JPH06151157A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPH06151157A
JPH06151157A JP4303791A JP30379192A JPH06151157A JP H06151157 A JPH06151157 A JP H06151157A JP 4303791 A JP4303791 A JP 4303791A JP 30379192 A JP30379192 A JP 30379192A JP H06151157 A JPH06151157 A JP H06151157A
Authority
JP
Japan
Prior art keywords
tape wire
superconducting
magnetic field
core
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4303791A
Other languages
Japanese (ja)
Inventor
Jun Fujigami
純 藤上
Kenichi Sato
謙一 佐藤
Hideto Mukai
英仁 向井
Kengo Okura
健吾 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4303791A priority Critical patent/JPH06151157A/en
Publication of JPH06151157A publication Critical patent/JPH06151157A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide superconducting magnet which has excellent characteristics and stableness by using multi-conductor Bi silver-coated superconducting tape material by cooling it to a temperature range that allows the decrease of the critical current density generated by the magnetic field applied in the vertical direction to the tape material to be smaller than the decrease of the critical current density of the same tape material of single-conductor. CONSTITUTION:The decrease of the critical current density generated by the magnetic field applied in the vertical direction to multi-conductor Bi silver- coated super-conducting tape material is set in a temperature range that allows the decrease to be smaller than the decrease of the critical current density generated by the magnetic field applied in the vertical direction to single- conductor Bi silver-coated superconducting ape material. Then, the multi- conductor Bi silver-coated superconducting tape material is cooled and used. The temperature range at that time is set at 20K to 30K. Thus, superconducting magnet which has excellent characteristics and stableness is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導マグネットに関
し、特に、多芯化されたBi系銀被覆超電導テープ線材
からなる超電導マグネットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet, and more particularly to a superconducting magnet composed of a multifilamentary Bi-based silver-coated superconducting tape wire.

【0002】[0002]

【従来の技術】従来、一般に使用されている超電導マグ
ネットは、金属系および化合物系超電導体を利用したも
のである。これらの超電導体は、超電導転移温度(T
c)が低く、一般に20K以下である。そのため、これ
らの超電導体を利用した超電導マグネットを使用する際
には、液体ヘリウムを用いて冷却することが必要とな
る。しかしながら、この液体ヘリウムは、資源として少
量であるため、単価が高い。また、液体ヘリウムは、温
度が4.2Kと低く、この低温を維持するための断熱シ
ステムが複雑となるという問題点があった。
2. Description of the Related Art Conventionally, generally used superconducting magnets utilize metal-based and compound-based superconductors. These superconductors have a superconducting transition temperature (T
c) is low, generally 20K or less. Therefore, when using a superconducting magnet using these superconductors, it is necessary to cool with liquid helium. However, since this liquid helium is a small amount as a resource, it has a high unit price. In addition, liquid helium has a low temperature of 4.2K, and there is a problem that a heat insulating system for maintaining the low temperature becomes complicated.

【0003】これに対して、新たに発見された酸化物超
電導体は、超電導転移温度(Tc)が高い。特に、Bi
系酸化物超電導体のTcは、100K以上と非常に高
い。このような高いTcを有する酸化物超電導体を利用
した超電導マグネットは、液体ヘリウムを使用せずに運
転できる可能性があるため、その開発が期待されてい
る。
On the other hand, the newly discovered oxide superconductor has a high superconducting transition temperature (Tc). In particular, Bi
The Tc of the oxide-based superconductor is as high as 100K or higher. A superconducting magnet using an oxide superconductor having such a high Tc may be operated without using liquid helium, and therefore its development is expected.

【0004】図4は、酸化物超電導体を利用した超電導
マグネットに用いられる超電導コイルの一例の斜視図で
ある。
FIG. 4 is a perspective view of an example of a superconducting coil used in a superconducting magnet using an oxide superconductor.

【0005】図4を参照して、この超電導コイルは、酸
化物超電導テープ線材1がコイル状に巻かれている。超
電導コイルの形状としては、たとえば、図4に示すよう
にパンケーキ状の超電導コイルを数段重ねたもの、また
は1本の超電導テープ線材をソレノイド状に巻き付けた
もの等が考えられる。このような形状の超電導コイル
に、冷却器等が組合わされて、超電導マグネットが構成
される。
Referring to FIG. 4, in this superconducting coil, oxide superconducting tape wire 1 is wound in a coil shape. As the shape of the superconducting coil, for example, as shown in FIG. 4, a pancake-shaped superconducting coil may be stacked in several stages, or one superconducting tape wire may be wound in a solenoid shape. The superconducting coil having such a shape is combined with a cooler or the like to form a superconducting magnet.

【0006】このように構成される超電導マグネットに
おいては、超電導コイルを構成する超電導テープ線材の
臨界電流密度−磁場特性(以下、「Jc−B特性」と略
す)が、超電導マグネットの性能を決定する上で、重要
となる。一般に、酸化物超電導テープ線材は、液体窒素
温度(77K)近傍では、印加磁場による臨界電流密度
の低下が大きい。そのため、77K付近で使用するテス
ラ級の超電導マグネットに、酸化物超電導体を応用する
ことは、現時点では難しい。一方、酸化物超電導体は、
液体ヘリウム温度(4.2K)近傍では、Jc−B特性
が良好となる。そのため、酸化物超電導体は、4.2K
付近では、20テスラ以上の磁界中でも超電導性を維持
することができるため、発生磁場20テスラ以上の超高
磁場マグネットへの応用が考えられている。
In the superconducting magnet constructed as described above, the performance of the superconducting magnet is determined by the critical current density-magnetic field characteristic (hereinafter referred to as "Jc-B characteristic") of the superconducting tape wire material constituting the superconducting coil. It becomes important above. In general, the oxide superconducting tape wire has a large decrease in the critical current density due to the applied magnetic field in the vicinity of the liquid nitrogen temperature (77K). Therefore, it is difficult at present to apply the oxide superconductor to a Tesla-class superconducting magnet used near 77K. On the other hand, oxide superconductors are
Near the liquid helium temperature (4.2K), the Jc-B characteristics are good. Therefore, the oxide superconductor is 4.2K
In the vicinity, since superconductivity can be maintained even in a magnetic field of 20 Tesla or more, application to a super high magnetic field magnet having a generated magnetic field of 20 Tesla or more is considered.

【0007】4.2K〜77Kの中間温度領域において
は、Bi系高温相を主相としたBi系銀被覆超電導テー
プ線材のJc−B特性が、比較的良好であることが確認
されている。そのため、20K前後で使用される超電導
マグネットへのBi系銀被覆超電導テープ線材の応用
が、現在各所で精力的に検討されている。
It has been confirmed that in the intermediate temperature range of 4.2K to 77K, the Jc-B characteristic of the Bi-based silver-coated superconducting tape wire having the Bi-based high temperature phase as the main phase is relatively good. Therefore, the application of the Bi-based silver-coated superconducting tape wire rod to the superconducting magnet used at around 20K is now being actively studied at various places.

【0008】また、酸化物超電導テープ線材の中で、B
i系銀被覆超電導テープ線材は、超電導体の可撓性が良
好であることと、長尺化が容易であることから、超電導
マグネットへの利用が有望視されている。
Among the oxide superconducting tape wire rods, B
The i-based silver-coated superconducting tape wire is expected to be used for a superconducting magnet because of its good flexibility of the superconductor and its easy lengthening.

【0009】[0009]

【発明が解決しようとする課題】超電導マグネットに用
いられるBi系銀被覆超電導テープ線材には、超電導体
のフィラメントがテープ線材中に1本である単芯の超電
導テープ線材と、超電導体のフィラメントがテープ線材
中に多数含まれる多芯化された超電導テープ線材の2種
類がある。
Bi-based silver-coated superconducting tape wire rods used in superconducting magnets include a single-core superconducting tape wire rod having one superconductor filament and a superconductor filament wire. There are two types of multiconducting superconducting tape wire rods that are contained in large numbers in the tape wire rod.

【0010】これら2種の超電導テープ線材のうち、単
芯の超電導テープ線材は、耐曲げ特性が悪いため、超電
導コイルにして超電導マグネットに応用した場合、十分
な特性を有する超電導マグネットが得られないという問
題点があった。それに対して、多芯化された超電導テー
プ線材は、単芯の超電導テープ線材と比較して、耐曲げ
特性に優れるという利点がある一方で、一般的に、臨界
電流密度が単芯の超電導テープ線材よりも低いという不
利な点がある。
Of these two types of superconducting tape wire, the single-core superconducting tape wire has poor bending resistance, so that when it is used as a superconducting coil for a superconducting magnet, a superconducting magnet having sufficient characteristics cannot be obtained. There was a problem. On the other hand, the multi-conductor superconducting tape wire has the advantage of being superior in bending resistance as compared with the single-core superconducting tape wire, while it generally has a single-core superconducting tape. It has the disadvantage of being lower than wire rods.

【0011】この発明の目的は、上述の問題点を解決
し、特性に優れ、かつ安定性の良好な超電導マグネット
を提供することにある。
An object of the present invention is to solve the above problems and to provide a superconducting magnet having excellent characteristics and good stability.

【0012】[0012]

【課題を解決するための手段】この発明による超電導マ
グネットは、多芯化されたBi系銀被覆超電導テープ線
材からなる超電導マグネットであって、多芯化されたB
i系銀被覆超電導テープ線材の垂直方向に印加される磁
場による臨界電流密度の低下が、単芯のBi系銀被覆超
電導テープ線材の垂直方向に印加される磁場による臨界
電流密度の低下よりも小さくなる温度範囲に、多芯化さ
れたBi系銀被覆超電導テープ線材を冷却して使用する
ことを特徴としている。
A superconducting magnet according to the present invention is a superconducting magnet made of multifilamentary Bi-based silver-coated superconducting tape wire, which has multifilamentary B
The decrease in the critical current density due to the magnetic field applied in the vertical direction of the i-based silver-coated superconducting tape wire is smaller than the decrease in the critical current density due to the perpendicular magnetic field applied to the single-core Bi-based silver-coated superconducting tape wire. It is characterized in that the multifilamentary Bi-based silver-coated superconducting tape wire rod is cooled and used in the following temperature range.

【0013】好ましくは、温度範囲は、20K〜30K
であるとよい。
Preferably, the temperature range is 20K to 30K.
Is good.

【0014】[0014]

【作用】一般に、超電導テープ線材からなる超電導マグ
ネットの特性は、超電導テープ線材のJc−B特性によ
って決定される。すなわち、特性の良い超電導マグネッ
トを得るためには、磁場の印加による臨界電流密度の低
下ができるだけ小さい超電導テープ線材を用いることが
好ましい。また、高温超電導体を用いた超電導テープ線
材の場合、この磁場の印加による臨界電流密度の低下
は、磁場が超電導テープ線材の垂直方向に印加される場
合に、最も大きくなる。
In general, the characteristics of the superconducting magnet made of the superconducting tape wire are determined by the Jc-B characteristics of the superconducting tape wire. That is, in order to obtain a superconducting magnet with good characteristics, it is preferable to use a superconducting tape wire material whose decrease in critical current density due to application of a magnetic field is as small as possible. Further, in the case of a superconducting tape wire material using a high-temperature superconductor, the reduction of the critical current density due to the application of this magnetic field becomes the largest when the magnetic field is applied in the vertical direction of the superconducting tape wire material.

【0015】この発明による超電導マグネットは、多芯
化されたBi系銀被覆超電導テープ線材の垂直方向に印
加される磁場による臨界電流密度の低下が、単芯のBi
系銀被覆超電導テープ線材の垂直方向に印加される磁場
による臨界電流密度の低下よりも小さくなる温度範囲
に、多芯化されたBi系銀被覆超電導テープ線材を冷却
して使用される。そのため、この発明による温度範囲で
使用される超電導マグネットに用いられる多芯化された
Bi系銀被覆超電導テープ線材は、単芯のBi系銀被覆
超電導テープ線材と比較して、磁場の印加による臨界電
流密度の低下が小さい。したがって、多芯化されたBi
系銀被覆超電導テープ線材を用い、かつ上述の本発明の
温度範囲に多芯化されたBi系銀被覆超電導テープ線材
を冷却して使用することにより、テープ線材面に対して
垂直な磁場成分の差によるマグネット性能の変化が小さ
い、安定性に優れた超電導マグネットが得られる。
In the superconducting magnet according to the present invention, the decrease in the critical current density due to the magnetic field applied in the vertical direction of the multi-core Bi-based silver-coated superconducting tape wire causes a decrease in the critical current density.
The multi-core Bi-based silver-coated superconducting tape wire is cooled to a temperature range smaller than the decrease in the critical current density due to the magnetic field applied in the vertical direction of the silver-based superconducting tape wire. Therefore, the multifilamentary Bi-based silver-coated superconducting tape wire rod used in the superconducting magnet used in the temperature range according to the present invention is more critical than the single-core Bi-based silver-coated superconducting tape wire rod by applying a magnetic field. The decrease in current density is small. Therefore, the multi-core Bi
By using the silver-based silver-coated superconducting tape wire rod and cooling the Bi-based silver-coated superconducting tape wire rod in the temperature range of the present invention described above, the magnetic field component perpendicular to the tape wire rod surface can be reduced. It is possible to obtain a superconducting magnet with excellent stability, in which the change in magnet performance due to the difference is small.

【0016】また、この発明による超電導マグネットに
用いられる超電導テープ線材は、多芯化されたBi系銀
被覆超電導テープ線材である。この多芯化されたBi系
銀被覆超電導テープ線材は、耐曲げ特性に優れている。
したがって、この発明による超電導マグネットは、機械
的歪みが加えられるようなヒートサイクルに対しても、
単芯のBi系銀被覆超電導テープ線材を用いた超電導マ
グネットより強く、耐久性の面でも有利である。
The superconducting tape wire used in the superconducting magnet according to the present invention is a multi-core Bi-based silver-coated superconducting tape wire. This multifilamentary Bi-based silver-coated superconducting tape wire has excellent bending resistance.
Therefore, the superconducting magnet according to the present invention, even in a heat cycle in which mechanical strain is applied,
It is stronger than a superconducting magnet using a single core Bi-based silver-coated superconducting tape wire, and is also advantageous in terms of durability.

【0017】[0017]

【実施例】【Example】

実施例 Bi系銀被覆61多芯超電導テープ線材(77K,0
T,Jc=23000A/cm2 )と、Bi系銀被覆単
芯超電導テープ線材(77K,0T,Jc=34000
A/cm2 )の2種の超電導テープ線材について、超電
導テープ線材に対してそれぞれ垂直方向と平行方向に磁
場を印加し、液体ネオン中(27K)におけるJc−B
特性を調べた。
Example Bi-based silver-coated 61 multi-core superconducting tape wire (77K, 0
T, Jc = 23000 A / cm 2 ) and a Bi-based silver-coated single-core superconducting tape wire (77K, 0T, Jc = 34000).
A / cm 2 ) of two types of superconducting tape wires, magnetic fields were applied to the superconducting tape wires in the vertical direction and the parallel direction, respectively, and Jc-B in liquid neon (27 K) was applied.
The characteristics were investigated.

【0018】図1は、液体ネオン中(27K)における
Jc−B特性を示す図である。図1において、横軸は超
電導テープ線材に印加された磁場B(T)を示し、縦軸
は超電導テープ線材の臨界電流密度Jc(104 A/c
2 )を示している。また、黒丸でプロットされたグラ
フAは単芯テープ線材に平行方向に磁場を印加した場
合、黒四角でプロットされたグラフBは多芯テープ線材
に平行方向に磁場を印加した場合、白丸でプロットされ
たグラフCは単芯テープ線材に垂直方向に磁場を印加し
た場合、白四角でプロットされたグラフDは多芯テープ
線材に垂直方向に磁場を印加した場合を、それぞれ示し
ている。
FIG. 1 is a diagram showing Jc-B characteristics in liquid neon (27K). In FIG. 1, the horizontal axis represents the magnetic field B (T) applied to the superconducting tape wire, and the vertical axis represents the critical current density Jc (10 4 A / c) of the superconducting tape wire.
m 2 ) is shown. Graph A plotted with black circles is a white circle when a magnetic field is applied to the single-core tape wire in the parallel direction, and graph B plotted with a black square is a white circle when a magnetic field is applied to the multi-core tape wire in the parallel direction. The plotted graph C shows the case where a magnetic field is applied to the single-core tape wire in the vertical direction, and the graph D plotted with white squares shows the case where a magnetic field is applied to the multi-core tape wire in the vertical direction.

【0019】図1を参照して、超電導テープ線材に垂直
方向に磁場を印加した場合は、グラフCとグラフDを比
較して、ゼロ磁場における臨界電流密度は単芯テープ線
材(白丸)のほうが多芯テープ線材(白四角)より高い
にもかかわらず、1テスラ以上の磁場が印加されると、
単芯テープ線材(白丸)と多芯テープ線材(白四角)の
臨界電流密度が逆転している。
Referring to FIG. 1, when a magnetic field is applied to the superconducting tape wire in the vertical direction, graph C and graph D are compared, and the critical current density at zero magnetic field is higher in the single core tape wire (white circle). Despite being higher than the multi-core tape wire (white square), when a magnetic field of 1 Tesla or more is applied,
The critical current densities of single-core tape wire (white circle) and multi-core tape wire (white square) are reversed.

【0020】また、単芯テープ線材の場合は、グラフA
とグラフCを比較して、超電導テープ線材に磁場を平行
に印加した場合(黒丸)に対する磁場を垂直に印加した
場合(白丸)の臨界電流密度の低下が大きく、異方性が
大きいことが分かる。これに対して、多芯テープ線材の
場合は、グラフBとグラフDを比較して、超電導テープ
線材に磁場を平行に印加した場合(黒四角)に対する磁
場を垂直に印加した場合(白四角)の臨界電流密度の低
下が小さく、異方性が小さいことがわかる。
In the case of a single core tape wire, graph A
And graph C, it can be seen that when the magnetic field is applied in parallel to the superconducting tape wire (black circle), when the magnetic field is applied vertically (white circle), the critical current density is greatly reduced and the anisotropy is large. . On the other hand, in the case of the multifilamentary tape wire, graph B and graph D are compared, and when the magnetic field is applied in parallel to the superconducting tape wire (black square), the magnetic field is applied vertically (white square). It can be seen that the decrease in critical current density is small and the anisotropy is small.

【0021】図2は、上述の実施例において、超電導テ
ープ線材に対して垂直に磁場を印加した場合のJc−B
特性を、ゼロ磁場における臨界電流密度を基準に規格化
して示した図である。図2において、横軸は超電導テー
プ線材に印加された磁場B(T)を示し、縦軸は超電導
テープ線材のゼロ磁場における臨界電流密度に対する磁
場印加時における臨界電流密度の変化率Jc(B)/J
c(0)を示している。また、白丸でプロットされたグ
ラフCは単芯テープ線材に垂直方向に磁場を印加した場
合、白四角でプロットされたグラフDは多芯テープ線材
に垂直方向に磁場を印加した場合を、それぞれ示してい
る。
FIG. 2 shows Jc-B when a magnetic field is applied perpendicularly to the superconducting tape wire in the above embodiment.
It is the figure which standardized and showed the characteristic based on the critical current density in a zero magnetic field. In FIG. 2, the horizontal axis represents the magnetic field B (T) applied to the superconducting tape wire, and the vertical axis represents the rate of change Jc (B) of the critical current density when the magnetic field is applied with respect to the critical current density at zero magnetic field of the superconducting tape wire. / J
c (0) is shown. Graph C plotted with white circles shows a magnetic field applied to the single-core tape wire in the vertical direction, and graph D plotted with white squares shows a magnetic field applied to the multi-core tape wire in the vertical direction. ing.

【0022】図2を参照して、グラフCとグラフDを比
較して、多芯テープ線材(白四角)の方が、単芯テープ
線材(白丸)と比べて、垂直方向への磁場の印加による
臨界電流密度の低下の度合が小さいことがわかる。
Referring to FIG. 2, comparing graph C and graph D, the multi-core tape wire (white square) applies a magnetic field in the vertical direction more than the single-core tape wire (white circle). It can be seen that the degree of decrease in the critical current density due to is small.

【0023】なお、上述の実施例では、液体ネオン中
(27K)におけるJc−B特性を示しているが、20
K〜30Kの温度範囲においても、同様のJc−B特性
が得られると考えられる。
In the above embodiment, the Jc-B characteristic in liquid neon (27K) is shown.
It is considered that similar Jc-B characteristics can be obtained even in the temperature range of K to 30K.

【0024】比較例 比較のため、実施例と同じ2種の超電導テープ線材につ
いて、液体ヘリウム中(4.2K)におけるJc−B特
性を調べた。
Comparative Example For comparison, the same two types of superconducting tape wire rods as in Example were examined for Jc-B characteristics in liquid helium (4.2K).

【0025】図3は、液体ヘリウム中(4.2K)にお
けるJc−B特性を示す図である。図3において、図1
と同様に、横軸は超電導テープ線材に印加された磁場B
(T)を示し、縦軸は超電導テープ線材の臨界電流密度
Jc(104 A/cm2 )を示している。また、グラフ
A、グラフB、グラフCおよびグラフDは、それぞれ図
1と同様の場合を示している。
FIG. 3 is a diagram showing Jc-B characteristics in liquid helium (4.2K). In FIG. 3, FIG.
Similarly, the horizontal axis is the magnetic field B applied to the superconducting tape wire.
(T), and the vertical axis represents the critical current density Jc (10 4 A / cm 2 ) of the superconducting tape wire. Graph A, graph B, graph C, and graph D show the same cases as in FIG. 1, respectively.

【0026】図3を参照して、液体ヘリウム中(4.2
K)においては、グラフAとグラフB、グラフCとグラ
フDをそれぞれ比較して、超電導テープ線材に磁場を平
行に印加した場合も磁場を垂直に印加した場合も、それ
ぞれ単芯テープ線材(黒丸、白丸)の方が多芯テープ線
材(黒四角、白四角)より、臨界電流密度が高くなって
いる。
Referring to FIG. 3, in liquid helium (4.2
In K), the graph A and the graph B are compared with each other, and the graph C and the graph D are compared with each other, and the single core tape wire (black circle) is applied to the superconducting tape wire when the magnetic field is applied in parallel and the magnetic field is applied vertically. , White circle) has a higher critical current density than the multi-core tape wire (black square, white square).

【0027】[0027]

【発明の効果】以上説明したように、本発明による温度
範囲においては、多芯化されたBi系銀被覆超電導テー
プ線材のほうが、単芯のBi系銀被覆超電導テープ線材
よりも異方性が小さい。したがって、このような多芯化
されたBi系銀被覆超電導テープ線材を用いることによ
り、特性に優れ、かつ安定性の良好な超電導マグネット
が得られる。
As described above, in the temperature range according to the present invention, the multifilamentary Bi-based silver-coated superconducting tape wire is more anisotropic than the single-core Bi-based silver-coated superconducting tape wire. small. Therefore, by using such a multifilamentary Bi-based silver-coated superconducting tape wire, a superconducting magnet having excellent characteristics and good stability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】多芯テープ線材と単芯テープ線材の27Kにお
けるJc−B特性を示す図である。
FIG. 1 is a diagram showing Jc-B characteristics at 27K of a multi-core tape wire and a single-core tape wire.

【図2】多芯テープ線材と単芯テープ線材の27Kにお
ける磁場とJcの変化率の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a magnetic field at 27K and a change rate of Jc of a multi-core tape wire and a single-core tape wire.

【図3】多芯テープ線材と単芯テープ線材の4.2Kに
おけるJc−B特性を示す図である。
FIG. 3 is a diagram showing Jc-B characteristics at 4.2K of a multi-core tape wire and a single-core tape wire.

【図4】超電導マグネットに用いられる超電導コイルの
一例の斜視図である。
FIG. 4 is a perspective view of an example of a superconducting coil used in a superconducting magnet.

【符号の説明】[Explanation of symbols]

1 超電導テープ線材 1 Superconducting tape wire

フロントページの続き (72)発明者 大倉 健吾 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内Front page continued (72) Inventor Kengo Okura 1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric Industries, Ltd. Osaka Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多芯化されたBi系銀被覆超電導テープ
線材からなる超電導マグネットであって、 前記多芯化されたBi系銀被覆超電導テープ線材の垂直
方向に印加される磁場による臨界電流密度の低下が、単
芯のBi系銀被覆超電導テープ線材の垂直方向に印加さ
れる磁場による臨界電流密度の低下よりも小さくなる温
度範囲に、前記多芯化されたBi系銀被覆超電導テープ
線材を冷却して使用することを特徴とする、超電導マグ
ネット。
1. A superconducting magnet comprising a multi-core Bi-based silver-coated superconducting tape wire rod, wherein the critical current density is caused by a magnetic field applied in the vertical direction of the multi-core Bi-based silver-coated superconducting tape wire rod. Of the multi-core Bi-based silver-coated superconducting tape wire material in a temperature range in which the decrease of the critical current density due to the magnetic field applied in the vertical direction of the single-core Bi-based silver-coated superconducting tape wire material becomes smaller. A superconducting magnet characterized by being used after cooling.
【請求項2】 前記温度範囲は、20K〜30Kであ
る、請求項1記載の超電導マグネット。
2. The superconducting magnet according to claim 1, wherein the temperature range is 20K to 30K.
JP4303791A 1992-11-13 1992-11-13 Superconducting magnet Pending JPH06151157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4303791A JPH06151157A (en) 1992-11-13 1992-11-13 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4303791A JPH06151157A (en) 1992-11-13 1992-11-13 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPH06151157A true JPH06151157A (en) 1994-05-31

Family

ID=17925343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4303791A Pending JPH06151157A (en) 1992-11-13 1992-11-13 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH06151157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system

Similar Documents

Publication Publication Date Title
Hazelton et al. SuperPower's YBCO coated high-temperature superconducting (HTS) wire and magnet applications
JPH0371518A (en) Superconductor
Sumption et al. Hysteretic loss vs. filament width in thin YBCO films near the penetration field
Sato et al. Silver-sheathed Bi (2223) wire and application
JP3541123B2 (en) Superconducting current lead
Sato et al. High field generation using silver-sheathed BSCCO conductor
Goldfarb et al. Hysteresis losses in fine filament internal-tin superconductors
Tsukamoto et al. A method to reduce magnetization losses in assembled conductors made of YBCO coated conductors
Fukuda et al. Field angle dependence of ac losses in stacked Bi-2223 Ag-sheathed tapes
Rosner et al. Status of HTS superconductors: Progress in improving trransport critical current densities in HTS Bi-223 tapes and coils
JPH06151157A (en) Superconducting magnet
Masuyama et al. NbTi split magnet directly cooled by cryocooler
US8275429B1 (en) High magnetic field gradient strength superconducting coil system
Kitaguchi et al. Advances in Bi-Based High-Tc superconducting tapes and wires
Sato et al. Critical currents of silver‐sheathed bismuth‐based tapes at 20 K: Small coils and field orientation anisotropy in external fields up to 20 T
Green et al. Things to think about when estimating the cost of magnets made with conductors other than Nb-Ti
Haldar et al. Development of Bi-2223 HTS high field coils and magnets
JPH07122131A (en) Superconductor
Hasebe et al. Design of a cryocooler-cooled large bore superconducting magnet for a 30T hybrid magnet
Rosner et al. High field superconducting tape magnet technology
Schwenterly et al. Critical current measurements on Ag/Bi-Pb-Sr-Ca-Cu-O composite coils as a function of temperature and external magnetic field
Sneary et al. Development of high temperature superconducting coils using Bi-2223/Ag tapes
Bray Application of superconducting materials to power equipment
Yazawa et al. AC loss reduction of a 6.6 kV superconducting fault current limiter
JPS5988882A (en) Thermal type superconductive switch

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008