JP2525016B2 - Superconducting wire - Google Patents

Superconducting wire

Info

Publication number
JP2525016B2
JP2525016B2 JP62260554A JP26055487A JP2525016B2 JP 2525016 B2 JP2525016 B2 JP 2525016B2 JP 62260554 A JP62260554 A JP 62260554A JP 26055487 A JP26055487 A JP 26055487A JP 2525016 B2 JP2525016 B2 JP 2525016B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
spacer
superconducting wire
keystone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62260554A
Other languages
Japanese (ja)
Other versions
JPH01102812A (en
Inventor
克則 和田
好喜 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62260554A priority Critical patent/JP2525016B2/en
Publication of JPH01102812A publication Critical patent/JPH01102812A/en
Application granted granted Critical
Publication of JP2525016B2 publication Critical patent/JP2525016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイポールマグネット等に利用可能なキース
トン角の大きい超電導線の構造に関するものである。
The present invention relates to a structure of a superconducting wire having a large keystone angle which can be used for a dipole magnet or the like.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

高エネルギー物理研究のための粒子加速器である陽子
シンクロトンには陽子束に偏向を与える為のダイポール
マグネットが使用されている。このマグネットは通常50
〜200mmの内径を有する超電導コイルであって、横断面
が台形即ちキーストン状である平角成形撚線より構成さ
れている。
A dipole magnet for deflecting the proton flux is used in the proton synchrotron, which is a particle accelerator for high energy physics research. This magnet is usually 50
A superconducting coil having an inner diameter of ˜200 mm, which is composed of a rectangular shaped stranded wire having a trapezoidal or keystone cross section.

上記成形撚線の巻線の仕方としては、第3図に示した
2種類の方法が従来行なわれている。即ち (1)第1の方法は、第3図第I象限に示す様に、成形
撚線の勾配を表すキーストン角2θ(第4図(a)に図
示)が小さい超電導線1bを数層巻線後、スペーサ2で中
心角度を合わせ、Y軸方向の磁場精度を高めようとする
ものである。この場合超電導線1bの構造は第4図(a)
に示す通りであって、Cu安定化金属中にNbTiフィラメン
トが埋込まれた超電導素線4を複数本撚線圧縮した後、
テープ等の絶縁体3で被覆したものである。
Conventionally, two types of methods shown in FIG. 3 have been performed as the method of winding the above-mentioned formed stranded wire. That is, (1) The first method is to wind several layers of a superconducting wire 1b having a small keystone angle 2θ (shown in FIG. 4 (a)) representing the gradient of the formed stranded wire, as shown in the I quadrant of FIG. After the line, the central angle is adjusted by the spacer 2 to improve the magnetic field accuracy in the Y-axis direction. In this case, the structure of the superconducting wire 1b is shown in Fig. 4 (a).
As shown in, after compressing a plurality of superconducting wires 4 in which NbTi filaments are embedded in a Cu-stabilized metal,
It is covered with an insulator 3 such as a tape.

(2)第2の方法は、第3図第II象限に示す様に、成形
撚線の勾配を表すキーストン角2θ(第4図(b)に図
示)が大きくなる様に予めスペーサを内蔵した超電導線
1cを巻線したものである。この場合超電導線1cの構造は
第4図(b)に示す通りであって、超電導素線4を複数
本撚線圧縮した後、両側からテーパー状のスペーサ2を
あて、その外側を絶縁体3で被覆したものである。
(2) In the second method, as shown in the second quadrant of FIG. 3, a spacer is built in advance so that the keystone angle 2θ (shown in FIG. 4 (b)) representing the gradient of the molded stranded wire becomes large. Superconducting wire
It is a winding of 1c. In this case, the structure of the superconducting wire 1c is as shown in FIG. 4 (b), and after compressing the superconducting element wires 4 into a plurality of stranded wires, taper spacers 2 are applied from both sides, and the outside thereof is covered with an insulator 3. Is coated with.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前述の陽子シンクロトンは近年益々大型化の傾向にあ
り、最近では5〜10T級の高い磁界の超電導マグネット
の開発が要望されている。この様な傾向に対して、従来
の巻線方法では以下に詳述する様に、通電時に線材移動
による摩擦熱によって常電導転移を起しやすく、従って
トレーニング回数が多くて、しかも高い磁界が得られな
く支障を来していた。
The above-mentioned proton synchroton has been increasing in size in recent years, and there is a recent demand for the development of a superconducting magnet with a high magnetic field of 5 to 10 T level. In contrast to this tendency, in the conventional winding method, as will be described in detail below, the normal conduction transition is apt to occur due to the frictional heat caused by the movement of the wire during energization, and therefore a large number of trainings and a high magnetic field can be obtained. I couldn't help but was having trouble.

