JP3286036B2 - Forced cooling type superconducting conductor - Google Patents

Forced cooling type superconducting conductor

Info

Publication number
JP3286036B2
JP3286036B2 JP23297893A JP23297893A JP3286036B2 JP 3286036 B2 JP3286036 B2 JP 3286036B2 JP 23297893 A JP23297893 A JP 23297893A JP 23297893 A JP23297893 A JP 23297893A JP 3286036 B2 JP3286036 B2 JP 3286036B2
Authority
JP
Japan
Prior art keywords
superconducting
wire
stranded
cooling type
forced cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23297893A
Other languages
Japanese (ja)
Other versions
JPH0785735A (en
Inventor
哲 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23297893A priority Critical patent/JP3286036B2/en
Publication of JPH0785735A publication Critical patent/JPH0785735A/en
Application granted granted Critical
Publication of JP3286036B2 publication Critical patent/JP3286036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、核融合あるいはエネル
ギー貯蔵用等に用いられる高磁界発生用超電導コイルに
用いられる強制冷却型超電導導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercooled superconducting conductor used for a superconducting coil for generating a high magnetic field used for nuclear fusion or energy storage.

【0002】[0002]

【従来の技術】高磁界発生用超電導コイルにおいては、
そのコイルから発生する高磁界とコイル電流の相互作用
によって大きな電磁力が働く。このため、超電導導体と
しては機械的強度に優れた強制冷却型超電導導体が採用
されている。
2. Description of the Related Art In a superconducting coil for generating a high magnetic field,
A large electromagnetic force acts due to the interaction between the high magnetic field generated from the coil and the coil current. For this reason, a forced cooling type superconducting conductor having excellent mechanical strength is employed as the superconducting conductor.

【0003】従来の強制冷却型超電導導体としては、例
えば図4に示すような構成のものがある。図4におい
て、1は銅等の安定化材マトリクスに超電導フィラメン
トを配し、さらにその表面に絶縁皮膜を設けた超電導素
線であり、一般にその断面形状は円形あるいはそれを押
し潰した滑らかな形状を有している。
As a conventional forced cooling type superconducting conductor, for example, there is one having a configuration as shown in FIG. In FIG. 4, reference numeral 1 denotes a superconducting element wire in which a superconducting filament is disposed on a stabilizing material matrix such as copper, and further, an insulating film is provided on the surface thereof. have.

【0004】この超電導素線1を3本撚線することによ
り1次撚線2が、1次撚線2を3本撚線することにより
2次撚線3が、2次撚線3を3本撚線することにより3
次撚線4が、3次撚線4を2本撚線することにより4次
撚線5が構成されている。こうして構成された4次撚線
5をさらに6本撚線してコンジット6内に納めることに
より、強制冷却型超電導導体が構成される。
[0004] The primary stranded wire 2 is formed by twisting three superconducting strands 1, the secondary stranded wire 3 is formed by stranded three primary stranded wires 2, and the secondary stranded wire 3 is formed by three stranded wires. It is 3
The fourth stranded wire 5 is formed by stranded two tertiary stranded wires 4 of the next stranded wire 4. A forced cooling type superconducting conductor is constituted by further arranging six stranded quaternary wires 5 in this manner and placing them in a conduit 6.

【0005】このように超電導線が多芯化、多重撚線化
されるのは、超電導導体としての高臨界電流化、低交流
損失化を目指すためのものである。また、コンジット6
内部の超電導線以外のギャップは、冷却用の極低温ヘリ
ウムの流路として利用されている。
[0005] The reason why the superconducting wire is multi-core and multi-stranded is to aim at high critical current and low AC loss as the superconducting conductor. In addition, conduit 6
The gap other than the internal superconducting wire is used as a flow path of cryogenic helium for cooling.

【0006】[0006]

【発明が解決しようとする課題】このように構成された
超電導導体の臨界電流値は、本来 (超電導素線1本当りの臨界電流値)×(超電導素線の
本数) で与えられた筈である。しかしながら、実際には交流損
失を低減するために、超電導素線表面にはクロムあるい
はホルマリン被覆等の絶縁物が施されている。
The critical current value of the superconducting conductor constructed as described above should originally be given by (critical current value per superconducting wire) × (number of superconducting wires). is there. However, actually, in order to reduce the AC loss, the surface of the superconducting wire is provided with an insulator such as chromium or formalin coating.

【0007】このため、導体接続部の接続抵抗の差など
により超導電素線間に偏流が発生し、一部の超電導素線
でクエンチが発生するため、上記の値よりも小さい臨界
電流値しか得られない。また、それとは別に冷却効率が
悪く、安定性マージンが十分でないため、制限電流が低
く、臨界電流値まで電流を流せないなどの問題がある。
For this reason, a drift occurs between the superconducting wires due to a difference in connection resistance of the conductor connecting portion and the like, and quench occurs in some superconducting wires, so that only a critical current value smaller than the above value is obtained. I can't get it. In addition, there is another problem that the cooling efficiency is poor and the stability margin is not sufficient, so that the current limit is low and the current cannot flow up to the critical current value.

【0008】本発明は、上記の問題を解消するためにな
されたもので、多芯撚線の超電導素線間に発生する偏流
を抑制し、分流を促進すると共に冷却効率(安定性マー
ジン)を向上させ、臨界電流値及び制限電流値を向上さ
せることができる強制冷却型超電導導体を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and suppresses a drift generated between superconducting wires of a multi-core stranded wire, promotes a branch flow, and reduces a cooling efficiency (stability margin). It is an object of the present invention to provide a forced cooling type superconducting conductor capable of improving the critical current value and the limiting current value.

【0009】[0009]

【課題を解決するための手段】本発明では上記の目的を
達成するため、多芯撚線の超電導素線間に発生する偏流
を抑制し、分流を促進するために超電導素線の撚線ピッ
チ以上の間隔で超電導素線の表面に絶縁皮膜を設けない
非絶縁部を設け、隣接する超電導素線と電気的に接触さ
せる。
According to the present invention, in order to achieve the above-mentioned object, in order to suppress a drift generated between superconducting wires of a multi-core stranded wire and to promote a branch flow, a pitch of the superconducting wires is increased. Provide a non-insulating part on the surface of the superconducting wire with no insulation film at the above intervals, and make electrical contact with the adjacent superconducting wire.
Let

【0010】[0010]

【作用】強制冷却型超電導導体においては、通電当初多
芯撚線の各超電導素線に流れる電流値は導体接続部の接
続抵抗等によって決定され、コイル電流を上昇させる
と、そのうち1本の超電導素線がその素線としての臨界
電流値に近付いてくる。臨界電流値に近付くに従い、徐
々にその超電導素線には極めて小さいながら抵抗が発生
してくる。抵抗の発生にともない超電導素線間には分流
による電流の再分配が起こり、電流の均一化を行おうと
する。
In the forced cooling type superconducting conductor, the value of the current flowing through each superconducting element wire of the multifilamentary stranded wire at the beginning of energization is determined by the connection resistance of the conductor connection part, and when the coil current is increased, one of the superconducting The strand approaches the critical current value of the strand. As the critical current value is approached, the superconducting wire gradually generates a very small resistance. The redistribution of the current is caused by the shunt between the superconducting wires due to the generation of the resistance, and an attempt is made to make the current uniform.

【0011】従来の超電導線においては全長にわたり絶
縁被覆が施されているため、分流は導体接続部まで溯っ
て行われることになり、その回路のインダクタンスは抵
抗に比してかなり大きくなる。このため、分流の時定数
はかなり大きく、コイル電流値の上昇を補いきれなくな
り、超電導素線のクエンチ、超電導導体のクエンチと進
行してしまう。
In the conventional superconducting wire, the insulating coating is applied over the entire length, so that the shunting is performed retroactively to the conductor connecting portion, and the inductance of the circuit becomes considerably larger than the resistance. For this reason, the time constant of the shunt is considerably large, and it is impossible to compensate for the increase in the coil current value.

【0012】本発明による強制冷却型超電導導体にあっ
ては、超電導素線の絶縁被覆を長手方向に一様ではな
く、撚線ピッチ以上の間隔で超電導素線の表面に絶縁皮
膜を設けない非絶縁部を設けてあり、隣接する超電導素
線と電気的に接触している。このため、分流の回路長を
著しく小さくでき、またその分流時定数も小さくできる
ので、コイル電流値の上昇を上回る速さで分流を行うこ
とができる。
In the forced cooling type superconducting conductor according to the present invention, the insulating coating of the superconducting wire is not uniform in the longitudinal direction, and the insulating coating is not provided on the surface of the superconducting wire at intervals of the stranded wire pitch or more. An insulating portion is provided, and is in electrical contact with an adjacent superconducting element wire. For this reason, the circuit length of the shunt can be significantly reduced, and the shunt time constant can also be reduced, so that the shunt can be performed at a speed exceeding the rise in the coil current value.

【0013】従って、超電導導体としての臨界電流値の
理論値である (超電導素線1本当りの臨界電流値)×(超電導素線の
本数) まで臨界電流値を上げることができる。一方、非絶縁部
のピッチを撚線ピッチ以上の間隔とすることで、交流損
失の増加も殆どなくすことが可能である。
Therefore, the critical current value can be increased to the theoretical value of the critical current value of the superconducting conductor, ie, (the critical current value per one superconducting wire) × (the number of superconducting wires). On the other hand, by setting the pitch of the non-insulating portions to be equal to or longer than the pitch of the stranded wire, it is possible to almost eliminate an increase in AC loss.

【0014】また、超伝導素線の表面に凹凸を設けるこ
とによって超電導素線の冷却面積を大きくできるので、
導体としての冷却効率、すなわち安定性マージンが大き
くなり、超電導導体の制限電流値を向上させることがで
きる。
Further, by providing irregularities on the surface of the superconducting wire, the cooling area of the superconducting wire can be increased.
The cooling efficiency as a conductor, that is, the stability margin is increased, and the current limiting value of the superconducting conductor can be improved.

【0015】[0015]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1は本発明による強制冷却型超電導導体の第1の
実施例を示す超電導素線を撚線した外観図である。図1
に示すように超電導素線1a,1b,1cは3本を束と
して撚線ピッチlpでツイストされている。これら超電
導素線1a,1b,1cの表面は斜線でハッチングして
示した非絶縁部7において電気的に接触をしている。ま
た、その他の表面にはクロムメッキ等による絶縁が施さ
れている。この場合、非絶縁部のピッチLは撚線ピッチ
lpより大きなピッチとなるようにしてある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an external view of a superconducting element wire according to a first embodiment of the present invention, in which a superconducting element wire is twisted. FIG.
As shown in the figure, the superconducting wires 1a, 1b, 1c are twisted at a twisted wire pitch lp in a bundle of three wires. The surfaces of these superconducting wires 1a, 1b, 1c are electrically in contact with each other at a non-insulating portion 7 indicated by hatching. The other surfaces are insulated by chrome plating or the like. In this case, the pitch L of the non-insulating portion is set to be larger than the twisted wire pitch lp.

【0016】このような構成の強制冷却型超電導導体に
おいて、通電時の電流値を上昇させると、上述したよう
に素線間の偏流によりそのうち1本の超電導素線1aが
その素線としての臨界電流値に近付いてくる。また、臨
界電流値に近付くに従い、徐々にその超電導線1aには
極めて小さな抵抗が発生してくる。このとき超電導線1
a,1b,1cの表面は斜線でハッチングして示した非
絶縁部7において電気的に接触しているので、抵抗の発
生に伴い超電導素線1aの電流は非絶縁部7を介して接
触している超電導素線1b,超電導素線1cに分流し、
電流の均一化が行われる。
In the forced cooling type superconducting conductor having such a configuration, when the current value at the time of energization is increased, one of the superconducting wires 1a becomes critical as the wire due to the drift between the wires as described above. It approaches the current value. Further, as the current approaches the critical current value, an extremely small resistance is gradually generated in the superconducting wire 1a. At this time, the superconducting wire 1
Since the surfaces of a, 1b, and 1c are electrically in contact with each other at the non-insulating portion 7 shown by hatching, the current of the superconducting element wire 1a contacts through the non-insulating portion 7 due to the generation of resistance. To the superconducting element wires 1b and 1c,
The current is equalized.

【0017】従って、超電導導体長に比べ、短い間隔で
隣接する超電導素線同志が電気的に接触しているので、
分流の回路長を著しく小さくでき、またその分流時定数
も小さくできるので、コイル電流値の上昇を上回る速さ
で分流を行うことが可能となる。これにより、強制冷却
型超電導導体としての臨界電流値の理論値である (超電導素線1本当りの臨界電流値)×(超電導素線の
本数) まで臨界電流値を上げることができる。一方、非絶縁部
のピッチLを撚線ピッチlp以上の間隔とすることで、
交流損失の増加も殆どなくすことができる。
Therefore, the adjacent superconducting wires are in electrical contact with each other at a shorter interval than the superconducting conductor length.
Since the circuit length of the shunt can be significantly reduced, and the shunt time constant can also be reduced, the shunt can be performed at a speed exceeding the rise in the coil current value. Thereby, the critical current value can be increased to the theoretical value of the critical current value as the forced cooling type superconducting conductor (critical current value per superconducting wire) × (number of superconducting wires). On the other hand, by setting the pitch L of the non-insulating portion to be equal to or more than the twisted wire pitch lp,
Almost no increase in AC loss can be eliminated.

【0018】図2は本発明の第2の実施例を示す強制冷
却型超電導導体における1次撚線を撚線した外観図であ
る。本実施例では多重撚線された強制冷却型超電導導体
の場合、1次素線に対して図1に示した処理を行った
後、図2に示すように1次素線2a,2b,2c間にお
いても同様に非絶縁部のピッチLを撚線ピッチlp以上
の間隔とし、非絶縁部7において隣接する1次素線同志
を電気的に接触させることにより、前述同様の効果が得
られる。
FIG. 2 is an external view of a forcedly cooled superconducting conductor according to a second embodiment of the present invention in which a primary stranded wire is stranded. In the present embodiment, in the case of the multiply twisted forced cooling type superconductor, after performing the processing shown in FIG. 1 on the primary strand, as shown in FIG. 2, the primary strands 2a, 2b, 2c Similarly, by setting the pitch L of the non-insulating portions to be equal to or longer than the stranded wire pitch lp and electrically contacting adjacent primary wires in the non-insulating portion 7, the same effect as described above can be obtained.

【0019】図3は本発明の第3の実施例を示す強制冷
却型超電導導体の断面図である。本実施例における超電
導導体の構成は従来と同様であるが、表面に凹凸を設け
た超電導素線8を3本撚線することにより1次撚線2
が、1次撚線2を3本撚線することにより2次撚線3
が、2次撚線3を3本撚線することにより3次撚線4
が,3次撚線4を2本撚線することにより4次撚線5が
構成されている。
FIG. 3 is a sectional view of a forced cooling type superconducting conductor showing a third embodiment of the present invention. The configuration of the superconducting conductor in this embodiment is the same as the conventional one, but the primary stranded wire 2 is formed by stranded three superconducting wires 8 having irregularities on the surface.
However, three primary strands 2 are twisted to form a secondary strand 3
However, three stranded wires 3 are twisted to form a third stranded wire 4
However, a quaternary stranded wire 5 is formed by stranded two tertiary stranded wires 4.

【0020】このようにして構成された4次撚線5をさ
らに6本撚線し、コンジット6内に納められている。上
記第3の実施例によれば、その表面に凹凸が設けられて
いるので、超電導素線1a,1b,1cの冷却面積は通
常の断面形状の超電導素線に比べて大きくなる。従っ
て、導体としての冷却効率、すなわち安定性マージンが
大きくなるので、超電導導体の制限電流値を向上させる
ことができる。
The quaternary stranded wire 5 configured as described above is further twisted into six wires and housed in a conduit 6. According to the third embodiment, since the surface is provided with irregularities, the cooling area of the superconducting wires 1a, 1b, 1c is larger than that of a superconducting wire having a normal cross-sectional shape. Therefore, the cooling efficiency as a conductor, that is, the stability margin is increased, so that the current limit value of the superconducting conductor can be improved.

【0021】[0021]

【発明の効果】以上述べたように本発明によれば、多芯
撚線の超電導素線間に発生する偏流を抑制し、分流を促
進すると共に冷却効率(安定性マージン)を向上させ、
臨界電流値及び制限電流値を向上させることができる強
制冷却型超電導導体を提供できる。
As described above, according to the present invention, the drift generated between the superconducting wires of the multi-core stranded wire is suppressed, the branch current is promoted, and the cooling efficiency (stability margin) is improved.
It is possible to provide a forced cooling type superconducting conductor capable of improving a critical current value and a limited current value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による強制冷却型超電導導体の第1の実
施例における超電導素線を撚線した外観図。
FIG. 1 is an external view in which a superconducting element wire in a first embodiment of a forced cooling type superconducting conductor according to the present invention is twisted.

【図2】本発明の第2の実施例における超電導素線を撚
線した外観図。
FIG. 2 is an external view in which a superconducting element wire according to a second embodiment of the present invention is twisted.

【図3】本発明の第3の実施例における超電導素線を撚
線した外観図。
FIG. 3 is an external view of a stranded superconducting element wire according to a third embodiment of the present invention.

【図4】従来の強制冷却型超電導導体を示す断面図。FIG. 4 is a sectional view showing a conventional forced cooling type superconducting conductor.

【符号の説明】[Explanation of symbols]

1a,1b,1c……超電導素線、2a,2b,2c…
…1次撚線,3……2次撚線、4……3次撚線、5……
4次撚線、6……コンジット、7……非絶縁部、8……
凹凸部を有する超電導素線。lp……撚線ピッチ、L…
…非絶縁部のピッチ。
1a, 1b, 1c ... superconducting wires, 2a, 2b, 2c ...
… Primary stranded wire, 3… secondary stranded wire, 4… tertiary stranded wire, 5…
4th stranded wire, 6 ... conduit, 7 ... non-insulating part, 8 ...
A superconducting element wire having an uneven portion. lp ... stranded wire pitch, L ...
... Pitch of non-insulating part.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅等の安定化材マトリックスに超電導フ
ィラメントを配し、さらにその表面に絶縁皮膜を設けた
超電導素線を多芯、多重に撚線し、これをコンジット内
部に配設して構成した強制冷却型超電導導体において、
前記超電導素線の撚線ピッチ以上の間隔で超電導素線の
表面に絶縁皮膜を設けない非絶縁部を設け、隣接する超
電導素線と電気的に接触させたことを特徴とする強制冷
却型超電導導体。
1. A superconducting filament is arranged on a stabilizing material matrix such as copper, and a superconducting element wire having an insulating film provided on its surface is multi-stranded and multi-stranded, and this is arranged inside a conduit. In the configured forced cooling type superconductor,
Ultra wherein in twisted pitch or spacing of the superconducting wire is provided a non-insulating portion is not provided with an insulating film on the surface of the superconductor element, adjacent
A forced cooling type superconducting conductor characterized by being electrically contacted with a conductive wire .
【請求項2】 超電導素線の表面に凹凸を設けたことを
特徴とする請求項1に記載の強制冷却型超電導導体。
2. The forced cooling type superconducting conductor according to claim 1, wherein irregularities are provided on the surface of the superconducting element wire.
JP23297893A 1993-09-20 1993-09-20 Forced cooling type superconducting conductor Expired - Fee Related JP3286036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23297893A JP3286036B2 (en) 1993-09-20 1993-09-20 Forced cooling type superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23297893A JP3286036B2 (en) 1993-09-20 1993-09-20 Forced cooling type superconducting conductor

Publications (2)

Publication Number Publication Date
JPH0785735A JPH0785735A (en) 1995-03-31
JP3286036B2 true JP3286036B2 (en) 2002-05-27

Family

ID=16947879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23297893A Expired - Fee Related JP3286036B2 (en) 1993-09-20 1993-09-20 Forced cooling type superconducting conductor

Country Status (1)

Country Link
JP (1) JP3286036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101060B2 (en) * 2018-02-01 2021-08-24 Tokamak Energy Ltd Partially-insulated HTS coils
CA3169346A1 (en) * 2020-02-24 2021-09-02 University Of Houston System Hybrid round superconductor wires

Also Published As

Publication number Publication date
JPH0785735A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
KR20110027705A (en) Conductor arrangement for a resistive switching element having at least two composite conductors made from superconducting conductor bands
JP2960481B2 (en) Method for reducing eddy current in superconductor tape and superconductor device
US3470508A (en) Superconducting winding
US8862193B2 (en) Superconducting fault current limiter
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
JP3286036B2 (en) Forced cooling type superconducting conductor
US3391362A (en) Superconducting magnet coil
US3904809A (en) Tubular electrical conductor made up of individual superconducting conductors
Tsukamoto et al. Current Degradation in Superconducting AC Coils—Causes and Stabilization
JPH0377607B2 (en)
JPS5948488B2 (en) Composite superconducting wire
JP2525016B2 (en) Superconducting wire
JP3559550B2 (en) Superconducting current limiting module and superconducting current limiting unit
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JP3363164B2 (en) Superconducting conductor
JPS603545Y2 (en) superconducting winding
SU1308074A1 (en) High-current composition superconducting wire
JPS5923406B2 (en) superconducting wire
JPH10247428A (en) Oxide superconductive wire
JPS62213012A (en) Superconductor
JPH06223641A (en) Superconductor and superconducting current limiter trigger coil using same
Steeves et al. Lap joint resistance of Nb 3 Sn cable terminations for the ICCS-HFTF 12 tesla coil program
JPS6215803A (en) Superconductive coil
JPH0636625A (en) Superconductor
JPS5855648B2 (en) Superconducting coil manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees