前記目的を達成するため、請求項9に対応
する発明は、ニオブを内包するCu―Sn合金からなる
複合体と、純銅からなる安定化銅、強化材、2層の拡散
防止材からなる部材を作製する第1の工程と、前記第1
の工程で得られた部材を減面加工する第2の工程と、前
記第2の工程で減面加工された部材に熱処理を施しNb
Sn層を形成させる第3の工程とを具備したことを特
徴とするNbSn化合物超電導線の製造方法である。
In order to achieve the above object, the invention according to claim 9 is based on a composite made of a Cu—Sn alloy containing niobium, a stabilized copper made of pure copper, a reinforcing material, and a two-layer diffusion preventing material. A first step of producing a member comprising:
A second step of reducing the surface of the member obtained in the step, and subjecting the member subjected to the surface reduction in the second step to a heat treatment.
And a third step of forming a 3 Sn layer. A method for producing an Nb 3 Sn compound superconducting wire, comprising:

【0020】請求項1乃至請求項4及び請求項9のいず
れか一つに対応する発明によれば、強化材に隣接する安
定化銅との間に拡散防止材をそれぞれ設けることによ
り、NbSn生成のための熱処理で生じるブロンズ中
のSnやアルミナ分散強化銅中のAlの拡散を抑制でき
るため、残留抵抗比や臨界電流密度の低下のない実用的
で信頼性の高いNbSn化合物超電導線およびその製
造方法を提供できる。
According to the invention corresponding to any one of claims 1 to 4 and claim 9, Nb 3 is provided by providing a diffusion preventing material between the reinforcing material and the stabilized copper adjacent to the reinforcing material. Since the diffusion of Sn in bronze and Al in alumina dispersion-strengthened copper generated by heat treatment for generating Sn can be suppressed, a practical and highly reliable Nb 3 Sn compound superconductor without lowering of the residual resistance ratio or the critical current density. A wire and a method for manufacturing the wire can be provided.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につき
図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1は本発明によるNbSn化合物超電
導線の第1の実施形態を示す横断面図である。本実施形
態は、概略前述した図7の従来の構成、すなわちNb芯
線2と、Nb芯線2を内包するCu―Sn合金(ブロン
ズ)チューブ1からなるニオブ・ブロンズ複合体10
と、拡散防止材(第1の拡散防止材)3、純銅からなる
安定化銅4と、強化材5を備えたものに、新たに第2の
拡散防止材6を設けたものである。
FIG. 1 is a cross-sectional view showing a first embodiment of the Nb 3 Sn compound superconducting wire according to the present invention. In this embodiment, a niobium-bronze composite 10 composed of an Nb core wire 2 and a Cu—Sn alloy (bronze) tube 1 containing the Nb core wire 2 is schematically shown in FIG.
And a diffusion prevention material (first diffusion prevention material) 3, a stabilized copper 4 made of pure copper, and a reinforcing material 5, and a second diffusion prevention material 6 is newly provided.

【0023】具体的には、その横断面において中心から
外周側に向けて、ニオブ・ブロンズ複合体10、第1の
拡散防止材3、強化材5、第2の拡散防止材6、安定化
銅4を順次同心円状に配列したものである。
Specifically, the niobium bronze composite 10, the first diffusion preventing material 3, the reinforcing material 5, the second diffusion preventing material 6, the stabilized copper 4 are sequentially arranged concentrically.

【0024】このような構成の超電導線は、次のように
して製造される。始めに、Sn濃度10%からなるブロ
ンズのパイプにNb棒を挿入しスエージングマシン等に
より一体化加工して所定の外形まで減面加工しながら外
形が正六角形のロッドに成型する。この正六角形のロッ
ドを多数本束ね、例えばTa管からなる拡散防止材3へ
挿入し、再びスエージングマシン等により一体化して
後、次に強化材5を構成する例えばアルミナ分散強化銅
のパイプに挿入し一体化加工を施す。
The superconducting wire having such a configuration is manufactured as follows. First, an Nb rod is inserted into a bronze pipe having a Sn concentration of 10%, integrated with a swaging machine or the like, and molded into a rod having a regular hexagonal shape while reducing the surface to a predetermined shape. A large number of the regular hexagonal rods are bundled, inserted into a diffusion preventing member 3 made of, for example, a Ta tube, integrated again by a swaging machine or the like, and then formed into a reinforcing material 5, for example, into an alumina dispersion strengthened copper pipe. Insert and integrate.

【0025】次に二層目の拡散防止材6を構成する例え
ばTa管からなる拡散防止材6を挿入し、スエージング
マシン等で一体化加工を施す。最後に安定化銅4となる
無酸素銅のパイプに挿入し、スエージングマシン等で一
体化加工を施す。図1は、このようにしてできた超電導
線の断面を示している。
Next, the diffusion preventing material 6 made of, for example, a Ta tube, which constitutes the second layer of the diffusion preventing material 6, is inserted, and integrated processing is performed by a swaging machine or the like. Finally, it is inserted into a pipe made of oxygen-free copper which becomes the stabilized copper 4 and integrated by a swaging machine or the like. FIG. 1 shows a cross section of the superconducting wire thus formed.

【0026】以上述べた実施形態によれば、強化材5を
構成するパイプ状のアルミナ分散強化銅の内周面及び外
周面にはそれぞれ拡散防止材3,6が存在する。この2
層の拡散防止材3,6により、次のような作用効果が得
られる。拡散防止材3は、NbSn生成のための熱処
理によってブロンズからのSnのアルミナ分散強化銅へ
の拡散を防止してブロンズ中のSn濃度減少による臨界
電流密度の低下を防ぎ、拡散防止材6はアルミナ分散強
化銅中の未反応Alの安定化銅への拡散を防止し、安定
化銅4の純度を維持する役目がそれぞれにある。
According to the embodiment described above, the diffusion preventing materials 3 and 6 are present on the inner peripheral surface and the outer peripheral surface of the pipe-shaped alumina dispersion strengthened copper constituting the reinforcing material 5, respectively. This 2
The following effects can be obtained by the diffusion preventing materials 3 and 6 of the layers. The diffusion preventing material 3 prevents the diffusion of Sn from bronze into alumina dispersion-strengthened copper by heat treatment for generation of Nb 3 Sn, thereby preventing a decrease in critical current density due to a decrease in the Sn concentration in bronze. Has the role of preventing the unreacted Al in the alumina dispersion strengthened copper from diffusing into the stabilized copper and maintaining the purity of the stabilized copper 4.

【0027】また、Nb3Sn生成熱処理条件の650
度240時間によるSnの拡散距離以上の安定化銅4の
厚さを持たせることにより、強化材5と安定化銅4との
間に拡散防止材6が不要になる場合が考えられるが、安
定化銅4の厚さを厚くすることはそれだけ重量を増すこ
とになり、構造支持材の増加や冷媒の増加、冷凍能力の
増加等設計上の負担がより大きくなり、実用的には欠点
がある。
The Nb3Sn formation heat treatment condition of 650 was used.
By providing the stabilized copper 4 with a thickness equal to or greater than the Sn diffusion distance by 240 hours, the diffusion preventing material 6 may not be required between the reinforcing material 5 and the stabilized copper 4. Increasing the thickness of the copper oxide 4 leads to an increase in the weight, and increases the design burden such as an increase in the structural support material, an increase in the refrigerant, an increase in the refrigeration capacity, and has a practical disadvantage. .

【0028】このため、やはり強化材5と安定化銅4と
の間にも拡散防止材6が必要である。この拡散防止層が
あると安定化銅4の厚さを必要最小限に抑えることが可
能であり、線材重量の軽減、冷媒の軽減、冷凍機の冷凍
能力の軽減等コンパクト化が可能となる利点がある。
For this reason, a diffusion preventing material 6 is also required between the reinforcing material 5 and the stabilized copper 4. With this diffusion preventing layer, the thickness of the stabilizing copper 4 can be minimized to a necessary minimum, and it is possible to reduce the weight of the wire rod, reduce the refrigerant, and reduce the refrigeration capacity of the refrigerator. There is.

【0029】従って、超電導線の強度を高めるためにア
ルミナ分散強化銅を用いる場合、アルミナ分散強化銅の
内周面及び外周面には、前述した拡散防止材3,6を設
けることが必要条件となる。
Therefore, when alumina dispersion strengthened copper is used to increase the strength of the superconducting wire, it is necessary to provide the above-mentioned diffusion preventing materials 3 and 6 on the inner and outer peripheral surfaces of the alumina dispersion strengthened copper. Become.

【0030】以上述べた拡散防止層を構成する拡散防止
材3,6は、実施形態で使用したタンタル(Ta)に限
定されるものではなく、他にニオブ(Nb)があげられ
る。また補強のために用いた強化材5としては、アルミ
ナ分散強化銅の他に、Nb−Cu合金、Nbがあげられ
る。
The diffusion preventing materials 3 and 6 constituting the diffusion preventing layer described above are not limited to the tantalum (Ta) used in the embodiment, but include niobium (Nb). Examples of the reinforcing material 5 used for reinforcement include an Nb-Cu alloy and Nb in addition to alumina dispersion strengthened copper.

【0031】次に、本発明の超電導線の製造方法の具体
例について、説明する。
Next, a specific example of the method for manufacturing a superconducting wire according to the present invention will be described.

【0032】まず、Sn濃度10%からなるCu−Sn
合金(ブロンズ)のパイプ(外径10.0mm、内径
3.2mm)に、外径3mmのNb棒を挿入し、スエー
ジングマシン等で一体化加工をする。
First, a Cu—Sn having a Sn concentration of 10% was used.
An Nb rod having an outer diameter of 3 mm is inserted into an alloy (bronze) pipe (outer diameter 10.0 mm, inner diameter 3.2 mm), and integrated with a swaging machine or the like.

