JP2008140900A - Superconductive coil - Google Patents

Superconductive coil Download PDF

Info

Publication number
JP2008140900A
JP2008140900A JP2006324349A JP2006324349A JP2008140900A JP 2008140900 A JP2008140900 A JP 2008140900A JP 2006324349 A JP2006324349 A JP 2006324349A JP 2006324349 A JP2006324349 A JP 2006324349A JP 2008140900 A JP2008140900 A JP 2008140900A
Authority
JP
Japan
Prior art keywords
coil
thin film
winding frame
superconducting wire
film superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006324349A
Other languages
Japanese (ja)
Other versions
JP4835410B2 (en
Inventor
Toshihiro Hayashi
敏広 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006324349A priority Critical patent/JP4835410B2/en
Publication of JP2008140900A publication Critical patent/JP2008140900A/en
Application granted granted Critical
Publication of JP4835410B2 publication Critical patent/JP4835410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable and high-performance superconductive coil that suppresses mechanical motion in a thin-film superconductive wire, keeps sufficient coil strength, and prevents strain due to the difference in a thermal shrinkage rate between the thin-film superconductive wire and a winding frame from occurring in the thin-film superconductive wire in a heat cycle of room temperature and liquid nitrogen temperature. <P>SOLUTION: In the pancake type superconductive coil, the thin-film superconductive wire is wound around the winding frame, and the thin-film superconductive wire in the innermost peripheral turn is stuck to the winding frame. In the superconductive coil, a thermal shrinkage rate A in the direction of the coil axis of the winding frame from the room temperature to the liquid nitrogen temperature (77K) is within a range of ±0.20% of the thermal shrinkage rate B in the direction of the coil axis of the thin-film superconductive wire from the room temperature to the liquid nitrogen temperature (77K). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超電導コイルに関し、詳しくは、巻枠に多層構造の薄膜超電導線材を巻回してなるパンケーキ型の超電導コイルにおいて、薄膜超電導線材に歪みを生じさせず、安定かつ高性能な超電導コイルとするものである。   The present invention relates to a superconducting coil, and more specifically, in a pancake type superconducting coil formed by winding a thin-film superconducting wire having a multilayer structure around a winding frame, the thin-film superconducting wire is not distorted and is stable and has a high performance. It is what.

従来、特開2003−323822号公報等において、基板、中間層、超電導層、及び安定化層を有する多層構造の薄膜超電導線材が提供されている。
この種の薄膜超電導線材を絶縁テープと重ねて巻枠に渦巻状に巻回してパンケーキ型の超電導コイルとしたものにおいて、加熱処理して一体的に硬化させた、所謂、含浸コイルは、超電導コイルの使用時における薄膜超電導線材の機械的動きを抑制し、コイル強度を保持すると共に、薄膜超電導線材相互の絶縁保護を行い、超電導コイルの超電導状態が壊れる状態である「クエンチ」を防止するために有効であるとされている。
Conventionally, in Japanese Patent Application Laid-Open No. 2003-323822, a thin film superconducting wire having a multilayer structure having a substrate, an intermediate layer, a superconducting layer, and a stabilizing layer is provided.
This type of thin film superconducting wire is overlapped with an insulating tape and wound in a spiral shape on a winding frame to form a pancake type superconducting coil. To suppress the mechanical movement of the thin film superconducting wire when using the coil, to maintain the coil strength, to protect each other from the thin film superconducting wire, and to prevent "quenching", which is a state where the superconducting state of the superconducting coil is broken It is said that it is effective.

従来の含浸コイル100は、図3に示すように、絶縁テープ15を、巻枠22と薄膜超電導線材11の最内周ターン(T1)との間、最内周ターンの外周面と次のターン(T2)から最外周ターン(TZ)までのターン間、最外周ターン(TZ)の外周面の各箇所に配置して互いに接着し、巻枠22および薄膜超電導線材11と共に加熱硬化することにより一体化して製造されている。   As shown in FIG. 3, the conventional impregnated coil 100 includes an insulating tape 15 between the winding frame 22 and the innermost peripheral turn (T1) of the thin film superconducting wire 11, the outer peripheral surface of the innermost peripheral turn, and the next turn. It is integrated between the turns from (T2) to the outermost turn (TZ), and is adhered to each other on the outer peripheral surface of the outermost turn (TZ), and is heated and cured together with the reel 22 and the thin film superconducting wire 11. Is manufactured.

