JPS61202407A - Superconductive magnet for nmr-ct - Google Patents

Superconductive magnet for nmr-ct

Info

Publication number
JPS61202407A
JPS61202407A JP60045374A JP4537485A JPS61202407A JP S61202407 A JPS61202407 A JP S61202407A JP 60045374 A JP60045374 A JP 60045374A JP 4537485 A JP4537485 A JP 4537485A JP S61202407 A JPS61202407 A JP S61202407A
Authority
JP
Japan
Prior art keywords
aluminum
coil
superconducting
wire
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60045374A
Other languages
Japanese (ja)
Inventor
Shigeki Isojima
茂樹 礒嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60045374A priority Critical patent/JPS61202407A/en
Publication of JPS61202407A publication Critical patent/JPS61202407A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To prevent the deformation of a coil at cooling by reducing a difference in heat shrinkage between the coil and an aluminum bobbin by employing a superconductive wire using aluminum as a stabilizing material. CONSTITUTION:In a cooling medium container 2 surrounded by a room- temperature container 1 of a cryostat, a coil 10 is held and is cooled by liquid helium 3 filling the container 2. A bobbin 6 of the coil 10 is formed of aluminum as a lightweight material. For a superconductive wire 11 forming the coil 10, an aluminum stabilizing superconductive wire in which a superconductive material 13 of filament form is buried in the aluminum 12 is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、定格運転に至る迄のトレーニングを不要にし
たNMR−CT(核磁気共鳴コンピュータ断層画像撮影
装置)用の超電導マグネットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting magnet for NMR-CT (nuclear magnetic resonance computed tomography) that eliminates the need for training up to rated operation.

〔従来の技術とその問題点〕[Conventional technology and its problems]

NMR−CT用の超電導マグネットでは、通常、ボビン
材料にアルミニウムが用いられる。これは、ボビン重量
を軽減することによってサポート断面積を小さくし、サ
ポートを伝熱路とした外部からの熱侵入を極力減少させ
るためである。
In superconducting magnets for NMR-CT, aluminum is usually used as the bobbin material. This is to reduce the cross-sectional area of the support by reducing the weight of the bobbin, and to minimize heat intrusion from the outside using the support as a heat transfer path.

即ち、首記のマグネットは、第6図に示すように、クラ
イオスタットの常温容器1に包囲された冷媒容器2内に
収納保持され、容器2中に充填した液体ヘリウム(LH
e)3によって冷却されるが、容器2を支持するために
断熱真空部内に設けであるサポート4を介しての熱侵入
量が大きいと超電導状態の維持が困難になることからサ
ポートの断面積は極力小さくすることが望まれ、この要
求に応えるために超電導マグネット5のボビン6を軽量
材のアルミニウムによって形成している。
That is, as shown in FIG. 6, the above-mentioned magnet is housed and held in a refrigerant container 2 surrounded by a room-temperature container 1 of the cryostat.
e) 3, but if the amount of heat entering through the support 4, which is provided in the adiabatic vacuum part to support the container 2, is large, it will be difficult to maintain the superconducting state, so the cross-sectional area of the support is It is desired to make the superconducting magnet 5 as small as possible, and in order to meet this demand, the bobbin 6 of the superconducting magnet 5 is made of aluminum, which is a lightweight material.

ところで、従来のNMR−CT用超電導マグネット、安
定化銅中にNbTiのフィラメントを埋めた超電導線を
アルミボビン6に図のように薄肉に巻線しているが、こ
のマグネットにはクエンチ(常電導への転移)防止のた
めに定格運転に至る迄に数回のトレーニングを要すると
云う欠点がある。
By the way, in the conventional superconducting magnet for NMR-CT, a superconducting wire with NbTi filaments buried in stabilized copper is wound thinly around an aluminum bobbin 6 as shown in the figure. The disadvantage is that several training sessions are required to achieve rated operation in order to prevent (transfer to).

即ち、常温から4.2にへの温度変化によるアルミの熱
収縮量は4300μ廓であるのに対し、銅のそれは33
00μ/mである。一方、一般的なNMR−mmの寸法
差が出る。このため、マグネットは第7図に示すように
変形する。また、電磁力が印加されると軸方向の圧縮力
が生じてコイル7には約1000μの圧縮歪が加わる。
In other words, the amount of heat shrinkage of aluminum due to a temperature change from room temperature to 4.2 is 4,300 microns, while that of copper is 33 microns.
00μ/m. On the other hand, there is a general dimensional difference in NMR-mm. Therefore, the magnet is deformed as shown in FIG. Further, when an electromagnetic force is applied, a compressive force in the axial direction is generated, and a compressive strain of about 1000 μ is applied to the coil 7.

この歪は冷却により弧状となったコイルに作用するので
コイルは同図の鎖線のように座屈し、クエンチする。従
来のマグネットは、このクエンチを避けるためにトレー
ニングを欠かすことができず、時間、電力、冷却用寒剤
の浪費につながっている。
This strain acts on the coil, which has become arcuate due to cooling, so the coil buckles as shown by the chain line in the figure and quenches. Traditional magnets require training to avoid this quench, wasting time, power, and cryogen.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、か−る問題点をアルミボビンとそれに巻線す
る超電導線の熱収縮率を近づけることによって解決して
いる。即ち、トレーニングを必要としないNMR−CT
用の超電導マグネットを、安定化材としてアルミニウム
又はアルミニウムと銅を使った超電導線をアルミボビン
に巻線することによって実現している。第1図にその全
体構造を示す。このマグネットはコイル10を形成する
超電導線を除いて第6図の従来マグネットと殆んど変わ
りがなく、従って同一部分は同一符号を付して説明を省
略し、以下には超電導線の説細な構造のみを記す。
The present invention solves this problem by making the thermal shrinkage rates of the aluminum bobbin and the superconducting wire wound around it similar. That is, NMR-CT that does not require training
A superconducting magnet for use in this field is realized by winding a superconducting wire using aluminum or aluminum and copper as a stabilizing material around an aluminum bobbin. Figure 1 shows its overall structure. This magnet is almost the same as the conventional magnet shown in Fig. 6 except for the superconducting wire forming the coil 10. Therefore, the same parts are given the same reference numerals and the explanation is omitted, and the following is a detailed explanation of the superconducting wire. Describe only the structure.

第2図に示す超電導線11は、アルミニウム12中にフ
ィラメント状の超電導材13を埋め込んだアルミ安定化
超電導線である。本発明のマグネットに用いる超電導線
はこのアルミマトリックスタイプの線だけでなく、安定
化材として銅とアルミニウムの複合材を使ったものでも
よい。
The superconducting wire 11 shown in FIG. 2 is an aluminum stabilized superconducting wire in which a filament-shaped superconducting material 13 is embedded in aluminum 12. The superconducting wire used in the magnet of the present invention is not limited to this aluminum matrix type wire, but may also be one using a composite material of copper and aluminum as a stabilizing material.

第3図乃至第5図はその複合安定化材を使った線の一例
であって、第3図の線は超電導材13を銅14で被覆し
た銅安定化超電導線を更にアルミニウム12で被覆しで
ある。
Figures 3 to 5 are examples of wires using the composite stabilizing material, and the wire in Figure 3 is a copper-stabilized superconducting wire in which the superconducting material 13 is coated with copper 14, which is further coated with aluminum 12. It is.

また、第4図の線は、銅安定化超電導線とアルミニウム
12から成る線とを撚り合わせてあり、一方、第5図の
線は、銅安定化超電導線とアルミニウム12の表面を銅
13で被覆した線とを集合しである。
Further, the wire in FIG. 4 is made by twisting a copper-stabilized superconducting wire and a wire made of aluminum 12, while the wire in FIG. It is a collection of coated wires.

なお、超電導材12は、NbTi 5Nb3Sn 、 
Nb −Zr等種類を問わない。
Note that the superconducting material 12 is made of NbTi 5Nb3Sn,
Any type such as Nb-Zr may be used.

また、第4図及び第5図の超電導線は、銅安定化超電導
線とアルミ線又は銅被覆アルミ線とを半田を介して一体
化してよい。
Further, the superconducting wire shown in FIGS. 4 and 5 may be formed by integrating a copper-stabilized superconducting wire and an aluminum wire or a copper-covered aluminum wire through solder.

さらに、複合安定化材を使う場合には、アルミニウムの
断面積を銅と超電導材のそれよりも大としておくのが望
ましい。
Furthermore, when using a composite stabilizer, it is desirable that the cross-sectional area of the aluminum be larger than that of the copper and superconducting material.

このほか、安定化アルミニウムに純度が4N以上のもの
を使用するとマグネットの安定度が非常に良くなる。こ
れは、電気銅よりも電気抵抗が低下し、磁束移動が遅延
すること及び熱伝導率が向上して冷却性が高まることに
より大量の磁束が急激に移動するいわゆるフラッグスジ
ャンプ現象が抑制されることと、仮に微小温度上昇によ
り電流〔効果〕 以上の通り、本発明ではアルミを安定化材とした超電導
線を使うことにより、コイルとアルミボビンとの熱収縮
差を縮めるようにしたので、冷却時のコイルの変形が防
止され、励磁時のコイルは軸方向に単純な圧縮を受ける
ため座屈の心配がない。
In addition, if the stabilized aluminum has a purity of 4N or more, the stability of the magnet will be greatly improved. This is because the electrical resistance is lower than that of electrolytic copper, which delays magnetic flux movement, and improves thermal conductivity and improves cooling performance, which suppresses the so-called flags jump phenomenon in which a large amount of magnetic flux moves suddenly. As described above, in the present invention, by using a superconducting wire made of aluminum as a stabilizing material, the difference in thermal contraction between the coil and the aluminum bobbin is reduced, so that when cooling This prevents the coil from deforming, and the coil undergoes simple compression in the axial direction during excitation, so there is no risk of buckling.

また、単純圧縮によりコイルはボビンに対し相対的にス
ライドして変形するが、この変形は徐々におこり、従っ
てトレーニングを廃止して直接定格運転を開始してもク
エンチを起さない。
Furthermore, although the coil is deformed by sliding relative to the bobbin due to simple compression, this deformation occurs gradually, and therefore no quench occurs even if training is abolished and rated operation is directly started.

また、アルミの比重は銅の約1/3であるので、安定化
材の断面積を従来と等しくするか、それより増加させて
もサポートの断面積を縮小でき、それによって外部熱の
侵入量が減るため、LHeの蒸光量も低減できる。
In addition, since the specific gravity of aluminum is approximately 1/3 that of copper, the cross-sectional area of the support can be reduced even if the cross-sectional area of the stabilizing material is made equal to or larger than the conventional one, thereby reducing the amount of external heat intrusion. Since this decreases, the amount of LHe evaporation can also be reduced.

さらに、マグネットは予め液体窒素により77.3に迄
冷却し、その後LHeにより4.2kに冷却するが、7
7.3 k 〜4.2 kへの冷却に必要なLHe ノ
量は銅で1.421 / LICu 、アルミで0.5
91711AIであるので、冷却時のLHeの消費量も
約1/3に低減できる。
Furthermore, the magnet is cooled in advance to 77.3k with liquid nitrogen, and then cooled to 4.2k with LHe.
The amount of LHe required for cooling from 7.3 k to 4.2 k is 1.421/LICu for copper and 0.5 for aluminum.
91711AI, the consumption of LHe during cooling can also be reduced to about 1/3.

また、冷却時にコイルとボビンが一体となって収縮し、
複雑変形しないため磁場の均一度も高まる。
Also, when cooling, the coil and bobbin contract together,
Since there is no complicated deformation, the uniformity of the magnetic field is also increased.

このほか、安定化アルミに純度4N以上のものを使用す
ることにより先に述べたように安定度が非常に良くなる
In addition, by using stabilized aluminum with a purity of 4N or higher, the stability is greatly improved as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導マグネットの全体を表わす断
面図、第2図乃至第5図はそのマグネットに巻線される
超電導線の一例を示す断面図、第6図は従来のマグネッ
トを示す断面線図、第7図はコイルの変形状態の説明図
である。 1・・・常温容器、2・・・冷媒容器、3・・・LHe
14・・・サポート、5・・・超電導マグネット、6・
・・アルミボビン、10・・・コイル、11・・・超電
導線、12・・・アルミニウム、13・・・超電導材、
14・・・銅特許出願人    住友電気工業株式会社
同  代理人     鎌  1) 文  二q)
FIG. 1 is a cross-sectional view showing the entire superconducting magnet of the present invention, FIGS. 2 to 5 are cross-sectional views showing an example of superconducting wire wound around the magnet, and FIG. 6 is a conventional magnet. The cross-sectional diagram and FIG. 7 are explanatory views of the deformed state of the coil. 1... Room temperature container, 2... Refrigerant container, 3... LHe
14...Support, 5...Superconducting magnet, 6.
... aluminum bobbin, 10 ... coil, 11 ... superconducting wire, 12 ... aluminum, 13 ... superconducting material,
14... Copper patent applicant Sumitomo Electric Industries Co., Ltd. Agent Kama 1) Text 2q)

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウムボビンに、安定化材としてアルミニ
ウム又はアルミニウムと銅を使つた超電導線を巻線した
ことを特徴とするNMR−CT用超電導マグネット。
(1) A superconducting magnet for NMR-CT, characterized in that a superconducting wire using aluminum or aluminum and copper as a stabilizing material is wound around an aluminum bobbin.
(2)上記の安定化アルミニウムが純度4N以上のもの
であることを特徴とする特許請求の範囲第(1)項記載
のNMR−CT用超電導マグネット。
(2) A superconducting magnet for NMR-CT according to claim (1), wherein the stabilized aluminum has a purity of 4N or higher.
(3)上記アルミニウムと銅の安定化超電導線が、銅安
定化超電導線をアルミニウムで被覆した構造、銅安定化
超電導線とアルミニウム線とを撚り合わせた構造又は銅
安定化超電導線と銅被覆アルミニウム線とを集合した構
造とされていることを特徴とする特許請求の範囲第(1
)項又は第(2)項記載のNMR−CT用超電導マグネ
ット。
(3) The aluminum and copper stabilized superconducting wire has a structure in which a copper stabilized superconducting wire is coated with aluminum, a structure in which a copper stabilized superconducting wire and an aluminum wire are twisted together, or a structure in which a copper stabilized superconducting wire and a copper-coated aluminum wire are twisted together. Claim No. 1 (1) is characterized in that the structure is a collection of lines.
) or (2), the superconducting magnet for NMR-CT.
JP60045374A 1985-03-05 1985-03-05 Superconductive magnet for nmr-ct Pending JPS61202407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045374A JPS61202407A (en) 1985-03-05 1985-03-05 Superconductive magnet for nmr-ct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045374A JPS61202407A (en) 1985-03-05 1985-03-05 Superconductive magnet for nmr-ct

Publications (1)

Publication Number Publication Date
JPS61202407A true JPS61202407A (en) 1986-09-08

Family

ID=12717489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045374A Pending JPS61202407A (en) 1985-03-05 1985-03-05 Superconductive magnet for nmr-ct

Country Status (1)

Country Link
JP (1) JPS61202407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140900A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140900A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil

Similar Documents

Publication Publication Date Title
US3910802A (en) Stabilized superconductors
JPH0371518A (en) Superconductor
JP3151159B2 (en) Superconducting current lead
JP3541123B2 (en) Superconducting current lead
JPH10214713A (en) Superconducting coil
JPS5998505A (en) Super conductive current lead
JPS61202407A (en) Superconductive magnet for nmr-ct
Kitaguchi et al. Advances in Bi-Based High-Tc superconducting tapes and wires
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JP2929622B2 (en) How to use oxide superconductor
JP4117372B2 (en) Superconducting coil
EP0110400B1 (en) Superconducting wire and method of producing the same
JPH04134808A (en) Superconducting magnet
JP2006054454A (en) Superconducting coil structure, superconducting spectral meter, generation method for magnetic flux, and momentum measurement method for charged particles
JP3120625B2 (en) Oxide superconducting conductor
JP2000150224A (en) Excitation control method of superconducting coil
JPS6312109A (en) Superconducting magnet
JPS61224214A (en) Aluminum stabilization superconductor
JP2001307915A (en) Composite material reinforced fiber for conduction- cooled superconducting magnet
JPH01274408A (en) Superconductive magnet
JP2599269B2 (en) Superconducting wire
Pourrahimi et al. Manufacturing of lightweight low-current Nb3Sn ADR magnets operating at 10 K
JPH06151157A (en) Superconducting magnet
JPH0332003A (en) High-magnetic-field magnet
JPH02273417A (en) Superconductor