【0033】一体化加工途中で加工硬化するので、50
0℃で60分アルゴンガス中で熱処理を行い軟化させて
から、さらに加工を加え六角形の形状にする。これを2
56本束ね、1層目の拡散防止層となるTa管(外径4
7mm、内径45mm)に挿入する。次に、それをアル
ミナ分散強化銅のパイプ(外径50mm、内径47.2
mm)に挿入する。
Since work hardening occurs during the integration process, 50
After softening by heat treatment at 0 ° C. for 60 minutes in argon gas, further processing is performed to form a hexagonal shape. This is 2
56 tubes, Ta tube (outer diameter 4
7 mm, inner diameter 45 mm). Next, it was connected to an alumina dispersion strengthened copper pipe (outer diameter 50 mm, inner diameter 47.2).
mm).

【0034】さらに2層目の拡散防止層となるTa管
(外径52mm、内径50.3mm)に挿入する。
Further, it is inserted into a Ta tube (outer diameter: 52 mm, inner diameter: 50.3 mm) serving as a second diffusion prevention layer.

【0035】最後に安定化銅のパイプ(外径55mm、
内径52.3mm)に挿入後両端を溶接で密封する。こ
れらの成型品を500℃の熱間押出し機で押し出して径
を小さくするとともに、さらにスエージングマシン等に
よる縮径工程と熱処理による軟化工程を繰り返すことに
より、本発明の超電導線(線径2.2mm)を完成させ
た。
Finally, a stabilized copper pipe (outer diameter 55 mm,
After insertion into the inside diameter (52.3 mm), both ends are sealed by welding. These molded articles are extruded by a hot extruder at 500 ° C. to reduce the diameter, and further, the diameter reducing step using a swaging machine or the like and the softening step by heat treatment are repeated, whereby the superconducting wire of the present invention (wire diameter 2. 2 mm).

【0036】このようにしてできた本発明の超電導線と
比較を行うため、従来線材で行われているように、ブロ
ンズからの安定化銅へのSnの拡散のみを防ぐ目的で、
Ta拡散防止層がブロンズマトリックスと安定化銅との
間に1層のみ存在する線材、すなわち、図1のTa拡散
防止材3のみが存在する線材と、Ta拡散防止材6のみ
が存在する線材を作製した。更に、Ta拡散防止材3の
みの従来線材と本発明の超電導線では定化銅の厚さを変
えたものを用意し、残留抵抗比への影響を調べた。
In order to make a comparison with the superconducting wire of the present invention formed in this way, in order to prevent only the diffusion of Sn from bronze into stabilized copper as in the case of the conventional wire,
A wire in which only one layer of the Ta diffusion preventing layer exists between the bronze matrix and the stabilized copper, that is, a wire in which only the Ta diffusion preventing material 3 of FIG. 1 exists and a wire in which only the Ta diffusion preventing material 6 exists Produced. Furthermore, a conventional wire having only the Ta diffusion preventing material 3 and a superconducting wire of the present invention were prepared by changing the thickness of the standardized copper, and the influence on the residual resistance ratio was examined.

【0037】これらの線材を1.25×10-5 torrの
真空中で、650℃で240時間の熱処理をおこなっ
た。本発明の線と比較用の線の臨界電流密度と残留抵抗
比を測った結果を図2〜図4に示す。
These wires were heat-treated at 650 ° C. for 240 hours in a vacuum of 1.25 × 10 -5 torr. The results of measuring the critical current density and the residual resistance ratio of the wire of the present invention and the wire for comparison are shown in FIGS.

【0038】図2は磁場B[Tesla]に対する臨界
電流密度Jc[A/mm]の特性について、本発明と
従来例とを比較して示したものである。本発明による2
層の拡散防止材3,6を設けた超電導線の磁場に対する
臨界電流密度特性は、比較例として安定化銅と強化銅と
の間に1層の拡散防止材6を設けた場合よりも高く、本
発明の有効性を示している。
FIG. 2 shows the characteristics of the critical current density Jc [A / mm 2 ] with respect to the magnetic field B [Tesla] in comparison with the present invention and the conventional example. 2 according to the invention
The critical current density characteristic with respect to the magnetic field of the superconducting wire provided with the diffusion prevention materials 3 and 6 of the layers is higher than the case where the diffusion prevention material 6 of one layer is provided between the stabilized copper and the reinforced copper as a comparative example. This shows the effectiveness of the present invention.

【0039】図3は、熱処理時間に対する残留抵抗比の
特性を本発明と従来例とを比較して示したものである。
1層の拡散防止材を設けた従来例では熱処理時間[H]
が経過するにつれて残留抵抗比が徐々に低下する傾向を
示すが、2層の拡散防止材3,6を設けた本発明の線材
構成では熱処理時間が240時間以上でも残留抵抗比に
ほとんど変化はなく、本発明の有効性を示している。特
に、臨界電流密度が実用的な500A/mm(4K,
12T)以上を確保するには、Nb3Sn線では一般的
に、240時間以上の熱処理が必要であると言われてお
り、こうした長時間領域での残留抵抗比が重要である。
FIG. 3 shows the characteristics of the residual resistance ratio with respect to the heat treatment time in comparison between the present invention and the conventional example.
In the conventional example provided with one layer of the diffusion prevention material, the heat treatment time [H]
The residual resistance ratio tends to gradually decrease with the passage of time. However, in the wire structure of the present invention in which the two layers of the diffusion preventing materials 3 and 6 are provided, the residual resistance ratio hardly changes even when the heat treatment time is 240 hours or more. Shows the effectiveness of the present invention. In particular, a critical current density of 500 A / mm 2 (4K,
It is generally said that a heat treatment of 240 hours or more is required for Nb3Sn wire in order to secure 12T) or more, and the residual resistance ratio in such a long time region is important.

【0040】図4は従来例に見られるような拡散防止材
3が1層の場合と、本発明の拡散防止材3,6と2層の
場合を比較した結果である。熱処理は、650℃で24
0時間行った。明らかに拡散防止材が2層の本発明の場
合が高い残留抵抗比が得られた。
FIG. 4 shows the results of a comparison between the case where the diffusion preventing material 3 as seen in the conventional example has one layer and the case where the diffusion preventing materials 3 and 6 of the present invention have two layers. Heat treatment at 650 ° C. for 24
Performed for 0 hours. Obviously, a high residual resistance ratio was obtained in the case of the present invention having two layers of the diffusion preventing material.

【0041】また、各場合で、安定化銅の厚みを変え
て、残留抵抗比への影響を調べた。本発明のように拡散
防止層2層の場合では安定化銅の厚さが20―50ミク
ロンと薄くても安定化銅とアルミナ分散強化銅との間に
設けた1層目のAl拡散防止層のために安定化銅の純度
は残留抵抗比100(臨界温度直上の抵抗率としては、
1.0×10-8Ωcmの低い値)以上を示している。
In each case, the effect on the residual resistance ratio was examined by changing the thickness of the stabilized copper. In the case of the two diffusion prevention layers as in the present invention, the first Al diffusion prevention layer provided between the stabilized copper and the alumina dispersion strengthened copper even if the thickness of the stabilized copper is as thin as 20 to 50 microns. Therefore, the purity of stabilized copper is 100% (resistivity just above critical temperature,
(Low value of 1.0 × 10 −8 Ωcm) or more.

【0042】拡散防止層が1層の従来例では、安定化銅
の厚さが50ミクロン以下では残留抵抗比は約10、ま
た、60―100ミクロンでは20―60のレベルであ
った。
In the conventional example having one diffusion prevention layer, the residual resistance ratio was about 10 when the thickness of the stabilized copper was 50 μm or less, and 20-60 when the thickness was 60-100 μm.

【0043】こうした低い残留抵抗比では、線材が超電
導状態から常電導状態に転移したとき、高い抵抗値(臨
界温度直上の抵抗率1.0×10-6Ωcm)により、
ジュール熱が発生して焼き切れる。すなわち、Taの拡
散防止層が1層のみでは、線材を巻回して作製した超電
導コイルが焼損し、超電導装置として使うことができな
い。
With such a low residual resistance ratio, when the wire material changes from the superconducting state to the normal conducting state, it has a high resistance value (a resistivity just above the critical temperature: 1.0 × 10 −6 Ωcm).
Joule heat is generated and burned out. That is, if only one Ta diffusion prevention layer is used, a superconducting coil manufactured by winding a wire is burned and cannot be used as a superconducting device.

【0044】また、図4には、1層のTa拡散防止材3
のみの場合に、安定化銅の厚さを厚くしていった場合の
残留抵抗比の変化も示した。この場合、150ミクロン
の厚さでは、安定化銅が汚染される割合が少なくなり、
残留抵抗比が105となるが、他方、線材重量が増加す
る大きな欠点を有し、実用的ではない。すなわち、超電
導コイルの冷却系統の負担が大きくなり、非常に大型の
超電導装置になってしまう。
FIG. 4 shows one layer of the Ta diffusion preventing material 3.
In only case, the change in the residual resistance ratio when the thickness of the stabilized copper was increased was also shown. In this case, at a thickness of 150 microns, the rate of contamination of the stabilized copper is reduced,
Although the residual resistance ratio becomes 105, on the other hand, it has a large drawback that the weight of the wire increases, which is not practical. In other words, the burden on the cooling system of the superconducting coil increases, resulting in a very large superconducting device.

【0045】更に、図に示した具体例の他に、本線材の
構成部の比率を変えたものを種々作製した。すなわち、
ニオブ・ブロンズ複合体、純銅からなる安定化銅、強化
材の体積比率の変化による残留抵抗比と、各構成で超電
導線としての長尺加工が可能か、実用的な臨界電流密度
が得られるかを調べた。その結果、ニオブ・ブロンズ複
合体、純銅からなる安定化銅、強化材の体積比率が、そ
れぞれ30―70%、10―30%、10―50%で長
尺線材に加工でき、かつ、残留抵抗比も100以上の良
好な値が得られた。
Further, in addition to the specific examples shown in the figures, various wires having different ratios of the constituent parts of the present wire rod were manufactured. That is,
Niobium-bronze composite, stabilized copper made of pure copper, residual resistance ratio due to change in volume ratio of reinforcement, and whether long working as a superconducting wire is possible with each configuration, and whether a practical critical current density can be obtained Was examined. As a result, the niobium bronze composite, the stabilized copper composed of pure copper, and the reinforcing material can be processed into long wires at volume ratios of 30-70%, 10-30%, and 10-50%, respectively, and have a residual resistance. A good ratio of 100 or more was obtained.

