JPH01102812A - Superconductive wire - Google Patents

Superconductive wire

Info

Publication number
JPH01102812A
JPH01102812A JP62260554A JP26055487A JPH01102812A JP H01102812 A JPH01102812 A JP H01102812A JP 62260554 A JP62260554 A JP 62260554A JP 26055487 A JP26055487 A JP 26055487A JP H01102812 A JPH01102812 A JP H01102812A
Authority
JP
Japan
Prior art keywords
spacer
wire
superconducting
magnetic field
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62260554A
Other languages
Japanese (ja)
Other versions
JP2525016B2 (en
Inventor
Katsunori Wada
克則 和田
Yoshiki Tsunoda
角田 好喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62260554A priority Critical patent/JP2525016B2/en
Publication of JPH01102812A publication Critical patent/JPH01102812A/en
Application granted granted Critical
Publication of JP2525016B2 publication Critical patent/JP2525016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide high magnetic field with a small number of trainings by enlarging the keystone angle, and incorporating a spacer between upper and lower element wires at the cross section. CONSTITUTION:Keystone angle 2theta is enlarged, and a spacer 2 is incorporated between upper and lower element wires at the cross section, and thereby wire movement due to mechanical stress and electromagnetic force is hindered. This eliminates normal conductive transfer due to friction heat at the time of wire movement, and it is now practicable to obtain high magnetic field with a smaller number of trainings. Enlargement of the keystone angle 2theta enables making the coil inner dia. smaller, and the magnetic field distribution in the Y and Z directions will be better.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイポールマグネット等に利用可能なキースト
ン角の大きい超電導線の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a superconducting wire with a large keystone angle that can be used in dipole magnets and the like.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

高エネルギー物理研究のための粒子加速器である陽子シ
ンクロトンには陽子束に偏向を与える為のダイポールマ
グネットが使用されている。このマグネットは通常50
〜200mmの内径を有する超電導コイルであって、横
断面が台形即ちキーストン状である平角成形撚線より構
成されている。
The proton synchroton, a particle accelerator for high-energy physics research, uses a dipole magnet to deflect the proton flux. This magnet usually has 50
The superconducting coil has an inner diameter of ~200 mm and is constructed from rectangular shaped strands with a trapezoidal or keystone cross section.

上記成形撚線の巻線の仕方としては、第3図に示した2
種類の方法が従来行なわれている。即ち(1)第1の方
法は、第3図第1象限に示す様に、成形撚線の勾配を表
すキーストン角2θ(第4図(a)に図示)が小さい超
電導線1bを数層巻線後、スペーサ2で中心角度を合わ
せ、Y軸方向の磁場精度を高めようとするものである。
The method of winding the above-mentioned formed stranded wire is as shown in Figure 3.
Several types of methods have been used in the past. That is, (1) the first method involves winding the superconducting wire 1b in several layers with a small keystone angle 2θ (shown in FIG. 4(a)) representing the slope of the formed stranded wire, as shown in the first quadrant of FIG. After the line, the center angle is adjusted using a spacer 2 to improve the precision of the magnetic field in the Y-axis direction.

この場合超電導線1bの構造は第4図(a)に示す通り
であって、Cu安定化金属中にNbTiフィラメントが
埋込まれた超電導素線4を複数本撚線圧縮した後、テー
プ等の絶縁体3で被覆したものである。
In this case, the structure of the superconducting wire 1b is as shown in FIG. It is covered with an insulator 3.

(2)第2の方法は、第3図第1象限に示す様に、成形
撚線の勾配を表すキーストン角2θ(第4図(b)に図
示)が大きくなる様に予めスペーサを内蔵した超電導線
1cを巻線したものである。この場合超電導線1cの構
造は第4図(b)に示す通りであって、超電導素線4を
複数本撚線圧縮した後、両側からテーパー状のスペーサ
2をあて、その外側を絶縁体3で被覆したものである。
(2) The second method is to incorporate a spacer in advance so that the keystone angle 2θ (shown in Fig. 4 (b)) representing the slope of the formed stranded wire becomes large, as shown in the first quadrant of Fig. 3. The superconducting wire 1c is wound. In this case, the structure of the superconducting wire 1c is as shown in FIG. It is coated with

〔発明が解決しようとする問題点〕 −前述の陽子シン
クロトンは近年益々大型化の傾向にあり、最近では5〜
IOT級の高い磁界の超電導マグネットの開発が要望さ
れている。この様な傾向に対して、従来の巻線方法では
以下に詳述する様に、通電時に線材移動による摩擦熱に
よって常電導転移を起しやすく、従ってトレーニング回
数が多くて、しかも高い磁界が得られな(支障を来して
いた。
[Problems to be solved by the invention] -The proton synchroton mentioned above has been becoming increasingly larger in recent years, and recently
There is a demand for the development of superconducting magnets with high magnetic fields of IOT class. In response to this tendency, with conventional wire winding methods, as detailed below, normal conduction transition is likely to occur due to frictional heat due to wire movement during energization, which requires a large number of training sessions and makes it difficult to obtain a high magnetic field. (It was causing trouble.)

即ち前述の第1の方法で巻線した場合は、従来キースト
ン角を大きくとれなかった為、第3図の・ 第1象限に
示す構造に組立てた際にアーチ構造からのずれが大きく
、又数層おきにスペーサが挿入された不均質な構造にな
っている。従ってX、Y方向の力のバランスが悪くて、
外部から充分に締め付は難い為、熱収縮等による力学的
応力により線材相互間のずれを生じやすく、又第4図(
a)において、超電導線1bには電磁力が働くが、スペ
ーサ2には電磁力が作用しない為線材のスペーサに対す
るずれを生じやすかった。更に第1の方法ではキースト
ン角を大きく取れない為に、数層おきにスペーサを挿入
してもコイル内径を余り小さくする事は出来ず、従って
Y軸、Z軸方向の磁場分布が余り良好でなかった。
That is, when winding wires using the first method described above, conventionally it was not possible to obtain a large keystone angle, so when assembled into the structure shown in the first quadrant of Figure 3, there was a large deviation from the arch structure, and the number of It has a non-uniform structure with spacers inserted in every other layer. Therefore, the balance of forces in the X and Y directions is poor,
Since it is difficult to tighten the wires sufficiently from the outside, mechanical stress caused by heat shrinkage etc. easily causes the wires to become misaligned, and as shown in Figure 4 (
In a), an electromagnetic force acts on the superconducting wire 1b, but no electromagnetic force acts on the spacer 2, which tends to cause the wire to shift relative to the spacer. Furthermore, in the first method, since the keystone angle cannot be made large, the inner diameter of the coil cannot be made very small even if spacers are inserted every few layers, and therefore the magnetic field distribution in the Y-axis and Z-axis directions is not very good. There wasn't.

又前述の第2の方法で巻線した場合は、一応キーストン
角が大きくなっており、力学的応力に対してバランスが
良いアーチ構造ではあるが、第1の方法の場合と同様に
、第4図(b ) −aこおいて超電導素線4が電磁力
によりスペーサ2に対してずれを生じやすかった。更に
個々の平角撚線の両側にスペーサをあてた複雑な構造で
ある為 製造に手数がかかると共に、寸法精度等の点で
問題があった。
In addition, when the wire is wound using the second method described above, the keystone angle becomes larger and the arch structure has a good balance against mechanical stress. In Figure (b)-a, the superconducting wire 4 was likely to be displaced from the spacer 2 due to electromagnetic force. Furthermore, since it has a complicated structure in which spacers are placed on both sides of each individual rectangular stranded wire, manufacturing is time-consuming and there are problems in terms of dimensional accuracy, etc.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明はこの様な問題点を解決する為鋭意研究の結果な
されたものであって、超電導素線複数本を撚線圧縮した
キーストン状成形撚線において、キーストン角度2θが
2tan−1(α/N)以上であり、かつ横断面の上下
の素線間に、横断面が三角形、台形又は矩形の細線群か
らなるスペーサを内蔵する事を特徴とする超電導線であ
る。但しNは素線本数であり、αは超電導線の種類に依
存する0、3から1.0の範囲の定数である。
The present invention was made as a result of intensive research to solve these problems, and the keystone angle 2θ is 2tan-1 (α/ N) A superconducting wire which is the above and is characterized in that a spacer consisting of a group of thin wires having a triangular, trapezoidal or rectangular cross section is built in between the upper and lower wires in the cross section. However, N is the number of strands, and α is a constant ranging from 0, 3 to 1.0 depending on the type of superconducting wire.

本発明において、Nを素線本数(但しN≧3)、αを超
電導線の種類や製造工程によって定まる定数(通常のN
bTi線ではa > 0.4、W i n dand 
 ReactタイプのNb、Sn線ではα〉1)とする
時、キーストン角度2θを2tan−1(ff、/N)
以上に限定したのは、2 t a n−1(α/N)未
満の場合は平角撚線を巻線した場合に完全且つ均質なア
ーチ構造からのずれが大きく、通電時に線材の移動が起
こってトレーニング回数を多くしても高い磁界を得る事
が出来ない為である。又単にキーストン角度2θを大き
くするだけでなく、スペーサを第1図に示した様に超電
導素線間に内蔵させて、素線が電磁力による遠心力を受
けた際に、素線がスペーサに対して相対的な移動を起こ
さない様にする事が必要であって、第4図(b)に示し
た様にスペーサが素線間に内蔵されていない場合は、素
線が移動してスペーサに対してずれを生じてしまう、更
にスペーサを内蔵する事による素綿内側からの冷却効果
を期待出来、又巻線方向に対する補強効果も期待できる
ものである。
In the present invention, N is the number of strands (however, N≧3), and α is a constant determined by the type of superconducting wire and the manufacturing process (normal N
For bTi line, a > 0.4, W in dand
For React type Nb and Sn lines, when α>1), the keystone angle 2θ is 2tan-1 (ff, /N)
The above limitation is due to the fact that if it is less than 2 t a n-1 (α/N), there will be a large deviation from a perfect and homogeneous arch structure when winding rectangular stranded wire, and the wire will move when energized. This is because it is not possible to obtain a high magnetic field even if the number of training sessions is increased. In addition to simply increasing the keystone angle 2θ, a spacer is built between the superconducting strands as shown in Figure 1, so that when the strands are subjected to centrifugal force due to electromagnetic force, the strands touch the spacer. It is necessary to prevent the wires from moving relative to each other, and if the spacer is not built in between the wires as shown in Figure 4(b), the wires may move and the spacer Further, by incorporating a spacer, a cooling effect from inside the cotton can be expected, and a reinforcing effect in the winding direction can also be expected.

スペーサとしては、絶縁した銅の細線或いはキュプロニ
ッケルの様な高抵抗物質で被覆された銅の細線を、例え
ば編組加工して使用する事ができるが、高い臨界量2*
(IC)の値を得る為には、超電導線の細線群からなる
スペーサを用いる事が好ましい。
As a spacer, a thin insulated copper wire or a thin copper wire coated with a high-resistance material such as cupronickel, for example braided, can be used.
In order to obtain the value of (IC), it is preferable to use a spacer made of a group of thin superconducting wires.

〔作用〕[Effect]

本発明はキーストン角度2θを大きくし、且つ横断面の
上下の素線間にスペーサを内蔵させた事により、力学的
応力及び電磁力による線材の移動が起こらない様にした
ものであって、線材移動時の摩擦熱による常電導転移が
なくなり、少ないトレーニング回数で高い磁界を得る事
が可能になった。又キーストン角度2θを大きくする事
によって、コイル内径を小さくする事が可能となり、Y
軸、Z軸方向の磁場分布が良好となった。
The present invention prevents movement of the wire due to mechanical stress and electromagnetic force by increasing the keystone angle 2θ and incorporating a spacer between the upper and lower wires in the cross section. The normal conduction transition due to frictional heat during movement is eliminated, making it possible to obtain a high magnetic field with fewer training sessions. Also, by increasing the keystone angle 2θ, it is possible to reduce the inner diameter of the coil, and Y
The magnetic field distribution in the axial and Z-axis directions became better.

(実施例1) 次に本発明を実施例により更に具体的に説明する。第1
図は本発明によるキーストン状成形撚線の横断面図であ
って、1aは超電導vA(キーストン状成形撚線)、2
はスペーサ、3は絶縁体、4は超電導素線である。超電
導素線4として、Nb46、5 W L%Ti含Tiィ
ラメントを複数本銅安定化金属中に埋込んだ超電導線(
線径: 0.648mm、フィラメント径:約5μm1
銅比:1.69、ツイストピッチ:25mm)を使用し
た。スペーサ2としては、線径0. l m mのNb
Ti超電導線を75本編組加工したものを2枚重ね、そ
れをタークスヘッドによって(0,3〜0.7)x5.
5mmに成形加工したものを用いた。前記スペーサ2の
周囲に、前記超電導素線4を30本、ピッチ72mmで
撚線して、(1,り6〜1.5(1)X9.67mmの
寸法に加工した後、絶縁体3としてテープ巻き絶縁を行
なって、超電導線1aが得られた。
(Example 1) Next, the present invention will be explained in more detail with reference to Examples. 1st
The figure is a cross-sectional view of a keystone shaped stranded wire according to the present invention, where 1a is a superconducting vA (keystone shaped stranded wire), 2
is a spacer, 3 is an insulator, and 4 is a superconducting wire. The superconducting wire 4 is a superconducting wire in which a plurality of Nb46,5W L%Ti-containing Ti filaments are embedded in a copper stabilized metal.
Wire diameter: 0.648mm, filament diameter: approximately 5μm1
Copper ratio: 1.69, twist pitch: 25 mm) was used. The spacer 2 has a wire diameter of 0. l m m Nb
Two layers of 75 braided Ti superconducting wires were stacked together and then (0.3 to 0.7) x 5.
A piece molded to 5 mm was used. Thirty superconducting strands 4 are twisted around the spacer 2 at a pitch of 72 mm, and processed to have dimensions of (1,6 to 1.5 (1) x 9.67 mm), and then used as an insulator 3. A superconducting wire 1a was obtained by tape wrapping and insulation.

該超電導線1aのキーストン角度2θは2.60”テア
リ、又臨界′r!i流(1,)は5T及び8Tにおいて
それぞれ8700A、3500Aであり、この内スペー
サの臨界電流(IC)はそれぞれ420A、170Aで
あった。又前記超電導線1aを巻線して、超電導コイル
を製造したところ、内層コイル内径40mm、外層コイ
ル外径80.4mmのダイポールコイルが得られ、トレ
ーニング回数2回で設計特性(臨界電流(Ic):55
00A、中心磁場:6.57)に達した。
The keystone angle 2θ of the superconducting wire 1a is 2.60", and the critical 'r!i current (1,) is 8700A and 3500A at 5T and 8T, respectively, and the critical current (IC) of the spacer is 420A, respectively. , 170A. When a superconducting coil was manufactured by winding the superconducting wire 1a, a dipole coil with an inner coil inner diameter of 40 mm and an outer coil outer diameter of 80.4 mm was obtained, and the design characteristics were achieved after two training sessions. (Critical current (Ic): 55
00A, central magnetic field: 6.57).

〔実施例2〕 超電導素線として、Nb  46.5wt%Ti合金フ
ィラメントを複数本銅安定化金属中に埋込んだ超’is
線(線径: 0.748mm、74ラメント径:約5p
m、銅比1.71、ツイストピッチ=25mm)を使用
し、スペーサ2としては、線径0.1mmのNbTi超
電導線を75本編組加工したものを2枚重ねて、0.5
 X 5.5 m mの寸法にしたものを用いた。前記
スペーサの周囲に、前記超電導素線を26本、ピッチ7
2mmで撚線して、(1,17〜1.96) X9.7
2mmの寸法に加工した後、テープ巻き絶縁を行なって
、超電導線が得られた。該超電導線のキーストン角度2
θは4.65°であり、又臨界電流(+c)は5T及び
8Tにおいてそれぞれ10900A、4200Aであり
、この内スペーサの臨界電流(I、)はそれぞれ860
A、350Aであった。又前記超電導線を巻線して、超
電導コイルを製造したところ、内層コイル内径40mm
、外層コイル外径80.4 mmのダイポールコイルが
得られ、トレーニング回数2回で設計特性に達した。
[Example 2] As a superconducting wire, a plurality of Nb 46.5 wt% Ti alloy filaments were embedded in a copper stabilized metal.
Wire (wire diameter: 0.748mm, 74 lament diameter: approx. 5p
The spacer 2 is made of 75 braided NbTi superconducting wires with a wire diameter of 0.1 mm, which are stacked together to form a 0.5
A sample having dimensions of 5.5 mm x 5.5 mm was used. Around the spacer, 26 superconducting wires are arranged at a pitch of 7.
Twist the wires at 2mm, (1,17~1.96) X9.7
After processing the wire to a size of 2 mm, it was wrapped with tape for insulation, and a superconducting wire was obtained. Keystone angle 2 of the superconducting wire
θ is 4.65°, and the critical current (+c) is 10900A and 4200A at 5T and 8T, respectively, of which the spacer critical current (I, ) is 860A, respectively.
A, it was 350A. In addition, when a superconducting coil was manufactured by winding the superconducting wire, the inner diameter of the inner layer coil was 40 mm.
A dipole coil with an outer layer outer diameter of 80.4 mm was obtained, and the design characteristics were reached after two training sessions.

[従来例] 超電導素線4としては、実施例1と同じものを用い、ス
ペーサ2としては絶縁した銅の梗を使用して、第4図(
a)に示した様に、前記超電導素線4を1.06〜1.
27X9.73mmの寸法に撚線加工した後、絶縁体3
を被覆して得られた超電導線1bを数層巻線後、スペー
サ2で中心角度を合わせて、超電導コイルを製造したと
ころ、内層コイル内径120mm、外層コイル外径16
0.4 mmのダイポールコイルが得られた。該ダイポ
ールコイルは10回通電(トレーニング)しても設計特
性に達しなく、臨界電流(IC):5200A。
[Conventional example] The same superconducting wire 4 as in Example 1 was used, and the spacer 2 was made of insulated copper.
As shown in a), the superconducting wire 4 has a thickness of 1.06 to 1.
After stranding the wire to a size of 27 x 9.73 mm, insulator 3
After winding the superconducting wire 1b obtained by coating several layers, the center angle was adjusted using a spacer 2 to manufacture a superconducting coil.The inner layer coil inner diameter was 120 mm, and the outer layer coil outer diameter was 16 mm.
A dipole coil of 0.4 mm was obtained. The dipole coil did not reach its design characteristics even after energization (training) 10 times, and the critical current (IC) was 5200A.

中心磁場: 5.57の値しか得られなかった。Central magnetic field: Only a value of 5.57 was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、少ないトレーニング回数で高い磁界を得
る事が可能となった。又本発明コイルにおいては、コイ
ル内径が小さく°ζ磁場分布も良好であり、スペーサ部
の冷却効果、補強効果等も期待する事が出来る等工業上
顕著な効果を奏するものである。
The present invention has made it possible to obtain a high magnetic field with a small number of training sessions. In addition, the coil of the present invention has a small coil inner diameter and a good °ζ magnetic field distribution, and can be expected to have a cooling effect, a reinforcing effect, etc. in the spacer portion, and has remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明超電導線の構造を示す図、′M2図は本
発明超電導線のキーストン角度2θの範囲を示す図、第
3図はダイポールマグネット巻線部の横断面図、第4図
は従来の超電導線の構造を示す図である。 1 a、  1 b、  1 c−−一超電導線、2・
−スペーサ、3・・−絶縁体、4・−・超電導素線。 特許出願人 古河電気工業株式会社 l 1 又 素線数N 第2図
FIG. 1 is a diagram showing the structure of the superconducting wire of the present invention, FIG. FIG. 2 is a diagram showing the structure of a conventional superconducting wire. 1 a, 1 b, 1 c--1 superconducting wire, 2.
-Spacer, 3...-Insulator, 4...-Superconducting wire. Patent applicant Furukawa Electric Co., Ltd. 1 Number of strands N Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)超電導素線複数本を撚線圧縮したキーストン状成
形撚線において、キーストン角度2θが2tan^−^
1(α/N)以上であり、かつ横断面の上下の素線間に
、横断面が三角形、台形又は矩形の細線群からなるスペ
ーサを内蔵する事を特徴とする超電導線、但しNは素線
本数であり、αは超電導線の種類に依存する0.3から
1.0の範囲の定数である。
(1) In a keystone-shaped stranded wire made by compressing multiple superconducting strands, the keystone angle 2θ is 2tan^-^
1 (α/N) or more, and a superconducting wire characterized by incorporating a spacer consisting of a group of thin wires with a triangular, trapezoidal, or rectangular cross section between the upper and lower wires in the cross section, where N is an element. is the number of wires, and α is a constant ranging from 0.3 to 1.0 depending on the type of superconducting wire.
(2)スペーサが超電導線の細線群からなる事を特徴と
する特許請求の範囲第1項記載の超電導線。
(2) The superconducting wire according to claim 1, wherein the spacer is made of a group of thin superconducting wires.
JP62260554A 1987-10-15 1987-10-15 Superconducting wire Expired - Lifetime JP2525016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260554A JP2525016B2 (en) 1987-10-15 1987-10-15 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260554A JP2525016B2 (en) 1987-10-15 1987-10-15 Superconducting wire

Publications (2)

Publication Number Publication Date
JPH01102812A true JPH01102812A (en) 1989-04-20
JP2525016B2 JP2525016B2 (en) 1996-08-14

Family

ID=17349570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260554A Expired - Lifetime JP2525016B2 (en) 1987-10-15 1987-10-15 Superconducting wire

Country Status (1)

Country Link
JP (1) JP2525016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506221A (en) * 2004-04-23 2008-02-28 ゲゼルシャフト フュリュ シュヴェリオネンフォルシュング エムベーハー Superconducting cable and manufacturing method thereof
JP2021072351A (en) * 2019-10-30 2021-05-06 日本電気株式会社 Superconducting circuit device, spacer, and manufacturing method of superconducting circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139081A (en) * 1978-04-19 1979-10-29 Furukawa Electric Co Ltd:The Preparation of wedge-shaped superconductive twist wire
JPS62262311A (en) * 1986-05-08 1987-11-14 古河電気工業株式会社 Superconductor wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139081A (en) * 1978-04-19 1979-10-29 Furukawa Electric Co Ltd:The Preparation of wedge-shaped superconductive twist wire
JPS62262311A (en) * 1986-05-08 1987-11-14 古河電気工業株式会社 Superconductor wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506221A (en) * 2004-04-23 2008-02-28 ゲゼルシャフト フュリュ シュヴェリオネンフォルシュング エムベーハー Superconducting cable and manufacturing method thereof
JP2021072351A (en) * 2019-10-30 2021-05-06 日本電気株式会社 Superconducting circuit device, spacer, and manufacturing method of superconducting circuit device

Also Published As

Publication number Publication date
JP2525016B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
JPH08335414A (en) Oxide superconducting wire and manufacture thereof
Hasegawa et al. HTS conductors for magnets
US20140221215A1 (en) Precursor for a nb3sn superconductor wire, method for manufacturing the same, nb3sn superconductor wire, and superconducting magnet system
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JPH01102812A (en) Superconductive wire
WO2020090259A1 (en) Superconducting wire, superconducting coil using same, and mri
Berriaud et al. Conductor R&D for the Iseult/INUMAC whole body 11.7 T MRI magnet
JPH08148327A (en) Superconducting magnet and particle accelerator with the superconducting magnet
Karasev et al. Study of low loss experimental superconducting Nb-Ti wires to be used in FAIR magnets
US20030184929A1 (en) Method for reducing ac loss in superconducting coils
JPS62262311A (en) Superconductor wire
JP2001229750A (en) Superconducting cable
JPS60198009A (en) Compound superconductive conductor
Zhu et al. Study on the Nb 3 Sn rutherford cable for high-energy accelerators
JP3608232B2 (en) Nb3Sn superconducting wire
JPH0146963B2 (en)
JP3143908B2 (en) Superconducting conductor
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JP2002075727A (en) Superconducting coil, its manufacturing method, and superconductor used for the same
JP2000164419A (en) Superconductivity magnet and manufacture thereof
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JP2000348927A (en) Oxide superconducting compression molded conductor and manufacture thereof
JPH10162663A (en) Aluminum stabilized superconductor
JPS6221244B2 (en)
Scanlan et al. Manufacturing experience for the LHC inner triplet quadrupole cables