即ち前述の第1の方法で巻線した場合は、従来キース
トン角を大きくとれなかった為、第3図の第I象限に示
す構造に組立てた際にアーチ構造からのずれが大きく、
又数層おきにスペーサが挿入された不均質な構造になっ
ている。従ってX、Y方向の力のバランスが悪くて、外
部から充分に締め付け難い為、熱収縮等による力学的応
力により線材相互間のずれを生じやすく、又第4図
(a)において、超電導線1bには電磁力が働くが、スペ
ーサ2には電磁力が作用しない為線材のスペーサに対す
るずれを生じやすかった。更に第1の方法ではキースト
ン角を大きく取れない為に、数層おきにスペーサを挿入
してもコイル内径を余り小さくする事は出来ず、従って
Y軸、Z軸方向の磁場分布が余り良好でなかった。
That is, when the winding is performed by the above-mentioned first method, the keystone angle cannot be made large conventionally, so that the deviation from the arch structure is large when assembled in the structure shown in the quadrant I of FIG.
Moreover, it has a non-uniform structure in which spacers are inserted every few layers. Therefore, the balance of the forces in the X and Y directions is poor, and it is difficult to tighten it sufficiently from the outside. Therefore, mechanical stress due to thermal contraction or the like tends to cause misalignment between the wire rods, and in FIG. The electromagnetic force acts on the spacer 2, but the electromagnetic force does not act on the spacer 2, so that the wire rod is easily displaced from the spacer. Furthermore, since the keystone angle cannot be made large in the first method, it is not possible to make the coil inner diameter too small even if spacers are inserted every few layers, so the magnetic field distribution in the Y-axis and Z-axis directions is very good. There wasn't.

又前述の第2の方法で巻線した場合は、一応キースト
ン角が大きくなっており、力学的応力に対してバランス
が良いアーチ構造ではあるが、第1の方法の場合と同様
に、第4図(b)において超電導素線4が電磁力により
スペーサ2に対してずれを生じやすかった。更に個々の
平角撚線の両側にスペーサをあてた複雑な構造である
為、製造に手数がかかると共に、寸法精度等の点で問題
があった。
Further, when the winding is performed by the above-mentioned second method, the keystone angle is tentatively large and the arch structure has a good balance with respect to the mechanical stress. In FIG. 2B, the superconducting element wire 4 is likely to be displaced from the spacer 2 by the electromagnetic force. Further, since the flat structure has a complicated structure in which spacers are applied to both sides of the flat stranded wire, it is troublesome to manufacture and there is a problem in dimensional accuracy and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこの様な問題点を解決する為鋭意研究の結果
なされたものであって、超電導素線複数本を撚線圧縮し
たキーストン状成形撚線において、キーストン角度2θ
が2tan-1(α/N)以上であり、かつ横断面の上下の素線
間に、横断面が三角形、台形又は矩形の超電導細線群か
らなるスペーサを内蔵する事を特徴とする超電導線であ
る。但しNは素線本数であり、αは超電導線の種類に依
存する0.3から1.0の範囲の定数である。
The present invention has been made as a result of earnest research in order to solve such problems, and in a keystone-shaped molded stranded wire obtained by twisting and compressing a plurality of superconducting element wires, a keystone angle 2θ is obtained.
Is 2 tan -1 (α / N) or more, and a spacer consisting of a superconducting wire group with a triangular, trapezoidal or rectangular cross section is built in between the upper and lower strands of the cross section. is there. However, N is the number of strands, and α is a constant in the range of 0.3 to 1.0 depending on the type of superconducting wire.

本発明において、Nを素線本数(但しN≧3)、αを
超電導線の種類や製造工程によって定まる定数(通常の
NbTi線ではα>0.4、Wind and ReactタイプのNb3Sn線で
はα>1)とする時、キーストン角度2θを2tan-1(α
/N)以上に限定したのは、2tan-1(α/N)未満の場合は
平角撚線を巻線した場合に完全且つ均質なアーチ構造か
らのずれが大きく、通電時に線材の移動が起こってトレ
ーニング回数を多くしても高い磁界を得る事が出来ない
為である。又単にキーストン角度2θを大きくするだけ
でなく、スペーサを第1図に示した様に超電導素線間に
内蔵させて、素線が電磁力による遠心力を受けた際に、
素線がスペーサに対して相対的な移動を起こさない様に
する事が必要であって、第4図(b)に示した様にスペ
ーサが素線間に内蔵されていない場合は、素線が移動し
てスペーサに対してずれを生じてしまう。更にスペーサ
を内蔵する事による素線内側からの冷却効果を期待出
来、又巻線方向に対する補強効果も期待できるものであ
る。
In the present invention, N is the number of strands (however, N ≧ 3), and α is a constant determined by the type of superconducting wire and the manufacturing process (normal
When α> 0.4 for NbTi wire and α> 1 for Wind and React type Nb 3 Sn wire, the keystone angle 2θ is 2tan -1
/ N) The above limitation is that when it is less than 2tan -1 (α / N), the deviation from the complete and homogeneous arch structure is large when the flat twisted wire is wound, and the wire rod moves when energized. This is because a high magnetic field cannot be obtained even if the number of trainings is increased. Further, not only simply increasing the keystone angle 2θ, but also by incorporating a spacer between the superconducting wires as shown in FIG. 1, when the wires are subjected to centrifugal force due to electromagnetic force,
It is necessary to prevent the strands from moving relative to the spacers. If the spacers are not built in between the strands as shown in FIG. 4 (b), Will move and will be displaced with respect to the spacer. Furthermore, by incorporating a spacer, a cooling effect from the inside of the wire can be expected, and a reinforcing effect in the winding direction can also be expected.

スペーサとしては、超電導線の細線群からなるものを
用いるので、従来のように、絶縁した銅の細線あるいは
キュプロニッケルの様な高抵抗物質で被覆された銅の細
線を、例えば編組加工して使用する場合に比較して、高
い臨界電流(IC)を期待できる。
As the spacer is made of a thin wire group of superconducting wires, an insulated thin copper wire or a thin copper wire coated with a high resistance material such as cupro-nickel is used, for example, by braiding. A higher critical current (I C ) can be expected as compared with the case of

〔作用〕[Action]

本発明はキーストン角度2θを大きくし、且つ横断面
の上下の素線間に超電導線群からなるスペーサを内蔵さ
せた事により、力学的応力及び電磁力による線材の移動
が起こらない様にしたものであって、線材移動時の摩擦
熱による常電導転移がなくなり、少ないトレーニング回
数で高い磁界を得る事が可能になった。又キーストン角
度2θを大きくする事によって、コイル内径を小さくす
る事が可能となり、Y軸、Z軸方向の磁場分布が良好と
なった。
In the present invention, the keystone angle 2θ is increased and a spacer made of a superconducting wire group is built in between the upper and lower strands of the cross section so that the movement of the wire due to mechanical stress and electromagnetic force does not occur. However, the normal conduction transition due to frictional heat during movement of the wire is eliminated, and it is possible to obtain a high magnetic field with a small number of trainings. Also, by increasing the keystone angle 2θ, the inner diameter of the coil can be made smaller, and the magnetic field distribution in the Y-axis and Z-axis directions became better.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。第
1図は本発明によるキーストン状成形撚線の横断面図で
あって、1aは超電導線(キーストン状成形撚線)、2は
スペーサ、3は絶縁体、4は超電導素線である。超電導
素線4として、Nb−46.5wt%Ti合金フィラメントを複数
本銅安定化金属中に埋込んだ超電導線(線径:0.648mm、
フィラメント径:約5μm、銅比:1.69、ツイストピッ
チ:25mm)を使用した。スペーサ2としては、線径0.1mm
のNbTi超電導線を75本編組加工したものを2枚重ね、そ
れをタークスヘッドによって(0.3〜0.7)×5.5mmに成
形加工したものを用いた。前記スペーサ2の周囲に、前
記超電導素線4を30本、ピッチ72mmで撚線して、(1.06
〜1.50)×9.67mmの寸法に加工した後、絶縁体3として
テープ巻き絶縁を行なって、超電導線1aが得られた。該
超電導線1aのキーストン角度2θは2.60°であり、又臨
界電流(IC)は5T及び8Tにおいてそれぞれ8700A、3500A
であり、この内スペーサの臨界電流(IC)はそれぞれ42
0A、170Aであった。又前記超電導線1aを巻線して、超電
導コイルを製造したところ、内層コイル内径40mm、外層
コイル外径80.4mmのダイポールコイルが得られ、トレー
ニング回数2回で設計特性(臨界電流(IC):5500A、中
心磁場:6.5T)に達した。
Example 1 Next, the present invention will be described more specifically by way of examples. FIG. 1 is a cross-sectional view of a keystone shaped twisted wire according to the present invention, in which 1a is a superconducting wire (keystone shaped twisted wire), 2 is a spacer, 3 is an insulator, and 4 is a superconducting element wire. As the superconducting element wire 4, a superconducting wire (wire diameter: 0.648 mm, in which a plurality of Nb-46.5 wt% Ti alloy filaments are embedded in a copper-stabilized metal)
Filament diameter: about 5 μm, copper ratio: 1.69, twist pitch: 25 mm) was used. As the spacer 2, wire diameter 0.1 mm
Two pieces of braided 75 NbTi superconducting wires of No. 2 were stacked and formed by a turks head into (0.3 to 0.7) × 5.5 mm. Around the spacer 2, 30 superconducting wires 4 are stranded at a pitch of 72 mm, and (1.06
.About.1.50) .times.9.67 mm and processed by tape winding insulation as the insulator 3 to obtain the superconducting wire 1a. The keystone angle 2θ of the superconducting wire 1a is 2.60 °, and the critical current (I C ) is 8700A and 3500A at 5T and 8T, respectively.
And the critical current (I C ) of each spacer is 42
It was 0A and 170A. Further, when the superconducting coil is manufactured by winding the superconducting wire 1a, a dipole coil having an inner layer coil inner diameter of 40 mm and an outer layer coil outer diameter of 80.4 mm is obtained, and design characteristics (critical current (I C ) : 5500A, central magnetic field: 6.5T).

〔実施例2〕 超電導素線として、Nb−46.5wt%Ti合金フィラメント
を複数本銅安定化金属中に埋込んだ超電導線(線径:0.7
48mm、フィラメント径:約6μm、銅比:1.71、ツイス
トピッチ:25mm)を使用し、スペーサ2としては、線径
0.1mmのNbTi超電導線を75本編組加工したものを2枚重
ねて、0.5×5.5mmの寸法にしたものを用いた。前記スペ
ーサの周囲に、前記超電導素線を26本、ピッチ72mmで撚
線して、(1.17〜1.96)×9.72mmの寸法に加工した後、
テープ巻き絶縁を行なって、超電導線が得られた。該超
電導線のキーストン角度2θは4.65°であり、又臨界電
流(IC)は5T及び8Tにおいてそれぞれ10900A、4200Aで
あり、この内スペーサの臨界電流(IC)はそれぞれ860
A、350Aであった。又前記超電導線を巻線して、超電導
コイルを製造したところ、内層コイル径40mm、外層コイ
ル外径80.4mmのダイポールコイルが得られ、トレーニン
グ回数2回で設計特性に達した。
[Example 2] As a superconducting element wire, a superconducting wire (wire diameter: 0.7) in which a plurality of Nb-46.5wt% Ti alloy filaments are embedded in a copper-stabilized metal.
48 mm, filament diameter: about 6 μm, copper ratio: 1.71, twist pitch: 25 mm), and the spacer 2 has a wire diameter
75 pieces of 0.1 mm NbTi superconducting wires were braided, and two pieces were piled up to have a size of 0.5 × 5.5 mm. Around the spacer, the 26 superconducting wires are twisted at a pitch of 72 mm, and after being processed into a size of (1.17 to 1.96) × 9.72 mm,
Tape winding insulation was performed and a superconducting wire was obtained. The keystone angle 2θ of the superconducting wire is 4.65 °, the critical currents (I C ) are 10900A and 4200A at 5T and 8T, respectively, and the critical currents (I C ) of the spacers are 860, respectively.
It was A, 350A. Further, when the superconducting coil was manufactured by winding the above-mentioned superconducting wire, a dipole coil having an inner layer coil diameter of 40 mm and an outer layer coil outer diameter of 80.4 mm was obtained, and the design characteristics were reached after two trainings.

〔従来例〕[Conventional example]

超電導素線4としては、実施例1と同じものを用い、
スペーサ2としては絶縁した銅の楔を使用して、第4図
(a)に示した様に、前記超導電素線4を1.06〜1.27×
9.73mmの寸法に撚線加工した後、絶縁体3を被覆して得
られた超電導線1bを数層巻線後、スペーサ2で中心角度
を合わせて、超電導コイルを製造したところ、内層コイ
ル内径120mm、外層コイル外径160.4mmのダイポールコイ
ルが得られた。該ダイポールコイルは10回通電(トレー
ニング)しても設計特性に達しなく、臨界電流(IC):5
200A、中心磁場:5.5Tの値しか得られなかった。
The same superconducting element 4 as in Example 1 is used,
An insulated copper wedge is used as the spacer 2, and the superconducting wire 4 is 1.06 to 1.27 × as shown in FIG. 4 (a).
After processing the superconducting wire 1b obtained by coating the insulator 3 with a stranded wire to a dimension of 9.73 mm and winding several layers, the center angle was adjusted with the spacer 2 to produce a superconducting coil. A dipole coil having an outer diameter of 120 mm and an outer diameter of 160.4 mm was obtained. The dipole coil did not reach the design characteristics even after being energized (trained) 10 times, and the critical current (I C ): 5
Only 200A, central magnetic field: 5.5T was obtained.

〔発明の効果〕〔The invention's effect〕

本発明の超電導線でコイルを構成すると、超電導体で
ない導体で構成されたスペーサを用いた超電導線のコイ
ルに比較して、少ないトレーニング回数で高い磁界を得
ることが可能となり、また、コイル内径が小さくて磁界
分布も良好であり、超電導細線群からなるスペーサ部の
冷却効果、補強効果なども期待することができる。
When the coil is formed of the superconducting wire of the present invention, it is possible to obtain a high magnetic field with a small number of trainings as compared with the coil of the superconducting wire using the spacer formed of a conductor that is not a superconductor, and the coil inner diameter is It is small and has a good magnetic field distribution, and it can be expected to have a cooling effect, a reinforcing effect, and the like for the spacer portion composed of the superconducting thin wire group.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明超電導線の構造を示す図、第2図は本発
明超電導線のキーストン角度2θの範囲を示す図、第3
図はダイポールマグネット巻線部の横断面図、第4図は
従来の超電導線の構造を示す図である。 1a、1b、1c……超電導線、2……スペーサ、3……絶縁
体、4……超電導素線。
FIG. 1 is a diagram showing the structure of the superconducting wire of the present invention, FIG. 2 is a diagram showing the range of the keystone angle 2θ of the superconducting wire of the present invention, and FIG.
FIG. 4 is a cross-sectional view of a dipole magnet winding portion, and FIG. 4 is a view showing a structure of a conventional superconducting wire. 1a, 1b, 1c ... Superconducting wire, 2 ... Spacer, 3 ... Insulator, 4 ... Superconducting element wire.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導素線複数本を撚線圧縮したキースト
ン状成形撚線において、キーストン角度2θが2tan
-1(α/N)以上であり、かつ横断面の上下の素線間に、
横断面が三角形、台形又は矩形の超電導細線群からなる
スペーサを内蔵する事を特徴とする超電導線。但しNは
素線本数であり、αは超電導線の種類に依存する0.3か
ら1.0の範囲の定数である。
1. A keystone shaped twisted wire obtained by twisting and compressing a plurality of superconducting wires, wherein the keystone angle 2θ is 2 tan.
-1 (α / N) or more and between the upper and lower strands of the cross section,
A superconducting wire having a built-in spacer composed of a superconducting thin wire group having a triangular, trapezoidal or rectangular cross section. However, N is the number of strands, and α is a constant in the range of 0.3 to 1.0 depending on the type of superconducting wire.
JP62260554A 1987-10-15 1987-10-15 Superconducting wire Expired - Lifetime JP2525016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260554A JP2525016B2 (en) 1987-10-15 1987-10-15 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260554A JP2525016B2 (en) 1987-10-15 1987-10-15 Superconducting wire

Publications (2)

Publication Number Publication Date
JPH01102812A JPH01102812A (en) 1989-04-20
JP2525016B2 true JP2525016B2 (en) 1996-08-14

Family

ID=17349570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260554A Expired - Lifetime JP2525016B2 (en) 1987-10-15 1987-10-15 Superconducting wire

Country Status (1)

Country Link
JP (1) JP2525016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589542A1 (en) * 2004-04-23 2005-10-26 Gesellschaft für Schwerionenforschung mbH Superconducting cable and method for manufacturing the same
JP7427914B2 (en) * 2019-10-30 2024-02-06 日本電気株式会社 Superconducting circuit device, spacer, and method for manufacturing superconducting circuit device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139081A (en) * 1978-04-19 1979-10-29 Furukawa Electric Co Ltd:The Preparation of wedge-shaped superconductive twist wire
JPS62262311A (en) * 1986-05-08 1987-11-14 古河電気工業株式会社 Superconductor wire

Also Published As

Publication number Publication date
JPH01102812A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JPH0261764B2 (en)
US20210319938A1 (en) Bent toroidal field coils
JP2525016B2 (en) Superconducting wire
Iwasa Recent developments in multifilament V 3 Ga & Nb 3 Sn wires in Japan
JPS607324B2 (en) Twisted compound superconducting cable
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JP3273953B2 (en) Method for producing niobium-tin superconducting wire
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JP2013004242A (en) Method of manufacturing compound superconductive twisted wire
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JPH05804B2 (en)
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3286036B2 (en) Forced cooling type superconducting conductor
JPH0146963B2 (en)
JPS59138008A (en) Compound composition superconductive wire material
JPS62262311A (en) Superconductor wire
JP3143908B2 (en) Superconducting conductor
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JP4534276B2 (en) Oxide superconducting wire connection method
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2845905B2 (en) Compound conducting wire for alternating current