【0046】ニオブ・ブロンズ複合体が30%以下では
生成するNbSnの量が少なく、十分高い臨界電流密
度が得られない。また、70%以上では純銅の量が少な
く、残留抵抗比も小さくなる。純銅については、その量
が10%以下では残留抵抗比が10程度になり使えな
い。他方、30%以上では、臨界電流密度が減り、か
つ、強化材の量も減るので、強度も低下する。強化材の
量は、十分な強度を得るには10―50%が必要であ
る。
If the niobium bronze complex is less than 30%, the amount of Nb 3 Sn generated is small, and a sufficiently high critical current density cannot be obtained. If it is 70% or more, the amount of pure copper is small and the residual resistance ratio is small. If the amount of pure copper is 10% or less, the residual resistance ratio becomes about 10 and cannot be used. On the other hand, if it is 30% or more, the critical current density decreases and the amount of the reinforcing material also decreases, so that the strength also decreases. The amount of reinforcement should be 10-50% to obtain sufficient strength.

【0047】更に、Taの拡散防止層の厚みを調べた。
1―50ミクロンの厚みで線材を設計し作製したが、5
ミクロン未満では、線材の加工途中でTaの層が切れて
しまい、拡散防止の役目を果たすことができないことが
わかった。実用的な見地から、長手方向に連続性を保つ
ためには、5ミクロン以上の厚みが必要である。
Further, the thickness of the Ta diffusion preventing layer was examined.
The wire was designed and manufactured with a thickness of 1-50 microns.
If the diameter is less than micron, it was found that the Ta layer was broken during the processing of the wire, and it was not possible to prevent the diffusion. From a practical point of view, a thickness of 5 microns or more is required to maintain continuity in the longitudinal direction.

【0048】以上述べた第1の形態によれば、化合物超
電導体の超電導特性や残留抵抗比が低下することなく維
持され、さらに機械的強度特性が改善されることから実
用性を大幅に向上させたNbSn化合物超電導線が得
られる。
According to the first embodiment described above, the superconductivity and the residual resistance ratio of the compound superconductor are maintained without reduction, and the mechanical strength characteristics are improved. The obtained Nb 3 Sn compound superconducting wire is obtained.

【0049】つまり、Nb芯線2が多数存在するニオブ
・ブロンズ複合体10とアルミナ分散強化銅などの強化
材5との間に拡散防止材3を設けると、ブロンズ中のS
nのアルミナ分散強化銅への拡散が抑制されるため、ブ
ロンズ中のSn濃度は減少しない。従って、SnとNb
の反応が十分進み、各々のNb芯線2にNbSn超電
導層ができて臨界電流密度の低下はおこらない。
That is, if the diffusion preventing material 3 is provided between the niobium bronze composite 10 having a large number of Nb core wires 2 and the reinforcing material 5 such as alumina dispersion strengthened copper, the S
Since the diffusion of n into the alumina dispersion strengthened copper is suppressed, the Sn concentration in the bronze does not decrease. Therefore, Sn and Nb
Reaction proceeds sufficiently, and an Nb 3 Sn superconducting layer is formed on each Nb core wire 2, and the critical current density does not decrease.

【0050】次に、また強化材5例えばアルミナ分散強
化銅と安定化銅4との間にも拡散防止材6を設けると、
アルミナ分散強化銅中の未反応Alの安定化銅4への拡
散が抑制されるため、安定化銅4の純度が維持され残留
抵抗比は高い値(抵抗率としては×10―8Ωcmの低
い値)を示す。
Next, when a diffusion preventing material 6 is provided also between the reinforcing material 5, for example, the alumina dispersion strengthened copper and the stabilized copper 4,
Since the diffusion of unreacted Al in the alumina dispersion strengthened copper into the stabilized copper 4 is suppressed, the purity of the stabilized copper 4 is maintained, and the residual resistance ratio is a high value (the resistivity is as low as × 10 −8 Ωcm). Value).

【0051】このため、超電導線は不安定要因によるジ
ュール熱が発生しても低い抵抗率のため焼き切れること
はなく、超電導マグネットの信頼性を高められる。
For this reason, the superconducting wire does not burn out due to low resistivity even if Joule heat is generated due to an unstable factor, and the reliability of the superconducting magnet can be improved.

【0052】前述の図1の実施形態では、各部材の構成
は、線材の中心から外側に、順番に、ニオブ・ブロンズ
複合体10、第1の拡散防止材3、強化材5、第2の拡
散防止材6、安定化銅4であるが、もちろん、安定化銅
4の純度を拡散防止材により保てばよいので、以下に示
す構成も有効であった。
In the embodiment of FIG. 1 described above, the structure of each member is, in order from the center of the wire to the outside, the niobium bronze composite 10, the first diffusion preventing material 3, the reinforcing material 5, the second material. The diffusion preventing material 6 and the stabilized copper 4 are used. Of course, since the purity of the stabilized copper 4 may be maintained by the diffusion preventing material, the following configuration is also effective.

【0053】すなわち、図5の概略横断面図に示すよう
に、線材中心から外周側に、ニオブ・ブロンズ複合体1
0、第1の拡散防止材3、安定化銅4、第2の拡散防止
材6、強化材5を順次配列したものである。
That is, as shown in the schematic cross-sectional view of FIG. 5, the niobium bronze composite 1
0, a first diffusion preventing material 3, a stabilized copper 4, a second diffusion preventing material 6, and a reinforcing material 5 are sequentially arranged.

【0054】また、図6の概略横断面図に示すように、
線材中心から外周側に、安定化銅4、第1の拡散防止材
3、ニオブ・ブロンズ複合体10、第2の拡散防止材
6、強化材5を順次配列したものである。
As shown in the schematic cross-sectional view of FIG.
The stabilizing copper 4, the first diffusion preventing material 3, the niobium bronze composite 10, the second diffusion preventing material 6, and the reinforcing material 5 are sequentially arranged from the center of the wire to the outer peripheral side.

【0055】このように、図5及び図6は、いずれも純
銅からなる安定化銅4が、例えばTaの拡散防止材3,
6により隔離されているので、100以上の良好な残留
抵抗比を得ることができた。
As described above, FIG. 5 and FIG. 6 show that the stabilized copper 4 made of pure copper is made of, for example, the Ta diffusion preventing material 3,
6, a good residual resistance ratio of 100 or more could be obtained.

【0056】[0056]

【発明の効果】以上説明したように、本発明によれば、
化合物超電導体にアルミナ分散強化銅などの強化材を用
いても、臨界電流密度の低下も残留抵抗比の低下も引き
起こさないNbSn化合物超電導線およびその製造方
法を提供することができる。
As described above, according to the present invention,
Even if a reinforcing material such as alumina dispersion strengthened copper is used for the compound superconductor, it is possible to provide an Nb 3 Sn compound superconducting wire which does not cause a decrease in critical current density or a decrease in residual resistance ratio, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるNbSn化合物超電導線の第1
の実施形態の概略構成を示す横断面図。
FIG. 1 shows a first example of an Nb 3 Sn compound superconducting wire according to the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of the embodiment.

【図2】本発明及び従来例によるNbSn化合物超電
導線の磁場に対する臨界電流密度の特性を示す図。
FIG. 2 is a diagram showing characteristics of a critical current density with respect to a magnetic field of an Nb 3 Sn compound superconducting wire according to the present invention and a conventional example.

【図3】本発明及び従来例によるNbSn化合物超電
導線による熱処理時間に対する残留抵抗比の特性を示す
図。
FIG. 3 is a graph showing characteristics of a residual resistance ratio with respect to a heat treatment time using an Nb 3 Sn compound superconducting wire according to the present invention and a conventional example.

【図4】本発明及び従来例によるNbSn化合物超電
導線による安定化銅の厚さによる残留抵抗比の変化を示
す図。
FIG. 4 is a graph showing a change in a residual resistance ratio depending on a thickness of stabilized copper by an Nb 3 Sn compound superconducting wire according to the present invention and a conventional example.

【図5】本発明によるNbSn化合物超電導線の第2
の実施形態の概略構成を示す横断面図。
FIG. 5 shows a second example of the Nb 3 Sn compound superconducting wire according to the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of the embodiment.

【図6】本発明によるNbSn化合物超電導線の第3
の実施形態の概略構成を示す横断面図。
FIG. 6 shows a third example of the Nb 3 Sn compound superconducting wire according to the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of the embodiment.

【図7】拡散防止層が1層のみの従来型NbSn化合
物超電導線の構成図。
FIG. 7 is a configuration diagram of a conventional Nb 3 Sn compound superconducting wire having only one diffusion prevention layer.

【符号の説明】[Explanation of symbols]

1…Cu―Sn合金(ブロンズ)チューブ 2…Nb芯線(ニオブ・フィラメント) 3…第1の拡散防止材 4…安定化銅 5…強化材 6…第2の拡散防止材 10…ニオブ・ブロンズ複合体 DESCRIPTION OF SYMBOLS 1 ... Cu-Sn alloy (bronze) tube 2 ... Nb core wire (niobium filament) 3 ... First diffusion preventing material 4 ... Stabilized copper 5 ... Reinforcing material 6 ... Second diffusion preventing material 10 ... Niobium bronze composite body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 穣 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 服部 伴之 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 来栖 努 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 村瀬 暁 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 森井 保次 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 坂本 久樹 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 目黒 信一郎 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 遠藤 壮 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 5G321 AA11 BA03 CA09 CA39 CA41 CA42 CA52 DC09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Joru Yamada 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Hamakawasaki Plant (72) Inventor Tomoyuki Hattori 2, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 Inside the Toshiba Hamakawasaki Plant (72) Inventor Tsutomu Kurusu 2-4 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa Prefecture Inside the Keihin Works, Toshiba Corporation (72) Inventor Akira Murase Suehirocho, Tsurumi-ku, Yokohama, Kanagawa Prefecture 2-4-4 Toshiba Keihin Works Co., Ltd. (72) Inventor Yasuji Morii 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Yokohama Works Co., Ltd. No. 1 Furukawa Electric Co., Ltd. (72) Inventor Shinichiro Meguro 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Sou Endo 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. F-term (reference) 5G321 AA11 BA03 CA09 CA39 CA41 CA42 CA52 DC09

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ・フィラメントを内包するニオブ
・ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、2層の拡散防止材を備えたことを特徴とするNb
Sn化合物超電導線。
1. Nb 3 comprising a niobium bronze composite containing a niobium filament, stabilized copper made of pure copper, a reinforcing material, and two layers of a diffusion preventing material.
Sn compound superconducting wire.
【請求項2】 ニオブ・フィラメントを内包するニオブ
・ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、第1及び第2の拡散防止材が同心円状に配置される
ものであって、その横断面において中心から外周側に向
けて、前記ニオブ・ブロンズ複合体、前記第1の拡散防
止材、前記強化材、前記第2の拡散防止材、前記安定化
銅を順次配列したことを特徴とするNbSn化合物超
電導線。
2. A niobium bronze composite containing a niobium filament, a stabilized copper made of pure copper, a reinforcing material, and first and second diffusion preventing materials are arranged concentrically. The niobium bronze composite, the first diffusion preventing material, the reinforcing material, the second diffusion preventing material, and the stabilizing copper are sequentially arranged from a center to an outer peripheral side in a cross section thereof. Characteristic Nb 3 Sn compound superconducting wire.
【請求項3】 ニオブ・フィラメントを内包するニオブ
・ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、第1及び第2の拡散防止材が同心円状に配置される
ものであって、その横断面において、中心から外周側に
向けて、前記ニオブ・ブロンズ複合体、前記第1の拡散
防止材、前記安定化銅、前記第2の拡散防止材、前記強
化材を順次配列したことを特徴とするNbSn化合物
超電導線。
3. A niobium bronze composite containing a niobium filament, a stabilized copper made of pure copper, a reinforcing material, and first and second diffusion preventing materials are concentrically arranged. In the cross section, the niobium bronze composite, the first diffusion preventing material, the stabilized copper, the second diffusion preventing material, and the reinforcing material are sequentially arranged from the center toward the outer peripheral side. An Nb 3 Sn compound superconducting wire, characterized in that:
【請求項4】 ニオブ・フィラメントを内包するニオブ
・ブロンズ複合体と、純銅からなる安定化銅と、強化材
と、第1及び第2の拡散防止材が同心円状に配置される
ものであって、その横断面において、中心から外周側に
向けて、前記安定化銅、前記第1の拡散防止材、前記ニ
オブ・ブロンズ複合体、前記第2の拡散防止材、前記強
化材を順次配列したことを特徴とするNbSn化合物
超電導線。
4. A niobium bronze composite containing a niobium filament, a stabilized copper made of pure copper, a reinforcing material, and first and second diffusion preventing materials are concentrically arranged. In the cross section, the stabilizing copper, the first diffusion preventing material, the niobium bronze composite, the second diffusion preventing material, and the reinforcing material are sequentially arranged from the center toward the outer peripheral side. An Nb 3 Sn compound superconducting wire, characterized in that:
【請求項5】 前記強化材はアルミナ分散強化銅、N
b、Nb―Cu合金のいずれかであり、前記拡散防止材
はTa、Nbのいずれかであることを特徴とする請求項
1から請求項4のいずれか一つに記載のNbSn化合
物超電導線。
5. The reinforcing material is alumina dispersion strengthened copper, N
5. The Nb 3 Sn compound superconducting device according to claim 1, wherein the Nb—Sn alloy is any one of Ta and Nb. line.
【請求項6】 前記ニオブ・ブロンズ複合体、前記安定
化銅、前記強化材の体積比率が、それぞれ30―70
%、10―30%、10―50%であることを特徴とす
る請求項1から請求項4のいずれか一つに記載のNb
Sn化合物超電導線。
6. The volume ratio of the niobium bronze composite, the stabilized copper, and the reinforcing material is 30 to 70, respectively.
%, 10-30%, and 10-50% of Nb 3 according to any one of claims 1 to 4.
Sn compound superconducting wire.
【請求項7】 前記安定化銅の厚みが、20ミクロン以
上、20―150ミクロンの範囲であることを特徴とす
る請求項1から請求項4のいずれか一つに記載のNb
Sn化合物超電導線。
7. The Nb 3 according to claim 1, wherein the thickness of the stabilized copper is 20 μm or more and 20-150 μm.
Sn compound superconducting wire.
【請求項8】 前記拡散防止材の厚みが5ミクロン以上
であることを特徴とする請求項1から請求項4のいずれ
か一つに記載のNbSn化合物超電導線。
8. The Nb 3 Sn compound superconducting wire according to claim 1, wherein the thickness of the diffusion preventing material is 5 μm or more.
【請求項9】 ニオブを内包するCu―Sn合金からな
る複合体と、純銅からなる安定化銅、強化材、2層の拡
散防止材からなる部材を作製する第1の工程と、 前記第1の工程で得られた部材を減面加工する第2の工
程と、前記第2の工程で減面加工された部材に熱処理を
施しNbSn層を形成させる第3の工程とを具備した
ことを特徴とするNbSn化合物超電導線の製造方
法。
9. A first step of producing a composite made of a Cu—Sn alloy containing niobium, a stabilized copper made of pure copper, a reinforcing material, and a member made of a two-layer diffusion prevention material; A second step of reducing the surface of the member obtained in the second step, and a third step of subjecting the member reduced in the second step to heat treatment to form an Nb 3 Sn layer. A method for producing an Nb 3 Sn compound superconducting wire, comprising:
【請求項10】 前記拡散防止材はTa、Nbのいずれ
かであることを特徴とする請求項9記載のNbSn化
合物超電導線の製造方法。
10. The method for manufacturing a Nb 3 Sn compound superconducting wire according to claim 9, wherein said diffusion preventing material is one of Ta and Nb.
【請求項11】 前記強化材がアルミナ分散強化銅、N
b、Nb―Cu合金のいずれかであり、拡散防止材がT
a、Nbのいずれかであることを特徴とする請求項9記
載のNbSn化合物超電導線の製造方法。
11. The reinforcing material is alumina-dispersion strengthened copper, N
b, Nb-Cu alloy, and the diffusion preventing material is T
The method for producing a Nb 3 Sn compound superconducting wire according to claim 9, wherein the superconducting wire is any one of a and Nb.
【請求項12】 前記安定化銅の厚みが、20ミクロン
以上、20−150ミクロンの範囲であることを特徴と
する請求項9記載のNbSn化合物超電導線の製造方
法。
12. The method for producing an Nb 3 Sn compound superconducting wire according to claim 9, wherein the thickness of the stabilized copper is in the range of 20 μm or more and 20-150 μm.
【請求項13】 前記拡散防止材の厚みが5ミクロン以
上であることを特徴とする請求項9記載のNbSn化
合物超電導線の製造方法。
13. The method for producing a Nb 3 Sn compound superconducting wire according to claim 9, wherein the thickness of the diffusion preventing material is 5 μm or more.
JP23155499A 1999-08-18 1999-08-18 Nb3Sn compound superconducting wire and manufacturing method thereof Expired - Fee Related JP4237341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23155499A JP4237341B2 (en) 1999-08-18 1999-08-18 Nb3Sn compound superconducting wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23155499A JP4237341B2 (en) 1999-08-18 1999-08-18 Nb3Sn compound superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001057118A true JP2001057118A (en) 2001-02-27
JP4237341B2 JP4237341B2 (en) 2009-03-11

Family

ID=16925331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23155499A Expired - Fee Related JP4237341B2 (en) 1999-08-18 1999-08-18 Nb3Sn compound superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4237341B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052892A (en) * 2007-08-23 2009-03-12 Kyushu Electric Power Co Inc Thermal hysteresis measuring method for power transmission line, and residual life measuring method for power transmission line
WO2013154187A1 (en) 2012-04-12 2013-10-17 古河電気工業株式会社 Compound superconductive wire and method for manufacturing same
CN116453757A (en) * 2023-06-09 2023-07-18 西安聚能超导线材科技有限公司 Nb with low copper ratio 3 Preparation method of Sn superconducting wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052892A (en) * 2007-08-23 2009-03-12 Kyushu Electric Power Co Inc Thermal hysteresis measuring method for power transmission line, and residual life measuring method for power transmission line
JP4744492B2 (en) * 2007-08-23 2011-08-10 九州電力株式会社 Measurement method for thermal history of transmission lines
WO2013154187A1 (en) 2012-04-12 2013-10-17 古河電気工業株式会社 Compound superconductive wire and method for manufacturing same
US9711262B2 (en) 2012-04-12 2017-07-18 Tohoku Techno Arch Co., Ltd. Compound superconducting wire and method for manufacturing the same
CN116453757A (en) * 2023-06-09 2023-07-18 西安聚能超导线材科技有限公司 Nb with low copper ratio 3 Preparation method of Sn superconducting wire
CN116453757B (en) * 2023-06-09 2023-09-05 西安聚能超导线材科技有限公司 Nb with low copper ratio 3 Preparation method of Sn superconducting wire

Also Published As

Publication number Publication date
JP4237341B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US3910802A (en) Stabilized superconductors
US7505800B2 (en) Superconductive element containing Nb3Sn
US3930903A (en) Stabilized superconductive wires
JP2003086032A (en) Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
US5554448A (en) Wire for Nb3 X superconducting wire
EP2333793B1 (en) Superconductors with improved mechanical strength
JP2001057118A (en) SUPERCONDUCTING WIRE OF Nb3Sn COMPOUND AND MANUFACTURE THEREOF
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JPH0570888B2 (en)
JP3757141B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
JP4727914B2 (en) Nb3Sn superconducting wire and method for manufacturing the same
EP1569285B1 (en) Superconductive element containing Nb3Sn
JPH0619930B2 (en) Niobium / Titanium extra fine multi-core superconducting wire
JP4214200B2 (en) Powder method Nb3Sn superconducting wire
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
JP3428771B2 (en) Nb3Sn compound superconducting wire
JPH11238418A (en) Compound superconductive wire
JP2003187654A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTING WIRE MATERIAL
JP3273764B2 (en) Method of manufacturing compound superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees