JPS62262311A - Superconductor wire - Google Patents

Superconductor wire

Info

Publication number
JPS62262311A
JPS62262311A JP61105672A JP10567286A JPS62262311A JP S62262311 A JPS62262311 A JP S62262311A JP 61105672 A JP61105672 A JP 61105672A JP 10567286 A JP10567286 A JP 10567286A JP S62262311 A JPS62262311 A JP S62262311A
Authority
JP
Japan
Prior art keywords
spacer
wire
superconducting
strands
keystone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61105672A
Other languages
Japanese (ja)
Inventor
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61105672A priority Critical patent/JPS62262311A/en
Publication of JPS62262311A publication Critical patent/JPS62262311A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイポールマグネット等に利用可能なキースト
ン角の大きい超電導線の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a superconducting wire with a large keystone angle that can be used in dipole magnets and the like.

〔従来の技術〕[Conventional technology]

高エネルギー物理研究のための粒子加速器である陽子シ
ンクロトンには陽子束に偏向を与えるためのダイポール
マグネットが使用されている。このマグネットは通常5
0〜200mの内径を有する超電導コイルであって、横
断面が台形即ちキーストン状である平角成形撚線より構
成されている。
The proton synchroton, a particle accelerator for high-energy physics research, uses a dipole magnet to deflect the proton flux. This magnet usually has 5
The superconducting coil has an inner diameter of 0 to 200 m and is composed of rectangular shaped stranded wires with a trapezoidal or keystone cross section.

上記成形撚線の巻線の仕方としては第5図に示した2種
類の方法が従来性なわれている。即ち、・(1)第1の
方法は第5図第1象限に示す様に成形撚線の勾配を表わ
すキーストン角2θ(第4図(a)に図示)が小さい超
電導線1bを数層巻線後、スペーサ云2で中心角度を合
せ、Y軸方向の磁場精度を高めようとするものである。
There are two conventional methods for winding the formed stranded wire, as shown in FIG. That is, (1) The first method involves winding several layers of superconducting wire 1b with a small keystone angle 2θ (shown in FIG. 4(a)) representing the slope of the formed stranded wire, as shown in the first quadrant of FIG. After the line, the center angles are adjusted using spacer No. 2 to improve the precision of the magnetic field in the Y-axis direction.

この場合超電導線1bの構造は第1I(a)図に示す通
りであって、Cu 安定化金属中にNbTiフィラメン
トが埋込まれた超電導素線ttl複数本撚線圧縮した後
、テープ等の絶縁体うで被覆したものである。
In this case, the structure of the superconducting wire 1b is as shown in FIG. 1I(a), in which a plurality of superconducting strands of ttl wires in which NbTi filaments are embedded in a Cu stabilizing metal are compressed and then insulated with tape or the like. The body is covered with the arm.

(2)第2の方法は第5図第1象限に示す様にキストン
角2θ(第q (b)図に図示)が大きくなる様に予め
スペーサ矢を内蔵した超電導線1cを巻線したものであ
る。この場合超電導線ICの構造は第4(b)図に示す
通りであって、超電導素m’+”を複数本撚線圧縮した
後、両側からテーパー状のスペーサ2をあて、その外側
を絶縁体うで被覆したものである。
(2) The second method is to wind the superconducting wire 1c with a built-in spacer arrow in advance so that the chiston angle 2θ (shown in Figure q (b)) becomes large as shown in the first quadrant of Figure 5. It is. In this case, the structure of the superconducting wire IC is as shown in FIG. 4(b). After compressing a plurality of stranded superconducting elements m'+", tapered spacers 2 are applied from both sides to insulate the outside. The body is covered with the arm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の陽子シンクロトンは近年盤々犬形化の傾向にあり
、最近では5〜LOT級の高い磁界の超電導マグネット
の開発が要望されている。この様な傾向に対して、従来
の巻線方法では以下に詳述する様に通電時に線材移動に
よる摩擦熱によって常電導転移を起しやすく、従ってト
レーニング回数が多くてしかも高い磁界が得られなく支
障をき次していた。
In recent years, the aforementioned proton synchroton has become more and more dog-shaped, and there has recently been a demand for the development of superconducting magnets with high magnetic fields of 5 to LOT class. In response to this tendency, with conventional wire winding methods, as detailed below, normal conduction transition tends to occur due to frictional heat due to wire movement during energization, and therefore, it is difficult to obtain a high magnetic field even though the number of training sessions is large. It was causing trouble.

即ち前述の第1の方法で巻線した場合は、従来キストン
角を大きくとれなかったため、第5図の第1象限に示す
構造に組立てた際にアーチ構造からのずれが大きく、又
数層おきにスペーサ矢が挿入された不均質な構造になっ
ている。従ってX、  Y方向の力のバランスが悪くて
外部から充分に締め付は難いため熱収縮等による力学的
応力により線材相互間のずれを生じやすく、又第4図(
2L)において、超電導M1bには電磁力が働くが、ス
ペーサ2には電磁力が作用しないため線材のスペーサに
対するずれを生じやすかった。更に第1の方法ではキー
ストア角を大きくとれないために、数層おきにスペーサ
≠を挿入してもコイル内径を余り小さくすることは出来
ず、従ってY軸、Z軸方向の磁場分布が余り良好でなか
った。
That is, when winding the wire using the first method described above, conventionally it was not possible to obtain a large chiston angle, so when assembled into the structure shown in the first quadrant of Fig. 5, there was a large deviation from the arch structure, and It has a non-homogeneous structure with spacer arrows inserted into it. Therefore, the force in the X and Y directions is unbalanced and it is difficult to tighten the wires sufficiently from the outside, which tends to cause misalignment between the wires due to mechanical stress caused by heat shrinkage, etc.
In 2L), an electromagnetic force acts on the superconducting M1b, but no electromagnetic force acts on the spacer 2, so that the wire tends to shift with respect to the spacer. Furthermore, since the first method does not allow a large keystore angle, the inner diameter of the coil cannot be made very small even if spacers are inserted every few layers, and therefore the magnetic field distribution in the Y-axis and Z-axis directions is too small. It wasn't good.

又前述の第2の方法で巻線した場合は、一応キーストン
角が大きくなっており、力学的応力に対してバランスが
良いアーチ構造ではあるが、第1の方法の場合と同様に
、第4図(b)において超電導素線ヰが電磁力によりス
ペーサ2に対してずれを生じやすかっ念。更に個々の平
角撚線の両側にスベサ芳をあて次複雑な構造であるため
製造に手数がかかると共に、寸法精度等の点で問題があ
った。
In addition, when the wire is wound using the second method described above, the keystone angle becomes larger and the arch structure has a good balance against mechanical stress. In Figure (b), the superconducting strands 2 tend to be misaligned with respect to the spacer 2 due to electromagnetic force. Furthermore, since it has a complicated structure in which smooth wires are applied to both sides of each flat stranded wire, manufacturing is time-consuming and there are problems in terms of dimensional accuracy and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこの様な問題点を解決するため鋭意研究の結果
なされたものであって、超電導素線複数本を撚線圧縮し
たキーストン状成形撚線において、キースト/角度2θ
が2t・n−+(α/N)以上であり、かつ横断面の上
下の素線間に横断面が三角形又は台形のスペーサを内蔵
することを特徴とする超電導線である。但し、Nは素線
本数であり、αは超電導線の種類に依存する0、 5か
ら10の範囲の定数である。
The present invention was made as a result of intensive research to solve these problems, and is a keystone shaped stranded wire made by compressing multiple superconducting strands.
is 2t·n−+(α/N) or more, and the superconducting wire is characterized in that a spacer having a triangular or trapezoidal cross section is incorporated between the upper and lower strands of the cross section. However, N is the number of strands, and α is a constant in the range of 0, 5 to 10 depending on the type of superconducting wire.

〔作 用〕[For production]

本発明はキーストン角を大きくし、かつ横断面の上下の
素線間にスペーサ斧を内蔵させたことにより、力学的応
力及び電磁気力による線材の移動が起らない様にしたも
のであって、線材移動時の摩擦熱による常電導転移がな
くなり、少ないトレーニングで高い磁界を得ることが可
能となった。
The present invention prevents movement of the wire due to mechanical stress and electromagnetic force by increasing the keystone angle and incorporating a spacer ax between the upper and lower wires in the cross section, This eliminates the normal conduction transition caused by frictional heat when moving the wire, making it possible to obtain a high magnetic field with less training.

又キーストン角を犬きくすることによってコイル内径を
小さくする事が可能となり、Y軸、Z軸方向の磁場分布
が良好となった。
In addition, by increasing the keystone angle, it became possible to reduce the inner diameter of the coil, resulting in better magnetic field distribution in the Y-axis and Z-axis directions.

本発明においてNi素線本数(但しN25)、αを超電
導線の種類や製造工程によって定まる定数(通常のNb
Ti線ではα> O,lj 、  Wlnd and 
ReactタイプのNtnSn線ではα〉1)とすると
き、キーストン角20を2 tan−’  (α/N)
以上に限定したのは、24n−’  (α/N)未満の
場合は平角撚線を巻線した場合に完全かつ均質なアーチ
構造からのずれが大きく、通電時に線材の移動が起って
トレーニング回数を多くしても高い磁界を得ることが出
来ないためである。又単にキーストア角を大きくするだ
けでなく、スペーサを第1図に示した様に超電導素線間
に内蔵させて、素線が電磁力による遠心力を受けた際に
、素線がスペーサに対して相対的な移動を起さない様に
することが必要であって、第4図(b)に示した様にス
ペーサが素線間に内蔵されていない場合は、素線が移動
してスペーサに対してずれを生じてしまう。更にスペー
サー%−を内蔵することにより、スペーサ六による素線
内側からの冷却効果を期待出来、又巻線方向に対する補
強効果も期待出来るものである。スペーサ*としては通
常第1図(a)に示し比様な絶縁した銅の楔状ブロック
が使用されているが、第1図(bl或いは第1図(c)
に示した様に、キープロニノヶルの様な高抵抗物質又は
有機物で被覆された銅線を束ね圧縮するか或いはこれら
で被覆された銅テープを折曲げて可撓性を持たせたもの
を使用してもざしつかえない。
In the present invention, the number of Ni wires (N25) and α are constants determined by the type of superconducting wire and the manufacturing process (normal Nb
For Ti line, α> O, lj, Wlnd and
For React type NtnSn wire, when α>1), the keystone angle 20 is 2 tan-' (α/N)
The above limitation is due to the fact that if it is less than 24n-' (α/N), there will be a large deviation from a perfect and homogeneous arch structure when winding rectangular stranded wire, and the wire will move when energized, resulting in training. This is because a high magnetic field cannot be obtained even if the number of times is increased. In addition to simply increasing the key store angle, a spacer is built in between the superconducting strands as shown in Figure 1, so that when the strands are subjected to centrifugal force due to electromagnetic force, the strands touch the spacer. It is necessary to prevent the wires from moving relative to each other, and if a spacer is not built in between the wires as shown in Figure 4(b), the wires may move. Misalignment will occur with respect to the spacer. Furthermore, by incorporating the spacer 6, it is possible to expect a cooling effect from the inside of the wire due to the spacer 6, and a reinforcing effect in the winding direction can also be expected. As a spacer*, an insulated copper wedge-shaped block similar to that shown in Fig. 1 (a) is usually used, but as shown in Fig. 1 (bl or Fig. 1 (c)
As shown in Figure 2, by bundling and compressing copper wires coated with a high-resistance substance or organic substance such as Keyproninogal, or by bending a copper tape coated with these to make it flexible. I can't even handle it.

〔実施例〕〔Example〕

Nb−116,5wt、%T1合金フィラメントを複数
本銅安定化金属中に埋込んだ超電導素線を撚線圧縮して
キーストン状超電導線とし、これを巻線して超電導コイ
ルを製造した。この際本発明コイルのスペーサは第1図
(C)に示す様に銅テープをキープロニッケルで被覆し
たものを用い、折曲げ後タークスヘッドで成形した。又
従来コイルのスペーサとしては絶縁した銅の楔を使用し
た。以上の様に巻線した内層及び外層の上下コイルを組
合せて外部からガラス繊維入り樹脂で締結固定して長さ
1mのダイポール・コイルに組立てた。実験に使用した
本発明及び従来コイルの構成を第1表に示す。
A superconducting wire in which a plurality of Nb-116, 5wt, %T1 alloy filaments were embedded in a copper stabilized metal was stranded and compressed to form a keystone-shaped superconducting wire, and this was wound to produce a superconducting coil. At this time, the spacer of the coil of the present invention was a copper tape coated with Keepronickel as shown in FIG. 1(C), and after being bent, it was formed using a Turk's head. Conventionally, an insulated copper wedge has been used as a spacer for the coil. The upper and lower coils of the inner layer and outer layer wound as described above were combined and fastened and fastened from the outside with glass fiber-containing resin to form a dipole coil with a length of 1 m. Table 1 shows the configurations of the present invention and conventional coils used in the experiment.

同従来コイルlはキーストン角が小さい第4図(a)に
対応するものであり、従来コイル■はキーストン角自体
は大きい第4図(b)に対応するものである。
The conventional coil 1 corresponds to the one shown in FIG. 4(a) where the keystone angle is small, and the conventional coil 2 corresponds to FIG. 4(b) where the keystone angle itself is large.

これらのコイルを垂直状にクライオスタットに設置し、
液体窒素と液体ヘリウムで冷却して通電試験を行なった
。その結果を第2表に示す。
These coils are installed vertically in the cryostat,
A current test was conducted after cooling with liquid nitrogen and liquid helium. The results are shown in Table 2.

第2表から明らかな様に本発明コイルを使用した場合は
、2回トレーニングを行ないう回目の通電で設計特性で
ある6、5Tに到達しているが、第1表に示した従来コ
イル1及びUi使用した従来例1及び■においては、1
0回逆通電ても設計特性に到達していない。
As is clear from Table 2, when the coil of the present invention is used, the design characteristics of 6.5T are reached at the second energization after two training sessions, whereas the conventional coil shown in Table 1 In conventional examples 1 and ■ using Ui and Ui, 1
Even after 0 times of reverse energization, the design characteristics have not been reached.

〔発明の効果〕〔Effect of the invention〕

本発明により少ないトレーニング回数で高い磁界を得る
ことが可能となった。又本発明コイルにおいては磁場分
布も良好であり、スペーサ1部の冷却効果、補強効果等
も期待することが出来る。
The present invention has made it possible to obtain a high magnetic field with a small number of training sessions. In addition, the coil of the present invention has a good magnetic field distribution, and can be expected to have a cooling effect and a reinforcing effect on the spacer portion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明超電導線の構造を示す図であり、第2図
は本発明超電導線のキーストン角範囲を示す図である。 第5図はグイポールマグネット巻線部の横断面であって
、第4図は従来の超電導線の構造を示す図であろう 1a・・・超電導線、1b・・・超電導線、IC・・・
超電導線、2・・・スペーサ、5・・・絶縁体、4・・
・超電導素線第1図 素線I!N 第2図
FIG. 1 is a diagram showing the structure of the superconducting wire of the present invention, and FIG. 2 is a diagram showing the keystone angle range of the superconducting wire of the present invention. Fig. 5 is a cross section of the Guypor magnet winding part, and Fig. 4 is a diagram showing the structure of a conventional superconducting wire. 1a... superconducting wire, 1b... superconducting wire, IC...・
Superconducting wire, 2... Spacer, 5... Insulator, 4...
・Superconducting wire Figure 1 Element wire I! N Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)超電導素線複数本を撚線圧縮したキーストン状成
形撚線において、キーストン角度2θが2tan^−^
1(α/N)以上であり、かつ横断面の上下の素線間に
横断面が三角形又は台形のスペーサを内蔵することを特
徴とする超電導線。但し、Nは素線本数であり、αは超
電導線の種類に依存する0.3から1.0の範囲の定数
である。
(1) In a keystone-shaped stranded wire made by compressing multiple superconducting strands, the keystone angle 2θ is 2tan^-^
1 (α/N) or more, and is characterized by incorporating a spacer having a triangular or trapezoidal cross section between the upper and lower strands of the cross section. However, N is the number of strands, and α is a constant ranging from 0.3 to 1.0 depending on the type of superconducting wire.
(2)スペーサが高抵抗物質で被覆された高電導物質細
線群或いは薄板で構成されていることを特徴とする特許
請求の範囲第1項記載の超電導線。
(2) The superconducting wire according to claim 1, wherein the spacer is composed of a group of thin wires or a thin plate of a high-conducting material coated with a high-resistance material.
JP61105672A 1986-05-08 1986-05-08 Superconductor wire Pending JPS62262311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61105672A JPS62262311A (en) 1986-05-08 1986-05-08 Superconductor wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61105672A JPS62262311A (en) 1986-05-08 1986-05-08 Superconductor wire

Publications (1)

Publication Number Publication Date
JPS62262311A true JPS62262311A (en) 1987-11-14

Family

ID=14413928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105672A Pending JPS62262311A (en) 1986-05-08 1986-05-08 Superconductor wire

Country Status (1)

Country Link
JP (1) JPS62262311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102812A (en) * 1987-10-15 1989-04-20 Furukawa Electric Co Ltd:The Superconductive wire
JP2014212157A (en) * 2013-04-17 2014-11-13 株式会社東芝 Superconducting coil device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139081A (en) * 1978-04-19 1979-10-29 Furukawa Electric Co Ltd:The Preparation of wedge-shaped superconductive twist wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139081A (en) * 1978-04-19 1979-10-29 Furukawa Electric Co Ltd:The Preparation of wedge-shaped superconductive twist wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102812A (en) * 1987-10-15 1989-04-20 Furukawa Electric Co Ltd:The Superconductive wire
JP2014212157A (en) * 2013-04-17 2014-11-13 株式会社東芝 Superconducting coil device

Similar Documents

Publication Publication Date Title
Badel et al. Advances in the development of a 10-kA class REBCO cable for the EuCARD2 demonstrator magnet
JPS6039705A (en) Aluminum stabilized superconductive conductor
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JPH0371518A (en) Superconductor
JPS62262311A (en) Superconductor wire
JP2525016B2 (en) Superconducting wire
JP3240323B2 (en) Manufacturing method of superconducting magnet serving both as reinforcing material and stabilizing material
US5512867A (en) High temperature superconducting coil and method of manufacturing thereof
JPS607324B2 (en) Twisted compound superconducting cable
Ishibashi et al. Nb 3 Sn dipole magnet by wind and react process
JP2555132B2 (en) Compound superconducting field winding
JPH04134808A (en) Superconducting magnet
Tanaka et al. Multifilamentary stranded compound superconductor
JPH0514402B2 (en)
JP2695065B2 (en) Composite superconducting magnet
Asner et al. Development and testing of high field, high current density solenoids and magnets, wound with stabilized filamentary Nb 3-Sn cable and reacted after winding
Gourdin et al. Mechanical design of a Nb3Sn quadrupole magnet
JPS5912005B2 (en) superconducting coil
JPS61202407A (en) Superconductive magnet for nmr-ct
JP3302773B2 (en) electromagnet
JPS61135001A (en) Insulation of conductor for nb 3sn superconductive magnet
JPS59138008A (en) Compound composition superconductive wire material
JPH04335503A (en) Superconducting coil
JPH06151157A (en) Superconducting magnet
JPS5823109A (en) Method of producing nb3sn superconductive wire material