特開2003−323822号公報JP 2003-323822 A

しかし、多層構造の薄膜超電導線材は歪みが発生すると、異種材料からなる薄膜超電導線材の基板と中間層、超電導層と安定化層の間においては層間剥離が生じる恐れがある。
そのため、前記の含浸コイルのように巻枠と薄膜超電導線材を接着固定すると、使用時に液体窒素温度以下に冷却されたり、点検時に液体窒素温度から急激に室温まで温度上昇されると、巻枠と薄膜超電導線材の熱収縮率差により薄膜超電導線材に歪みが生じ、前記した層間剥離が生じる恐れがある。
However, when a thin film superconducting wire having a multilayer structure is distorted, delamination may occur between the substrate and the intermediate layer of the thin film superconducting wire made of different materials and between the superconducting layer and the stabilizing layer.
Therefore, when the winding frame and the thin film superconducting wire are bonded and fixed as in the impregnated coil, when cooled to below the liquid nitrogen temperature during use, or when the temperature is rapidly increased from the liquid nitrogen temperature to room temperature during inspection, There is a possibility that the thin film superconducting wire is distorted due to the difference in thermal contraction rate of the thin film superconducting wire, and the above delamination occurs.

具体的には、図3において、室温から液体窒素温度(77K)まで冷却した場合の、薄膜超電導線材11のコイル軸線方向(図中矢印Y)の熱収縮率が略0.30%であるのに対し、巻枠22のコイル軸線方向の熱収縮率は略0.75%である。この熱収縮率の相違により、巻枠の熱収縮に薄膜超電導線材が引きずられ、薄膜超電導線材に歪みが生じる恐れがある。   Specifically, in FIG. 3, the thermal contraction rate in the coil axial direction (arrow Y in the figure) of the thin film superconducting wire 11 when cooled from room temperature to liquid nitrogen temperature (77K) is approximately 0.30%. On the other hand, the thermal contraction rate in the coil axis direction of the winding frame 22 is approximately 0.75%. Due to the difference in thermal shrinkage rate, the thin film superconducting wire is dragged by the thermal contraction of the winding frame, and the thin film superconducting wire may be distorted.

本発明は前記問題に鑑みてなされたものであり、薄膜超電導線材の機械的動きを抑制して十分なコイル強度を保持しつつ、室温と液体窒素温度のヒートサイクルにおいて、薄膜超電導線材に巻枠との熱収縮率の差異に伴う歪みを生じさせない、安定で高性能な超電導コイルを提供することを課題としている。   The present invention has been made in view of the above-described problem, and suppresses mechanical movement of a thin film superconducting wire to maintain a sufficient coil strength, and in a heat cycle of room temperature and liquid nitrogen temperature, a reel is formed on the thin film superconducting wire. It is an object of the present invention to provide a stable and high-performance superconducting coil that does not cause distortion due to the difference in thermal contraction rate.

前記課題を解決するため、本発明は、巻枠に薄膜超電導線材を巻回し、最内周ターンの薄膜超電導線材を巻枠に固着してなるパンケーキ型の超電導コイルにおいて、
前記巻枠のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(A)は、前記薄膜超電導線材のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(B)の±0.20%の範囲内であることを特徴とする超電導コイルを提供している。
In order to solve the above problems, the present invention is a pancake type superconducting coil in which a thin film superconducting wire is wound around a winding frame, and a thin film superconducting wire having an innermost turn is fixed to the winding frame.
The thermal contraction rate (A) between the room temperature in the coil axis direction of the winding frame and the liquid nitrogen temperature (77K) is the thermal contraction rate between the room temperature in the coil axis direction of the thin film superconducting wire and the liquid nitrogen temperature (77K). A superconducting coil characterized by being in the range of ± 0.20% of (B) is provided.

本発明者は、薄膜超電導線材の機械的な動きは確実に抑制することができ、かつ、薄膜超電導線材に熱収縮率差に伴う歪みを発生させない超電導コイルについて鋭意研究した。その結果、巻枠と薄膜超電導線材とは一体的に固着した状態であっても、巻枠のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(A)と、薄膜超電導線材のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(B)とを±0.20%以内に近接させることにより薄膜超電導線材に生じる歪みを抑え、安定な超電導コイルとすることができることを知見した。   The present inventor has intensively studied a superconducting coil that can surely suppress the mechanical movement of the thin film superconducting wire and does not cause the thin film superconducting wire to be distorted due to the difference in thermal shrinkage. As a result, even when the winding frame and the thin film superconducting wire are integrally fixed, the thermal contraction rate (A) between room temperature and liquid nitrogen temperature (77 K) in the coil axial direction of the winding frame, and the thin film superconductivity By making the thermal contraction rate (B) between room temperature in the coil axis direction of the wire rod and the liquid nitrogen temperature (77K) close to within ± 0.20%, the distortion generated in the thin film superconducting wire is suppressed, and a stable superconducting coil I found out that I can do it.

前記のように巻枠と薄膜超電導線材の熱収縮率(A)(B)の差異を±0.20%以内としているのは、両者の熱収縮率(A)(B)の差が±0.20%を超えると薄膜超電導線材に歪み(引張または圧縮)を生じさせるおそれがあるからである。熱収縮率(A)(B)の差はさらに±0.10%以内とするのが好ましい。
前記熱収縮率(A)(B)は、巻枠の外周面及び薄膜超電導線材に歪みゲージを貼り付け、液体窒素温度(77K)に冷却したときの室温からの寸法変化率により測定している。
As described above, the difference between the thermal shrinkage rates (A) and (B) of the winding frame and the thin film superconducting wire is within ± 0.20% because the difference between the thermal shrinkage rates (A) and (B) is ± 0. This is because if it exceeds 20%, the thin film superconducting wire may be distorted (tensile or compressed). The difference between the heat shrinkage rates (A) and (B) is preferably within ± 0.10%.
The thermal shrinkage rate (A) (B) is measured by the rate of dimensional change from room temperature when a strain gauge is attached to the outer peripheral surface of the reel and the thin film superconducting wire and cooled to liquid nitrogen temperature (77 K). .

超電導コイルでは、巻枠の熱収縮率(A)を、薄膜超電導線材の熱収縮率(B)に近接させていることが好ましい。一般的に薄膜超電導線材の材料変更は困難であることから、本発明では、巻枠の材料変更を行うことにより対応している。   In the superconducting coil, it is preferable that the thermal contraction rate (A) of the winding frame is close to the thermal contraction rate (B) of the thin film superconducting wire. In general, since it is difficult to change the material of the thin film superconducting wire, in the present invention, this is dealt with by changing the material of the reel.

本発明で用いる巻枠の材質としては、前記熱収縮率(A)(B)の差が±0.20%以内となる材質であればよく、例えば、ステンレス、アルミニウム等の金属、セラミックス、ガラス、繊維強化ブラスチックが挙げられる。
このなかでも、絶縁性に優れ、液体窒素温度における機械的特性を確保することができ、高い安定性を有することから、繊維強化プラスチックを用いることが好ましい。
前記繊維強化プラスチックは、各種方法により製造されたものが含まれるが、プリプレグシートを積層して加熱一体化して真空成形したものを用いることが好ましい。
The material of the reel used in the present invention may be any material as long as the difference between the thermal shrinkage rates (A) and (B) is within ± 0.20%. For example, metals such as stainless steel and aluminum, ceramics, and glass And fiber reinforced plastics.
Among these, it is preferable to use a fiber reinforced plastic because it is excellent in insulation, can secure mechanical characteristics at a liquid nitrogen temperature, and has high stability.
The fiber reinforced plastic includes those produced by various methods, but it is preferable to use a prepreg sheet laminated and heat-integrated and vacuum formed.

前記巻枠を構成するプリプレグシートとしては、ガラス繊維、炭素繊維、アラミド繊維等の織物または繊維材料に未硬化のエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を含浸させた織物(クロス)プリプレグ、一方向プリプレグを用いることができる。
このなかでも、ガラス繊維の織物に未硬化のエポキシ樹脂を含浸させた織物プリプレグシートが好適に用いられる。該織物プリプレグシートは樹脂量が60±10質量%、厚みが100μm以下であることが好ましい。
As the prepreg sheet constituting the winding frame, a fabric (cross) prepreg in which a fabric or a fiber material such as glass fiber, carbon fiber, or aramid fiber is impregnated with a thermosetting resin such as an uncured epoxy resin or a phenol resin, Unidirectional prepregs can be used.
Among these, a fabric prepreg sheet in which a glass fiber fabric is impregnated with an uncured epoxy resin is preferably used. The woven prepreg sheet preferably has a resin amount of 60 ± 10% by mass and a thickness of 100 μm or less.

さらに、前記繊維強化プラスチック製の巻枠のなかでも、前記コイル軸線方向と平行に配置されたプリプレグシートの積層体から形成され、前記熱収縮率(A)は0.35%未満であることが好ましい。   Further, among the fiber reinforced plastic winding frames, the heat shrinkage rate (A) is less than 0.35%, which is formed from a laminate of prepreg sheets arranged in parallel with the coil axis direction. preferable.

従来、用いられていた繊維強化プラスチック製の巻枠は必要枚数のプリプレグシートを厚さ方向(即ち、巻枠の軸線方向と直交方向)に積層配置して加熱し、真空成形した平板を加工して作製されていた。そのため、図3(B)に示すように、プリプレグシート及びプリプレグシートを構成する強化繊維クロス20は巻枠22において、超電導コイルの軸方向と直交する方向に積層配置されていた。
この場合、巻枠22の熱収縮率は、繊維により強化されているコイル周方向においては小さくなり(略0.23%)、繊維により強化されていないコイル軸方向において大きくなる(略0.75%)。
Conventionally, a fiber reinforced plastic winding frame used in the past is a process in which a required number of prepreg sheets are stacked and heated in the thickness direction (that is, the direction perpendicular to the axial direction of the winding frame) to form a vacuum-formed flat plate. It was made. Therefore, as shown in FIG. 3 (B), the prepreg sheet and the reinforcing fiber cloth 20 constituting the prepreg sheet are laminated in the winding frame 22 in a direction perpendicular to the axial direction of the superconducting coil.
In this case, the thermal contraction rate of the winding frame 22 decreases in the circumferential direction of the coil reinforced with fibers (approximately 0.23%) and increases in the axial direction of the coil not reinforced with fibers (approximately 0.75). %).

よって、本発明は、前記のように、巻枠をコイル軸線方向と平行に配置されたプリプレグシートの積層体から形成して、コイル軸方向の熱収縮率を小さくしていることが好ましい。
具体的には、コイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率を0.35%未満としていることが好ましい。より好ましくは、0.30%未満である。前記温度範囲における巻枠の熱収縮率を0.35%未満とすれば、従来の繊維強化プラスチック製の巻枠よりもコイル軸方向の熱収縮率を大幅に小さくすることができ、薄膜超電導線材の熱収縮率(略0.30%)と近接させることができる。
Therefore, in the present invention, as described above, it is preferable that the winding frame is formed from a laminate of prepreg sheets arranged in parallel to the coil axis direction to reduce the thermal shrinkage rate in the coil axis direction.
Specifically, it is preferable that the thermal contraction rate between the room temperature in the coil axis direction and the liquid nitrogen temperature (77 K) is less than 0.35%. More preferably, it is less than 0.30%. If the thermal contraction rate of the winding frame in the temperature range is less than 0.35%, the thermal contraction rate in the coil axis direction can be significantly reduced as compared with the conventional fiber-reinforced plastic winding frame, and the thin film superconducting wire The thermal contraction rate (approximately 0.30%) can be close.

前記コイル軸線方向と平行に配置したプリプレグシートの積層体は、プリプレグシートを金型に巻き付けし、熱硬化させた後に脱芯し、金型から分離する等の方法によりパイプ状に作製し、このパイプを切断加工することにより作製することができる。   The laminate of prepreg sheets arranged in parallel with the coil axis direction is prepared in a pipe shape by a method such as winding the prepreg sheet around a mold, thermosetting the core, and separating from the mold. It can be produced by cutting a pipe.

前記巻枠と前記薄膜超電導線材の間および前記薄膜超電導線材の各ターン間に、プリプレグテープを介在させて絶縁接着層が設けられ、該絶縁接着層のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(C)は0.30%以下であることが好ましい。   An insulating adhesive layer is provided between the winding frame and the thin film superconducting wire and between each turn of the thin film superconducting wire, with a prepreg tape interposed, and from the room temperature in the coil axial direction of the insulating adhesive layer to the liquid nitrogen temperature (77K). ) Is preferably 0.30% or less.

前記構成とすれば、薄膜超電導線材の各ターン間を確実に絶縁・固定してクエンチを防止できると共に、絶縁接着層のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率を薄膜超電導線材及び巻枠の熱収縮率と極めて近接させることができるため、薄膜超電導線材に生じる歪みをより小さくすることができる。
前記絶縁接着層を形成するプリプレグテープは、薄膜超電導線材と共に巻枠に巻回された場合、コイル軸方向が強化繊維の配向方向となり補強されるので、室温から液体窒素温度(77K)の間の熱収縮率を0.30%以下とすることができる。
With the above-mentioned configuration, the turns of the thin film superconducting wire can be reliably insulated and fixed to prevent quenching, and the thermal contraction rate between the room temperature in the coil axial direction of the insulating adhesive layer and the liquid nitrogen temperature (77K). Since the thermal contraction rate of the thin film superconducting wire and the winding frame can be made extremely close to each other, the distortion generated in the thin film superconducting wire can be further reduced.
When the prepreg tape that forms the insulating adhesive layer is wound around a winding frame together with the thin film superconducting wire, the coil axis direction is reinforced with the orientation direction of the reinforcing fibers, so that the prepreg tape is reinforced between room temperature and liquid nitrogen temperature (77K). The heat shrinkage rate can be 0.30% or less.

すなわち、前記構成とすれば、巻枠を形成するプリプレグシートの強化繊維の配向方向と、前記絶縁接着層を形成するプリプレグテープの強化繊維の配向方向を共にコイル軸方向とすることができるので、巻枠、絶縁接着層及び薄膜超電導線材の熱収縮率を極めて近接させることができる。そのため、薄膜超電導線材に最も歪みを生じにくい超電導コイルとすることができる。   That is, with the above configuration, both the orientation direction of the reinforcing fibers of the prepreg sheet forming the winding frame and the orientation direction of the reinforcing fibers of the prepreg tape forming the insulating adhesive layer can be the coil axis direction. The thermal contraction rate of the winding frame, the insulating adhesive layer, and the thin film superconducting wire can be made extremely close to each other. Therefore, it is possible to obtain a superconducting coil that hardly causes distortion in the thin film superconducting wire.

本発明の薄膜超電導線材としては、多層構造を有するものであれば問わないが、例えば、ハステロイ(登録商標)テープからなる金属基板に、YSZ(イットリウム安定化ジルコニア)からなるセラミックス中間層、ホルミウム系酸化物超電導体等の酸化物超電導層からなる超電導層、銀等からなる安定化層が積層された構造を有する薄膜超電導線材が挙げられる。さらに、積層体の全周は無電解メッキにより前記銅からなる金属保護膜で被覆されていてもよい。   The thin film superconducting wire of the present invention is not limited as long as it has a multilayer structure. For example, a ceramic intermediate layer made of YSZ (yttrium stabilized zirconia), a holmium type on a metal substrate made of Hastelloy (registered trademark) tape. Examples thereof include a thin film superconducting wire having a structure in which a superconducting layer made of an oxide superconducting layer such as an oxide superconductor and a stabilizing layer made of silver or the like are laminated. Furthermore, the entire periphery of the laminate may be covered with the metal protective film made of copper by electroless plating.

前述したように、本発明によれば、前記巻枠のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(A)を、前記薄膜超電導線材のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(B)の±0.20%の範囲内とし、巻枠と薄膜超電導線材の熱収縮率(A)と(B)を極めて近接させているので、巻枠との熱収縮率差に伴う歪みをほとんど生じさせない。
また、巻枠と薄膜超電導線材は固着しているので、薄膜超電導線材の機械的動きを抑制することができ、クエンチを有効に防止することができる。
As described above, according to the present invention, the thermal contraction rate (A) between the room temperature in the coil axis direction of the winding frame and the liquid nitrogen temperature (77K) is reduced from the room temperature in the coil axis direction of the thin film superconducting wire. Since the thermal contraction rate (B) between the nitrogen temperature (77K) is within a range of ± 0.20% and the thermal contraction rate (A) and (B) of the winding frame and the thin film superconducting wire are very close to each other, Almost no distortion caused by the difference in thermal shrinkage with the reel.
Further, since the winding frame and the thin film superconducting wire are fixed, the mechanical movement of the thin film superconducting wire can be suppressed, and quenching can be effectively prevented.

また、前記巻枠と薄膜超電導線材との間を絶縁接着層により固着し、該絶縁接着層のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率も0.30%以下とすると、巻枠及び薄膜超電導線材の熱収縮率に近接させることができるので、極めて安定かつ高性能な超電導コイルとすることができる。   Also, the winding frame and the thin film superconducting wire are fixed by an insulating adhesive layer, and the thermal contraction rate between the room temperature in the coil axial direction of the insulating adhesive layer and the liquid nitrogen temperature (77K) is 0.30% or less. Then, since it can be made close to the thermal contraction rate of a winding frame and a thin film superconducting wire, it can be set as an extremely stable and high performance superconducting coil.

以下、本発明の実施形態を図面を参照して説明する。
図1は、本発明の実施形態の超電導コイル10を示す。
超電導コイル10は、多層構造の薄膜超電導線材11をプリプレグテープ(図示せず)と共に巻枠12に渦巻き状に巻回し、加熱処理して一体に固めて形成したシングルパンケーキ型コイルである。
該超電導コイル10は、薄膜超電導線材11として酸化物超電導体を用いており、液体窒素温度(77K)に冷却されて使用される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a superconducting coil 10 according to an embodiment of the present invention.
The superconducting coil 10 is a single pancake-type coil formed by winding a thin film superconducting wire 11 having a multilayer structure around a winding frame 12 together with a prepreg tape (not shown), and heat-treating and solidifying it integrally.
The superconducting coil 10 uses an oxide superconductor as the thin film superconducting wire 11 and is cooled to a liquid nitrogen temperature (77 K).

超電導コイル10において、前記薄膜超電導線材11の最内周ターン(T1)の先端内周面には前記内電極13を取り付けて電気接続し、該内電極13を前記巻枠12に設けた取付部に固定している。一方、薄膜超電導線材11の最外周ターン(TZ)の先端外周面には外電極14を取り付けて電気接続しており、該外電極14の外側にはプリプレグテープを5周巻き付けて形成した絶縁保護層17を設けている。   In the superconducting coil 10, the inner electrode 13 is attached to and electrically connected to the inner peripheral surface of the innermost turn (T 1) of the thin film superconducting wire 11, and the inner electrode 13 is attached to the winding frame 12. It is fixed to. On the other hand, an outer electrode 14 is attached to the outer peripheral surface of the outermost turn (TZ) of the thin film superconducting wire 11 for electrical connection, and the outer electrode 14 is insulated by wrapping five prepreg tapes around the outer electrode 14. Layer 17 is provided.

図2(A)は、超電導コイル10をA−A線においてコイル軸方向(図中矢印Y)と平行に切断した場合の断面図である。   FIG. 2A is a cross-sectional view of the superconducting coil 10 cut along the line AA in parallel with the coil axis direction (arrow Y in the figure).

巻枠12はプリプレグシート(図示せず)を金型に巻き付けし、熱硬化させたのち、金型から分離して作製したパイプを切断加工することにより作製したものを用いている。
即ち、巻枠12は、プリプレグシートをコイル軸線方向(Y)と平行に配置した積層体から形成しているので、図2(B)に示すように、プリプレグシートの強化繊維クロス20をコイル軸方向(Y)に配向させて強化している。そのため、コイル軸方向(Y)の巻枠12の室温から液体窒素温度(77K)の間の熱収縮率は小さく、0.23%である。
前記巻枠12を構成するプリプレグシートとしては、ガラス繊維を強化繊維とした強化繊維クロス20をエポキシ樹脂に含浸したものを用いており、形成された巻枠12全体に占める樹脂の割合は40±5質量%である。
The winding frame 12 is prepared by winding a prepreg sheet (not shown) around a mold and thermosetting it, and then cutting and cutting a pipe separated from the mold.
That is, the winding frame 12 is formed of a laminated body in which the prepreg sheet is arranged in parallel with the coil axis direction (Y). Therefore, as shown in FIG. 2 (B), the reinforcing fiber cloth 20 of the prepreg sheet is connected to the coil axis. It is oriented and strengthened in the direction (Y). Therefore, the thermal contraction rate between the room temperature and the liquid nitrogen temperature (77 K) of the winding frame 12 in the coil axis direction (Y) is small, 0.23%.
As the prepreg sheet constituting the winding frame 12, an epoxy resin impregnated with a reinforcing fiber cloth 20 made of glass fiber as a reinforcing fiber is used, and the ratio of the resin to the entire formed winding frame 12 is 40 ±. 5% by mass.

本実施形態で使用する薄膜超電導線材11は、金属からなる基板層、セラミックスからなる中間層、酸化物超電導体からなる超電導層、銀からなる安定化層が積層された多層構造からなり、室温から液体窒素温度(77K)の間の熱収縮率が、0.30%のものを用いている。   The thin film superconducting wire 11 used in this embodiment has a multilayer structure in which a substrate layer made of metal, an intermediate layer made of ceramics, a superconducting layer made of an oxide superconductor, and a stabilizing layer made of silver are laminated, starting from room temperature. A heat shrinkage ratio between liquid nitrogen temperatures (77 K) of 0.30% is used.

すなわち、本実施形態において、巻枠12のコイル軸方向(Y)の室温から液体窒素温度(77K)の間の熱収縮率(A)を、前記薄膜超電導線材11のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(B)の−0.07%とし、巻枠12と薄膜超電導線材11の熱収縮率を極めて近接させている。そのため、巻枠12の熱収縮に引きずられて薄膜超電導線材11に歪みが生じることはなく、安定な超電導コイルとすることができる。   That is, in this embodiment, the thermal contraction rate (A) between the room temperature in the coil axis direction (Y) of the winding frame 12 and the liquid nitrogen temperature (77 K) is changed from the room temperature in the coil axis direction of the thin film superconducting wire 11 to the liquid. The thermal contraction rate (B) between the nitrogen temperature (77K) is set to -0.07%, and the thermal contraction rate of the winding frame 12 and the thin film superconducting wire 11 is very close. Therefore, the thin film superconducting wire 11 is not distorted by the thermal contraction of the winding frame 12, and a stable superconducting coil can be obtained.

さらに、超電導コイル10は、巻枠12と前記薄膜超電導線材11の間及び前記薄膜超電導線材11の各ターン間に、プリプレグテープ15を配置して巻線したのち、加熱硬化させることにより、絶縁接着層16を設けている。前記絶縁接着層16を形成するプリプレグテープ15としては、ガラス繊維を強化繊維とした強化繊維クロス21をエポキシ樹脂に含浸したもの(エポキシ樹脂量;55±5質量%)を用いている。前記絶縁接着層16により、巻枠12と薄膜超電導線材11及び薄膜超電導線材の各ターン間を接着固定することができるので、薄膜超電導線材11の機械的動きは抑制してコイル強度を保持することができる。
該絶縁接着層16のコイル軸方向(Y)の室温から液体窒素温度(77K)の間の熱収縮率(C)は、0.23〜0.30%である。
Furthermore, the superconducting coil 10 is insulated and bonded by heat-curing the prepreg tape 15 between the winding frame 12 and the thin-film superconducting wire 11 and between the turns of the thin-film superconducting wire 11 and then winding it. Layer 16 is provided. As the prepreg tape 15 for forming the insulating adhesive layer 16, a prepreg tape made of glass fiber reinforced fiber impregnated with a reinforcing fiber cloth 21 (epoxy resin amount: 55 ± 5 mass%) is used. Since the insulating adhesive layer 16 can bond and fix the winding frame 12, the thin film superconducting wire 11 and the thin film superconducting wire, the mechanical movement of the thin film superconducting wire 11 is suppressed and the coil strength is maintained. Can do.
The thermal contraction rate (C) between the room temperature in the coil axial direction (Y) of the insulating adhesive layer 16 and the liquid nitrogen temperature (77K) is 0.23 to 0.30%.

また、本構成とすれば、絶縁接着層16を形成するプリプレグシート15の強化繊維クロス21と、巻枠12を形成する強化繊維クロス20の配向方向が共にコイル軸方向(Y)となり同一となるため、絶縁接着層16の熱収縮率(C)を巻枠12及び薄膜超電導線材11の熱収縮率(A)(B)に極めて近接させることができる。そのため、薄膜超伝導線材に歪みが生じない、極めて安定な超電導コイルとすることができる。   Further, with this configuration, the orientation directions of the reinforcing fiber cloth 21 of the prepreg sheet 15 that forms the insulating adhesive layer 16 and the reinforcing fiber cloth 20 that forms the winding frame 12 are both the same as the coil axis direction (Y). Therefore, the thermal shrinkage rate (C) of the insulating adhesive layer 16 can be made very close to the thermal shrinkage rates (A) and (B) of the winding frame 12 and the thin film superconducting wire 11. Therefore, it is possible to obtain a very stable superconducting coil in which the thin film superconducting wire is not distorted.

本発明で使用する薄膜超電導線材11及び巻枠12としては、巻枠の熱収縮率(A)を、前記薄膜超電導線材の熱収縮率(B)の±0.20%以内としていれば、本実施形態で述べた材質及び構造のものに限定されず、特許請求の範囲と均等の範囲内の変更が含まれる。   As the thin film superconducting wire 11 and the winding frame 12 used in the present invention, if the thermal contraction rate (A) of the winding frame is within ± 0.20% of the thermal contraction rate (B) of the thin film superconducting wire, The present invention is not limited to the materials and structures described in the embodiments, and includes modifications within the scope equivalent to the scope of claims.

実施形態において、シングルパンケーキ型の超電導コイルに関して述べたが、本発明はダブルパンケーキ型の超電導コイルにも同様に適用することができる。   In the embodiment, the single pancake type superconducting coil has been described. However, the present invention can be similarly applied to a double pancake type superconducting coil.

本発明の実施形態の超電導コイルの概略斜視図である。It is a schematic perspective view of the superconducting coil of the embodiment of the present invention. (A)図1の超電導コイルのA−A断面を示す模式図であり、(B)は(A)の要部を示す拡大図である。(A) It is a schematic diagram which shows the AA cross section of the superconducting coil of FIG. 1, (B) is an enlarged view which shows the principal part of (A). (A)は従来の超電導コイルの断面模式図であり、(B)は(A)の要部を示す拡大図である。(A) is a cross-sectional schematic diagram of a conventional superconducting coil, and (B) is an enlarged view showing the main part of (A).

符号の説明Explanation of symbols

10 超電導コイル
11 薄膜超電導線材
T1 最内周ターン
TZ 最外周ターン
12、22 巻枠
13 内電極
14 外電極
15 プリプレグテープ
16 絶縁接着層
17 絶縁保護層
20、21 強化繊維クロス
DESCRIPTION OF SYMBOLS 10 Superconducting coil 11 Thin film superconducting wire T1 Innermost turn TZ Outermost turn 12, 22 Winding frame 13 Inner electrode 14 Outer electrode 15 Prepreg tape 16 Insulating adhesive layer 17 Insulating protective layer 20, 21 Reinforcing fiber cloth

Claims (3)

巻枠に薄膜超電導線材を巻回し、最内周ターンの薄膜超電導線材を巻枠に固着してなるパンケーキ型の超電導コイルにおいて、
前記巻枠のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(A)は、前記薄膜超電導線材のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(B)の±0.20%の範囲内であることを特徴とする超電導コイル。
In a pancake type superconducting coil in which a thin film superconducting wire is wound around a winding frame, and a thin film superconducting wire having an innermost turn is fixed to the winding frame,
The thermal contraction rate (A) between the room temperature in the coil axis direction of the winding frame and the liquid nitrogen temperature (77K) is the thermal contraction rate between the room temperature in the coil axis direction of the thin film superconducting wire and the liquid nitrogen temperature (77K). A superconducting coil which is within a range of ± 0.20% of (B).
前記巻枠は、前記コイル軸線方向と平行に配置されたプリプレグシートの積層体から形成され、前記熱収縮率(A)は0.35%未満である請求項1に記載の超電導コイル。   The superconducting coil according to claim 1, wherein the winding frame is formed of a laminate of prepreg sheets arranged in parallel with the coil axis direction, and the thermal shrinkage rate (A) is less than 0.35%. 前記巻枠と前記薄膜超電導線材の間および前記薄膜超電導線材の各ターン間に、プリプレグテープを介在させて絶縁接着層が設けられ、該絶縁接着層のコイル軸方向の室温から液体窒素温度(77K)の間の熱収縮率(C)は0.30%以下である請求項1または請求項2に記載の超電導コイル。   An insulating adhesive layer is provided between the winding frame and the thin film superconducting wire and between each turn of the thin film superconducting wire, with a prepreg tape interposed, and from the room temperature in the coil axial direction of the insulating adhesive layer to the liquid nitrogen temperature (77K). The superconducting coil according to claim 1 or 2, wherein a thermal contraction rate (C) during () is 0.30% or less.
JP2006324349A 2006-11-30 2006-11-30 Superconducting coil Expired - Fee Related JP4835410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324349A JP4835410B2 (en) 2006-11-30 2006-11-30 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324349A JP4835410B2 (en) 2006-11-30 2006-11-30 Superconducting coil

Publications (2)

Publication Number Publication Date
JP2008140900A true JP2008140900A (en) 2008-06-19
JP4835410B2 JP4835410B2 (en) 2011-12-14

Family

ID=39602089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324349A Expired - Fee Related JP4835410B2 (en) 2006-11-30 2006-11-30 Superconducting coil

Country Status (1)

Country Link
JP (1) JP4835410B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064693A (en) * 2010-09-15 2012-03-29 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus
JP2014179551A (en) * 2013-03-15 2014-09-25 Toshiba Corp High-temperature superconducting coil and process of manufacturing the same
JP2015141988A (en) * 2014-01-28 2015-08-03 公益財団法人鉄道総合技術研究所 Winding shaft for superconducting coil and method of manufacturing the same
JP2015141989A (en) * 2014-01-28 2015-08-03 公益財団法人鉄道総合技術研究所 Superconducting coil and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497398B1 (en) * 1968-02-09 1974-02-20
JPS61202407A (en) * 1985-03-05 1986-09-08 Sumitomo Electric Ind Ltd Superconductive magnet for nmr-ct
JPS6213010A (en) * 1985-07-11 1987-01-21 Toshiba Corp Superconductive electromagnet
JPH04179103A (en) * 1990-11-08 1992-06-25 Toshiba Corp Superconducting coil device
JPH08125242A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Permanent current switch
JPH09102414A (en) * 1995-10-06 1997-04-15 Kobe Steel Ltd Superconducting coil
JPH10214713A (en) * 1997-01-29 1998-08-11 Fuji Electric Co Ltd Superconducting coil
JPH11168008A (en) * 1997-12-04 1999-06-22 Showa Electric Wire & Cable Co Ltd Manufacture of oxide superconducting coil
JP2004039591A (en) * 2002-07-08 2004-02-05 Fujikura Ltd Noninductive winding and permanent current switch

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497398B1 (en) * 1968-02-09 1974-02-20
JPS61202407A (en) * 1985-03-05 1986-09-08 Sumitomo Electric Ind Ltd Superconductive magnet for nmr-ct
JPS6213010A (en) * 1985-07-11 1987-01-21 Toshiba Corp Superconductive electromagnet
JPH04179103A (en) * 1990-11-08 1992-06-25 Toshiba Corp Superconducting coil device
JPH08125242A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Permanent current switch
JPH09102414A (en) * 1995-10-06 1997-04-15 Kobe Steel Ltd Superconducting coil
JPH10214713A (en) * 1997-01-29 1998-08-11 Fuji Electric Co Ltd Superconducting coil
JPH11168008A (en) * 1997-12-04 1999-06-22 Showa Electric Wire & Cable Co Ltd Manufacture of oxide superconducting coil
JP2004039591A (en) * 2002-07-08 2004-02-05 Fujikura Ltd Noninductive winding and permanent current switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064693A (en) * 2010-09-15 2012-03-29 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus
JP2014179551A (en) * 2013-03-15 2014-09-25 Toshiba Corp High-temperature superconducting coil and process of manufacturing the same
JP2015141988A (en) * 2014-01-28 2015-08-03 公益財団法人鉄道総合技術研究所 Winding shaft for superconducting coil and method of manufacturing the same
JP2015141989A (en) * 2014-01-28 2015-08-03 公益財団法人鉄道総合技術研究所 Superconducting coil and method of manufacturing the same

Also Published As

Publication number Publication date
JP4835410B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4752744B2 (en) Superconducting coil
JP5259487B2 (en) Superconducting coil
JP2014022693A (en) Superconducting coil and manufacturing method therefor
US8655423B2 (en) Superconducting coil
JP5269694B2 (en) Superconducting coil device
JP5421170B2 (en) Superconducting current lead
JP6725001B2 (en) Superconducting wire and superconducting coil
JP5921940B2 (en) Superconducting coil conductive cooling plate and superconducting coil device
US20200028061A1 (en) Connection structure
JP5534712B2 (en) High temperature superconducting pancake coil and high temperature superconducting coil
JP4835410B2 (en) Superconducting coil
JP2009188109A (en) Superconductive coil and manufacturing method thereof
JP2011003494A (en) Reinforcement high temperature superconducting wire and high temperature superconducting coil winding it
JP2011113933A (en) Superconducting wire, and superconducting coil using the same
JP2011108918A (en) Superconductive coil
WO2013153973A1 (en) Oxide superconducting wire having reinforcing materials
JP6548916B2 (en) High temperature superconducting coil
JP5426231B2 (en) High temperature superconducting wire and superconducting coil with release material
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2009188108A (en) Superconductive coil and manufacturing method thereof
JP2015012199A (en) Superconducting coil device
JP6734092B2 (en) Superconducting wire connection structure
JP2017063083A (en) High temperature superconducting coil not having insulation for each turn and manufacturing method therefor
JP6005428B2 (en) Superconducting coil and superconducting coil device
JP6035050B2 (en) Superconducting coil device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees