JP2015141989A - Superconducting coil and method of manufacturing the same - Google Patents

Superconducting coil and method of manufacturing the same Download PDF

Info

Publication number
JP2015141989A
JP2015141989A JP2014013632A JP2014013632A JP2015141989A JP 2015141989 A JP2015141989 A JP 2015141989A JP 2014013632 A JP2014013632 A JP 2014013632A JP 2014013632 A JP2014013632 A JP 2014013632A JP 2015141989 A JP2015141989 A JP 2015141989A
Authority
JP
Japan
Prior art keywords
superconducting coil
prepreg
raising
manufacturing
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014013632A
Other languages
Japanese (ja)
Other versions
JP6297845B2 (en
Inventor
弘貴 上條
Hirotaka Kamijiyou
弘貴 上條
敏行 立花
Toshiyuki Tachibana
敏行 立花
寿秀 菅原
Toshihide Sugawara
寿秀 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUHACHI KK
Showa Kasei Co Ltd
Railway Technical Research Institute
Original Assignee
MARUHACHI KK
Showa Kasei Co Ltd
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUHACHI KK, Showa Kasei Co Ltd, Railway Technical Research Institute filed Critical MARUHACHI KK
Priority to JP2014013632A priority Critical patent/JP6297845B2/en
Publication of JP2015141989A publication Critical patent/JP2015141989A/en
Application granted granted Critical
Publication of JP6297845B2 publication Critical patent/JP6297845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting coil having high operation stability and also to provide a method of manufacturing the same.SOLUTION: A method of manufacturing a superconducting coil includes: a prepreg forming step (S1) for obtaining a prepreg formed by coating a curing resin on fabric made of high intensity insulative filament having thermal conductivity or sheet body of nonwoven fabric, impregnating the coated curing resin thereinto, and semi-curing the impregnated curing resin; a raising step (S3) for raising the sheet body in the prepreg; a winding step (S4) for winding the prepreg together with a superconducting wire rod; and a curing step for curing the curing resin.

Description

本発明は、超電導コイル及びその製造方法に関し、特に、高い動作安定性を有する超電導コイル及びその製造方法に関する。   The present invention relates to a superconducting coil and a manufacturing method thereof, and more particularly to a superconducting coil having high operational stability and a manufacturing method thereof.

超電導特性を利用した超電導コイルが各種産業機械への適用を検討されている。超電導コイルは、所定の超電導線材を巻回し該線材を超電導特性を呈する温度まで冷却する冷却システムと組み合わせて使用される。   Application of superconducting coils utilizing superconducting properties to various industrial machines is being studied. The superconducting coil is used in combination with a cooling system that winds a predetermined superconducting wire and cools the wire to a temperature that exhibits superconducting properties.

例えば、特許文献1は、超電導線材を巻回した超電導コイルを積層させその中間部に伝熱板を挿着するとともに、超電導コイルの表層面に熱吸収体を装着して、伝熱板及び熱吸収体を熱輸送体を介して冷凍機に接続する超電導コイル及び冷却システムを開示している。ここでは超電導コイルの線材を間接的に冷凍機によって冷却している。また、特許文献2は、超電導コイルを容器内に満たされた液体ヘリウムなどの冷媒に浸漬し、超電導コイルの線材を冷媒に直接接触させて冷却する超電導コイル及び冷却システムを開示している。かかる冷却システムでは、容器内で蒸発した冷媒ガスを外部へ回収し冷凍機で液化させた後に、再度、容器内へ戻している。   For example, in Patent Document 1, a superconducting coil around which a superconducting wire is wound is laminated, a heat transfer plate is inserted in an intermediate portion thereof, and a heat absorber is attached to the surface of the superconducting coil. A superconducting coil and a cooling system for connecting an absorber to a refrigerator via a heat transporter are disclosed. Here, the wire of the superconducting coil is indirectly cooled by a refrigerator. Further, Patent Document 2 discloses a superconducting coil and a cooling system in which a superconducting coil is immersed in a refrigerant such as liquid helium filled in a container and the wire of the superconducting coil is brought into direct contact with the refrigerant to cool it. In such a cooling system, the refrigerant gas evaporated in the container is recovered outside, liquefied by a refrigerator, and then returned to the container again.

超電導線材を直接的又は間接的に冷却する特許文献1又は2のいずれのタイプの超電導コイルであっても、超電導線材同士を絶縁しながらこれを巻回する必要がある。かかる絶縁処理の方法として、超電導線材とともにプリプレグ絶縁材をコイル状に巻回し超電導線材同士を強く面接触させながら加熱処理して硬化させる方法や、超電導線材を巻回し絶縁樹脂を注入し硬化させる方法などが知られている。   Even if it is the superconducting coil of any type of patent document 1 or 2 which cools a superconducting wire directly or indirectly, it is necessary to wind this, insulating the superconducting wires. As a method of such insulation treatment, a method of winding a prepreg insulating material in a coil shape together with a superconducting wire and heat-treating the superconducting wire strongly in surface contact with each other, a method of winding a superconducting wire and injecting and hardening an insulating resin Etc. are known.

例えば、特許文献3では、無機繊維を主体にした紙状の絶縁体シートを超電導線材と重ね合わせて巻回することが開示されている。ここで、超電導線材同士を絶縁する絶縁体シートにおける必要な特性として、絶縁性能を確保しつつも充分に薄く、超電導線材とともに巻回できる柔軟性を有し、超電導線材を焼成する必要がある場合においては巻回後600℃以上の熱処理に耐え且つ超電導線材と反応しないこと、などが要求されると述べている。また、特許文献4では、絶縁体シートを与えることとなるプリプレグ絶縁材として、低い熱収縮率の観点から、ガラス繊維、炭素繊維、アラミド繊維からなる織布に未硬化のエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を含浸させたプリプレグ絶縁材が好ましいとしている。   For example, Patent Document 3 discloses that a paper-like insulator sheet mainly composed of inorganic fibers is wound with being superposed on a superconducting wire. Here, as a necessary characteristic in the insulator sheet that insulates the superconducting wires from each other, it is sufficiently thin while ensuring insulation performance, has flexibility to be wound with the superconducting wire, and it is necessary to fire the superconducting wire Describes that it is required to withstand heat treatment at 600 ° C. or higher after winding and not to react with the superconducting wire. Moreover, in patent document 4, as a prepreg insulating material which will give an insulator sheet, from a viewpoint of a low heat shrinkage rate, it is uncured epoxy resin, phenol resin, etc. to the woven fabric which consists of glass fiber, carbon fiber, and aramid fiber. A prepreg insulating material impregnated with a thermosetting resin is preferred.

ところで、非特許文献1では、高い機械強度、絶縁性及び熱伝導性を有するとともに、低熱膨張係数の結晶性高分子を強化繊維に使用したエポキシ樹脂系FRPを開示している。かかるFRPを上記した絶縁体シートに使用することが考慮される。   By the way, Non-Patent Document 1 discloses an epoxy resin-based FRP using a crystalline polymer having a high mechanical strength, insulating properties, and thermal conductivity and having a low thermal expansion coefficient as a reinforcing fiber. It is considered that such FRP is used for the above-described insulator sheet.

特開2001−244109号公報JP 2001-244109 A 特開2004−179443号公報JP 2004-179443 A 特開平8−222430号公報JP-A-8-222430 特開2008−140900号公報JP 2008-140900 A

上條弘貴、「スーパー繊維を鉄道に応用する」、RRR(公益財団法人鉄道総合技術研究所技報)、第68巻11号、2011年11月号、第6〜9頁Hiroki Kamijo, “Applying Super Fibers to Railways”, RRR (Technical Bulletin of Railway Technical Research Institute), Vol. 68, No. 11, November, 2011, pp. 6-9

超電導コイルの動作安定性を確保するためには、超電導線材を所定の温度に冷却するとともにこれを維持することが必要である。また、非特許文献1の結晶性高分子を強化繊維に使用したエポキシ樹脂系FRPを絶縁体シートに採用する上では、超電導コイルの動作安定性を確保するよう、超電導線材及び絶縁体シートの間で生じる熱応力の低減、及び、動作熱による熱変動の吸収を考慮することも必要となる。   In order to ensure the operational stability of the superconducting coil, it is necessary to cool the superconducting wire to a predetermined temperature and maintain it. In addition, when the epoxy resin-based FRP using the crystalline polymer of Non-Patent Document 1 as a reinforcing fiber is used for the insulator sheet, the superconducting wire and the insulator sheet are secured so as to ensure the operational stability of the superconducting coil. It is also necessary to consider the reduction of the thermal stress generated in the process and the absorption of thermal fluctuations due to operating heat.

本発明は以上のような状況に鑑みてなされたものであって、その目的とするところは、高い動作安定性を有する超電導コイル及びその製造方法を提供することにある。   This invention is made | formed in view of the above situations, The place made into the objective is to provide the superconducting coil which has high operation stability, and its manufacturing method.

本発明による超電導コイルの製造方法の1つは、熱伝導性の高強度絶縁性長繊維からなる織布又は不織布のシート体に硬化樹脂を塗布し含浸させてこれを半硬化させたプリプレグを得るプリプレグ形成ステップと、前記プリプレグ中の前記シート体を起毛させる起毛ステップと、前記プリプレグを超電導線材とともに巻合わせる巻合ステップと、前記硬化樹脂を硬化させる硬化ステップと、を含むことを特徴とする。   One of the methods for producing a superconducting coil according to the present invention is to obtain a prepreg in which a cured resin is applied and impregnated into a woven or non-woven sheet made of high-conductivity, high-strength insulating long fibers and semi-cured. It includes a prepreg forming step, a raising step for raising the sheet body in the prepreg, a winding step for winding the prepreg together with a superconducting wire, and a curing step for curing the curable resin.

かかる発明によれば、巻合わせたプリプレグを硬化させて得られる絶縁体において、超電導コイルの軸方向及び周方向の高い熱伝導性に加え半径方向にも良好な熱伝導性を付与できて、超電導線材を冷却する上でその動作熱の吸収を良好に行い得る。よって、超電導線材及び絶縁体の間で生じる熱応力を低減でき、高い動作安定性を有する超電導コイルを提供できる。   According to this invention, in the insulator obtained by curing the wound prepreg, in addition to the high thermal conductivity in the axial direction and the circumferential direction of the superconducting coil, good thermal conductivity can be imparted in the radial direction as well. When the wire is cooled, the operating heat can be favorably absorbed. Therefore, the thermal stress generated between the superconducting wire and the insulator can be reduced, and a superconducting coil having high operational stability can be provided.

上記した発明において、前記起毛ステップは、前記プリプレグの複数を重ね合わせて前記高強度絶縁性長繊維で前記シート体同士を架橋させるように起毛させるステップであることを特徴としてもよい。かかる発明によれば、得られる絶縁体の半径方向の熱伝導性を良好にしつつ絶縁体の厚さを調整し、超電導線材及び絶縁体の間で生じる熱応力を緩和し得て、高い動作安定性を有する超電導コイルを提供できる。   In the above-described invention, the raising step may be a step of raising a plurality of the prepregs so as to crosslink the sheet bodies with the high-strength insulating long fibers. According to this invention, the thickness of the insulator can be adjusted while improving the thermal conductivity in the radial direction of the obtained insulator, and the thermal stress generated between the superconducting wire and the insulator can be alleviated, resulting in high operational stability. A superconducting coil having the characteristics can be provided.

上記した発明において、前記起毛ステップは、前記プリプレグを重ね合わせるにあたって、前記高強度絶縁性長繊維からなる追加繊維をその間に分散させるステップを含むことを特徴としてもよい。かかる発明によれば、重ね合わせたプリプレグを硬化させて得られる絶縁体の厚さ方向の熱伝導性をさらに向上させ得て、より高い動作安定性を有する超電導コイルを提供できる。   In the above-described invention, the raising step may include a step of dispersing additional fibers made of the high-strength insulating long fibers therebetween when the prepregs are overlapped. According to this invention, it is possible to further improve the thermal conductivity in the thickness direction of the insulator obtained by curing the stacked prepregs, and to provide a superconducting coil having higher operational stability.

本発明による超電導コイルの製造方法の他の1つは、熱伝導性の高強度絶縁性長繊維からなる織布又は不織布のシート体を起毛させる起毛ステップと、前記シート体に硬化樹脂を塗布し含浸させてこれを半硬化させたプリプレグを得るプリプレグ形成ステップと、前記プリプレグを超電導線材とともに巻合わせる巻合ステップと、前記硬化樹脂を硬化させる硬化ステップと、を含むことを特徴とする。   Another method for producing a superconducting coil according to the present invention includes a raising step of raising a woven or non-woven sheet body made of heat conductive high-strength insulating continuous fibers, and applying a cured resin to the sheet body. It includes a prepreg forming step for obtaining a prepreg that has been impregnated and semi-cured, a winding step for winding the prepreg together with a superconducting wire, and a curing step for curing the cured resin.

かかる発明によれば、巻合わせたプリプレグを硬化させて得られる絶縁体において、軸方向及び周方向の高い熱伝導性に加え半径方向にも良好な熱伝導性を付与できて、超電導コイルの動作熱の吸収を良好に行い得る。よって、超電導線材及び絶縁体の間で生じる熱応力を低減でき、高い動作安定性を有する超電導コイルを提供できる。   According to this invention, in the insulator obtained by curing the wound prepreg, in addition to the high thermal conductivity in the axial direction and the circumferential direction, it is possible to give good thermal conductivity in the radial direction, and the operation of the superconducting coil Heat absorption can be performed well. Therefore, the thermal stress generated between the superconducting wire and the insulator can be reduced, and a superconducting coil having high operational stability can be provided.

上記した発明において、前記起毛ステップは、前記シート体の複数を重ね合わせて前記高強度絶縁性長繊維でこれらを架橋させるように起毛させるステップであることを特徴としてもよい。かかる発明によれば、得られる絶縁体の半径方向の熱伝導性を良好にしつつ絶縁体の厚さを調整し、超電導線材及び絶縁体の間で生じる熱応力を緩和し得て、高い動作安定性を有する超電導コイルを提供できる。   In the above-described invention, the raising step may be a step of raising a plurality of the sheet bodies so as to crosslink them with the high-strength insulating long fibers. According to this invention, the thickness of the insulator can be adjusted while improving the thermal conductivity in the radial direction of the obtained insulator, and the thermal stress generated between the superconducting wire and the insulator can be alleviated, resulting in high operational stability. A superconducting coil having the characteristics can be provided.

上記した発明において、前記起毛ステップは、前記シート体を重ね合わせるにあたって、前記高強度絶縁性長繊維からなる追加繊維をその間に分散させるステップを含むことを特徴としてもよい。かかる発明によれば重ね合わせたシート体から得られる絶縁体の厚さ方向の熱伝導性をさらに向上させ得て、より高い動作安定性を有する超電導コイルを提供できる。   In the above-described invention, the raising step may include a step of dispersing additional fibers made of the high-strength insulating long fibers therebetween when the sheet bodies are overlapped. According to this invention, the thermal conductivity in the thickness direction of the insulator obtained from the stacked sheet bodies can be further improved, and a superconducting coil having higher operational stability can be provided.

上記した発明において、前記起毛ステップは、前記シート体を貫くようにニードルを抜き差しし起毛処理するステップであることを特徴としてもよい。かかる発明によれば、良好な起毛を形成でき、より高い動作安定性を有する超電導コイルを提供できる。   In the above-described invention, the raising step may be a step of raising and removing a needle so as to penetrate the sheet body. According to this invention, it is possible to provide a superconducting coil that can form good raising and has higher operational stability.

また、本発明による超電導コイルは、上記した超電導コイルの製造方法によって製造されることを特徴とする。   The superconducting coil according to the present invention is manufactured by the above-described method for manufacturing a superconducting coil.

かかる発明によれば、超電導線材を絶縁する絶縁体の半径方向の熱伝導性を良好にしつつ絶縁体の厚さを調整し、超電導線材及び絶縁体の間で生じる熱応力を緩和し得て、高い動作安定性を得ることができる。   According to such an invention, the thickness of the insulator can be adjusted while improving the thermal conductivity in the radial direction of the insulator that insulates the superconducting wire, and the thermal stress generated between the superconducting wire and the insulator can be relaxed, High operational stability can be obtained.

本発明による超電導コイルの斜視図である。It is a perspective view of the superconducting coil by this invention. 本発明による製造した超電導コイルの要部の断面図である。It is sectional drawing of the principal part of the superconducting coil manufactured by this invention. 本発明による超電導コイルに使用される織布の上面図である。It is a top view of the woven fabric used for the superconducting coil by this invention. 本発明による製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method by this invention. 本発明による製造方法における積層させるプリプレグの斜視図である。It is a perspective view of the prepreg laminated | stacked in the manufacturing method by this invention. 本発明による製造方法におけるプリプレグの積層体の断面図である。It is sectional drawing of the laminated body of the prepreg in the manufacturing method by this invention. 本発明による超電導コイルに使用される不織布の断面図である。It is sectional drawing of the nonwoven fabric used for the superconducting coil by this invention. 本発明による他の製造方法を示すフロー図である。It is a flowchart which shows the other manufacturing method by this invention.

本発明による1つの実施例としての超電導コイルについて、図1乃至図3を用いてその詳細を説明する。   The superconducting coil as one embodiment according to the present invention will be described in detail with reference to FIGS.

図1に示すように、超電導コイル40は、超電導線材10に絶縁テープ11を重ね合わせた帯状体からなる複合線材20を中空の円筒体である巻軸30の外周面に巻回した、いわゆる「パンケーキコイル」と称されるコイル体である。巻軸30は、例えば、ステンレスなどの金属、セラミックス、又は、FRP(Fiber Reinforced Plastics)からなり、図1では円筒状としたが、必要に応じて各種の形状を取り得る。超電導線材10としては、例えば、イットリウム系の超電導体を使用し得るが、その他の公知の超電導体であってもよい。   As shown in FIG. 1, the superconducting coil 40 is a so-called “coil 40” in which a composite wire 20 made of a strip-like body in which an insulating tape 11 is superimposed on a superconducting wire 10 is wound around an outer peripheral surface of a winding shaft 30 that is a hollow cylindrical body. It is a coil body called “pancake coil”. The winding shaft 30 is made of, for example, a metal such as stainless steel, ceramics, or FRP (Fiber Reinforced Plastics), and has a cylindrical shape in FIG. 1, but can take various shapes as necessary. For example, an yttrium-based superconductor can be used as the superconducting wire 10, but other known superconductors may be used.

図2に示すように、絶縁テープ11は厚さ方向へ層を重ねた積層体であって、硬化樹脂部7の間に繊維からなるシート体5をサンドイッチした複合樹脂体9を1つの層単位とした繊維強化複合材料積層体である。本実施例においては2層の複合樹脂体9を積層させているが、これは単層であってもよい。硬化樹脂部7は、絶縁性の高い、エポキシ樹脂、ポリエステル樹脂などの熱硬化性樹脂からなる。   As shown in FIG. 2, the insulating tape 11 is a laminate in which layers are stacked in the thickness direction, and a composite resin body 9 in which a sheet body 5 made of fibers is sandwiched between cured resin portions 7 is formed as one layer unit. This is a fiber reinforced composite material laminate. In this embodiment, two layers of the composite resin body 9 are laminated, but this may be a single layer. The cured resin portion 7 is made of a thermosetting resin such as an epoxy resin or a polyester resin having a high insulating property.

図3を併せて参照すると、シート体5は、高い絶縁性と熱伝導性とを兼ね備える高強度絶縁性長繊維、例えば、アラミド繊維、ポリエチレン繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維からなる長繊維束4を少なくとも互いに熱的に接触するように、縦横に直交させて平織り固定させた織布である。ここで、長繊維束4は必要に応じて開繊処理されて帯状にした後に平織りされている。なお、長繊維束4は帯状でなくとも、その断面形状を円形や異形状としてもよく、シート体5の織り方は、例えば、綾織、朱子織であってもよい。更に、縦糸部2及び横糸部3は、互いに材質や太さなどを異なるようにしてもよく、それぞれの間隔、互いの交差角度などはシート体5に要求される機械強度によって適宜変更され得る。   Referring also to FIG. 3, the sheet body 5 is made of high-strength insulating long fibers that have both high insulating properties and thermal conductivity, such as aramid fibers, polyethylene fibers, and PBO (polyparaphenylene benzobisoxazole) fibers. This is a woven fabric in which the long fiber bundles 4 are fixed in plain weave so as to be orthogonal to each other in the vertical and horizontal directions so as to be in thermal contact with each other at least. Here, the long fiber bundle 4 is plain-woven after being subjected to fiber-spreading treatment as necessary to form a strip. In addition, the long fiber bundle 4 may not be a strip | belt shape, but the cross-sectional shape may be circular or irregular shape, and the weave of the sheet | seat body 5 may be a twill weave or a satin weave, for example. Further, the warp yarn portion 2 and the weft yarn portion 3 may be made of different materials, thicknesses, etc., and the interval, the crossing angle of each other, etc. can be appropriately changed according to the mechanical strength required for the sheet body 5.

再び、図2を参照すると、積層して隣り合う複合樹脂体9同士の間には、追加繊維8が分散配置されている。追加繊維8は、長繊維束4と同様に、絶縁性を有する熱伝導性の高い長繊維であって、これを短く切断した短繊維(チョップドストランド)として与えられている。   Referring to FIG. 2 again, the additional fibers 8 are dispersedly arranged between the composite resin bodies 9 stacked and adjacent to each other. Similar to the long fiber bundle 4, the additional fiber 8 is a long fiber having insulating properties and high thermal conductivity, and is provided as a short fiber (chopped strand) obtained by cutting this short fiber.

縦糸部2及び/又は横糸部3の長繊維束4は、その表面から突き出す起毛6を有し、硬化樹脂部7の内部において、複合樹脂体9の主面に略垂直方向に向けて延びている。起毛6は、長繊維束4と比較して細い径を有する線状体である。起毛6の1本1本は、隣接する複合樹脂体9に含まれる長繊維束4の表面から延びる他の起毛6と互いに接触し又は絡み合い、又は隣接する複合樹脂体9に含まれる長繊維束4に接触し、各複合樹脂体9内のシート体5同士を熱的に架橋している。   The long fiber bundle 4 of the warp yarn portion 2 and / or the weft yarn portion 3 has raised hairs 6 protruding from the surface thereof, and extends in a substantially vertical direction to the main surface of the composite resin body 9 inside the cured resin portion 7. Yes. The raising 6 is a linear body having a smaller diameter than the long fiber bundle 4. Each of the raised hairs 6 is in contact with or entangled with other raised hairs 6 extending from the surface of the long fiber bundle 4 included in the adjacent composite resin body 9, or the long fiber bundle included in the adjacent composite resin body 9 4, and the sheet bodies 5 in each composite resin body 9 are thermally cross-linked.

ここで、シート体5は、縦糸部2及び横糸部3の高い熱伝導性を有する長繊維束4により、その主面に沿った方向に高い熱伝導性を有している。更に、シート体5同士は高い熱伝導性を有する長繊維束4及び/又は起毛6を介して熱的に架橋されている。故に、絶縁テープ11はその主面に沿った方向のみならず、厚さ方向にも高い熱伝導性を有している。また、追加繊維8も起毛6を有し、上記したと同様に、熱的な架橋の密度を高め得る。   Here, the sheet body 5 has high thermal conductivity in the direction along the main surface by the long fiber bundle 4 having high thermal conductivity of the warp yarn portion 2 and the weft yarn portion 3. Further, the sheet bodies 5 are thermally cross-linked through the long fiber bundle 4 and / or the raised hair 6 having high thermal conductivity. Therefore, the insulating tape 11 has high thermal conductivity not only in the direction along the main surface but also in the thickness direction. Moreover, the additional fiber 8 also has the raising | fluff 6, and can increase the density of thermal bridge | crosslinking similarly to above-mentioned.

[第1の製造方法]
次に、上記した超電導コイル40の製造方法について、図4に沿って図5及び図6を適宜、用いて説明する。
[First manufacturing method]
Next, a method for manufacturing the above-described superconducting coil 40 will be described using FIG. 5 and FIG. 6 as appropriate along FIG.

まず、熱硬化性樹脂をシート体5に含浸させ、加熱乾燥させて半硬化した薄板状のプリプレグ9’(図5参照)を得る(S1:プリプレグ成形ステップ)。プリプレグ9’は後述するように、最終的に硬化させることで複合樹脂体9を与える。   First, the sheet body 5 is impregnated with a thermosetting resin, and is dried by heating to obtain a thin plate-like prepreg 9 '(see FIG. 5) (S1: prepreg molding step). As will be described later, the prepreg 9 ′ is finally cured to give the composite resin body 9.

続いて、図5に示すように、必要に応じて複数枚のプリプレグ9’を積層させていく(S2:積層ステップ)。積層させるプリプレグ9’の枚数は、機械強度と、絶縁テープ11としての絶縁性能とに必要とされる厚さによって決定される。故に、プリプレグ9’を積層させずに単一としてもよい。また、必要に応じて、プリプレグ9’の一方の主面上に追加繊維8を分散させるように配置し、これを挟んでプリプレグ9’を重ね合わせる。   Subsequently, as shown in FIG. 5, a plurality of prepregs 9 'are laminated as required (S2: lamination step). The number of prepregs 9 ′ to be laminated is determined by the thickness required for mechanical strength and insulation performance as the insulating tape 11. Therefore, a single prepreg 9 'may be used without being laminated. Further, if necessary, the additional fiber 8 is arranged to be dispersed on one main surface of the prepreg 9 ′, and the prepreg 9 ′ is overlapped with the additional fiber 8 interposed therebetween.

続いて、図6に示すように、プリプレグ9’の積層体に、ニードルパンチを施して長繊維束4及び/又は追加繊維8に起毛6を与える(S3:起毛ステップ)。ここで、ニードルパンチは、微小突起を有する針(ニードル)をプリプレグ9’の厚さ方向、すなわちシート体5の厚さ方向に突き刺し抜き取る動作を繰り返し与えて、長繊維束4及び/又は追加繊維8を引っ掛けるようにして起毛6を与えるものである。これにより、ニードルパンチを施す前のプリプレグ9’の積層体を示す図6(a)に対して、図6(b)に示すように、長繊維束4及び/又は追加繊維8の一部を分岐させて、プリプレグ9’の積層体に針の往復動の方向である厚さ方向に延びる起毛6を分肢形成させ、隣り合うシート体5同士を起毛6で架橋させ得るのである。また、追加繊維8は、ニードルパンチにより、プリプレグ9’の厚さ方向に向きを変化させられて、隣り合うシート体5の双方を熱的に架橋させ得る。   Then, as shown in FIG. 6, the laminated body of the prepreg 9 'is needle punched to give the raised fibers 6 to the long fiber bundle 4 and / or the additional fibers 8 (S3: raising step). Here, the needle punch repeatedly gives a needle (needle) having minute protrusions in the thickness direction of the prepreg 9 ′, that is, the thickness direction of the sheet body 5, and repeatedly removes the long fiber bundle 4 and / or the additional fibers. The raised hair 6 is given by hooking 8. Thereby, as shown in FIG. 6 (b), FIG. 6 (b) shows a part of the long fiber bundle 4 and / or the additional fiber 8 as compared with FIG. It is possible to divide the prepreg 9 ′ to form the raised hairs 6 extending in the thickness direction that is the direction of the reciprocating movement of the needles, and to bridge the adjacent sheet bodies 5 with the raised hairs 6. Further, the direction of the additional fiber 8 can be changed in the thickness direction of the prepreg 9 ′ by needle punching, and both the adjacent sheet bodies 5 can be thermally cross-linked.

続いて、起毛させたプリプレグ9’の積層体と超電導線材10とを重ね合わせるようにして巻軸30の外周面に巻回させる(S4:巻合ステップ)。最後に、この巻合わせたプリプレグ9’を加熱処理して樹脂7’を硬化させ、複合樹脂体9からなる絶縁テープ11を形成させて、超電導コイル40を得る(S5:硬化ステップ)。   Subsequently, the laminated body of the raised prepreg 9 'and the superconducting wire 10 are wound around the outer peripheral surface of the winding shaft 30 (S4: winding step). Finally, the wound prepreg 9 'is heat-treated to cure the resin 7' to form the insulating tape 11 made of the composite resin body 9 to obtain the superconducting coil 40 (S5: curing step).

以上、本実施例による絶縁テープ11は、高い熱伝導性を有する長繊維束4からなるシート体5をその厚さ方向に起毛させ、その主面に沿った方向に加え、厚さ方向にも高い熱伝導性を与えられる。つまり、絶縁テープ11及び超電導線材10を巻合わせた超電導コイル40は、軸方向及び周方向に高い熱伝導性を有し、また半径方向にも良好な熱伝導性を有するのである。故に、コイルの動作熱を良好に吸収し、超電導線材10及び絶縁テープ11の間で生じる熱応力を低減し、高い動作安定性を与える。また、熱膨張係数の小さい長繊維束4によれば、超電導コイル40の使用時の熱履歴に対して寸法変化が小さく、高い動作安定性を与えることとなる。   As described above, the insulating tape 11 according to the present embodiment raises the sheet body 5 made of the long fiber bundle 4 having high thermal conductivity in the thickness direction, and in addition to the direction along the main surface, also in the thickness direction. High thermal conductivity is given. That is, the superconducting coil 40 in which the insulating tape 11 and the superconducting wire 10 are wound has high thermal conductivity in the axial direction and the circumferential direction, and also has good thermal conductivity in the radial direction. Therefore, the operating heat of the coil is absorbed well, the thermal stress generated between the superconducting wire 10 and the insulating tape 11 is reduced, and high operating stability is given. Moreover, according to the long fiber bundle 4 with a small thermal expansion coefficient, a dimensional change is small with respect to the heat history at the time of use of the superconducting coil 40, and high operation stability will be given.

ここで、絶縁テープ11は、高い絶縁性を有するからその厚さを薄くでき得て、厚さ方向の熱伝導性を高め得る。その一方で、絶縁テープの機械強度を高めるべく厚さを増したとしても、厚さ方向の熱伝導性を損なうこともない。つまり、絶縁テープ11の厚さに依存せず、超電導コイル40の動作安定性が維持されるのである。   Here, since the insulating tape 11 has high insulating properties, the thickness thereof can be reduced, and the thermal conductivity in the thickness direction can be improved. On the other hand, even if the thickness is increased to increase the mechanical strength of the insulating tape, the thermal conductivity in the thickness direction is not impaired. That is, the operation stability of the superconducting coil 40 is maintained without depending on the thickness of the insulating tape 11.

なお、上記した実施例では、シート体5に織布を用いたが、図7に示すような、繊維14をフェルト状に集積させて固定させた不織布を用いてもよい。繊維14は、長繊維束4と同様に、絶縁性を有しつつ熱伝導性の高い高強度絶縁性長繊維からなる。詳細には、図7を参照すると、シート体5’の内部において、繊維14同士はランダムに交絡しながらも仮想平面P1に沿うようにして配置される。かかる構造では、所定の熱伝導性を付与するために形成させる起毛6の量を相対的に少なくでき、起毛ステップS3における作業時間を削減できる。   In the above-described embodiment, a woven fabric is used for the sheet body 5. However, as shown in FIG. 7, a nonwoven fabric in which fibers 14 are accumulated and fixed in a felt shape may be used. Similar to the long fiber bundle 4, the fibers 14 are made of high-strength insulating long fibers having insulating properties and high thermal conductivity. Specifically, referring to FIG. 7, the fibers 14 are arranged along the virtual plane P <b> 1 while being tangled at random inside the sheet body 5 ′. With such a structure, the amount of the raised hair 6 formed for imparting a predetermined thermal conductivity can be relatively reduced, and the working time in the raising step S3 can be reduced.

[第2の製造方法]
次に、超電導コイル40の他の製造方法について、図8に沿って説明する。
[Second manufacturing method]
Next, another method for manufacturing the superconducting coil 40 will be described with reference to FIG.

まず、織布によるシート体5を必要に応じて積層させていく(S11:積層ステップ)。積層させるシート体5の枚数は、機械的強度と絶縁テープ11として必要とされる絶縁性能とによって決定され、積層せずに単一のシート体5であってもよい。また、必要に応じて、シート体5の一方の主面上に追加繊維8を分散させるように配置し、これを挟んでシート体5を重ね合わせてもよい。   First, the sheet body 5 made of woven fabric is laminated as necessary (S11: lamination step). The number of sheet bodies 5 to be laminated is determined by the mechanical strength and the insulating performance required for the insulating tape 11, and may be a single sheet body 5 without being laminated. Further, if necessary, the additional fibers 8 may be arranged on one main surface of the sheet body 5 so as to be dispersed, and the sheet body 5 may be overlapped with the additional fibers 8 interposed therebetween.

続いて、積層させたシート体5に、ニードルパンチを施して長繊維束4及び/又は追加繊維8に起毛6を与える(S12:起毛ステップ)。起毛ステップS12については、第1の製造方法で説明した起毛ステップS3と同様である。なお、追加繊維8を挿入すると、シート体5は樹脂7’を含まず、追加繊維8をシート体5の厚さ方向に起立させ得てシート体5同士の架橋を促進させ、厚さ方向の熱伝導性を容易に向上できる。   Subsequently, the laminated sheet body 5 is needle punched to give the raised fibers 6 to the long fiber bundle 4 and / or the additional fibers 8 (S12: raised step). The raising step S12 is the same as the raising step S3 described in the first manufacturing method. When the additional fiber 8 is inserted, the sheet body 5 does not include the resin 7 ′, and the additional fiber 8 can be erected in the thickness direction of the sheet body 5 to promote cross-linking between the sheet bodies 5, and in the thickness direction. Thermal conductivity can be easily improved.

続いて、積層、起毛させたシート体5に、熱硬化性樹脂を含浸させ、加熱乾燥させて半硬化したプリプレグ9’(図6(b)参照)の積層体を得る(S13:プリプレグ形成ステップ)。さらに、プリプレグ9’と超電導線材10とを重ね合わせるように巻軸30の外周面に巻回させる(S14:巻合ステップ)。最後に、この巻合わせたプリプレグ9’を加熱処理して樹脂7’を硬化させ、複合樹脂体9からなる絶縁テープ11を形成させるとともに、超電導コイル40を得る(S15:硬化ステップ)。   Subsequently, the laminated and raised sheet body 5 is impregnated with a thermosetting resin and dried by heating to obtain a semi-cured prepreg 9 ′ (see FIG. 6B) (S13: prepreg forming step). ). Further, the prepreg 9 ′ and the superconducting wire 10 are wound around the outer peripheral surface of the winding shaft 30 so as to overlap (S 14: winding step). Finally, the wound prepreg 9 'is heat-treated to cure the resin 7' to form the insulating tape 11 made of the composite resin body 9, and to obtain the superconducting coil 40 (S15: curing step).

かかる製造方法によっても、第1の製造方法と同様に、超電導線材10及び絶縁テープ11の間で生じる熱応力を低減でき、高い動作安定性を有する超電導コイル40を得ることができる。特に、シート体5への熱硬化性樹脂の含浸に先だって起毛6を形成させ、起毛6の量を比較的容易に増加させ得て、シート体5同士の厚さ方向の熱伝導率を容易に調整できる。   Also by this manufacturing method, similarly to the first manufacturing method, the thermal stress generated between the superconducting wire 10 and the insulating tape 11 can be reduced, and the superconducting coil 40 having high operational stability can be obtained. In particular, the nap 6 is formed prior to the impregnation of the thermosetting resin into the sheet body 5, and the amount of the nap 6 can be increased relatively easily, so that the thermal conductivity in the thickness direction between the sheet bodies 5 can be easily achieved. Can be adjusted.

なお、第1の製造方法と同様に、織布の代わりに繊維14をフェルト状に集積させて固定させた不織布(図7参照)をシート体5’として用いてもよい。   Similar to the first manufacturing method, a non-woven fabric (see FIG. 7) in which fibers 14 are accumulated and fixed instead of a woven fabric may be used as the sheet body 5 ′.

ここまで本発明による代表的実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく種々の代替実施例及び改変例を見出すことができるであろう。例えば、複合線材20は、超電導線材10の周囲を絶縁テープ11によって被覆した帯状体とした後に、巻軸30の外周面に巻回してもよい。   Up to this point, representative embodiments and modifications based thereon have been described. However, the present invention is not necessarily limited thereto, and those skilled in the art will understand the gist of the present invention or the appended claims. Various alternative embodiments and modifications may be found without departing from the invention. For example, the composite wire 20 may be wound around the outer peripheral surface of the winding shaft 30 after making the periphery of the superconducting wire 10 covered with the insulating tape 11.

4 長繊維束
5 シート体
6 起毛
7 硬化樹脂部
7’ 樹脂
8 追加繊維
9 複合樹脂体
9’ プリプレグ
10 超電導線材
11 絶縁テープ
30 巻軸
40 超電導コイル
4 Long fiber bundle 5 Sheet body 6 Brushed 7 Cured resin portion 7 'Resin 8 Additional fiber 9 Composite resin body 9' Prepreg 10 Superconducting wire 11 Insulating tape 30 Spindle 40 Superconducting coil

Claims (8)

超電導コイルの製造方法であって、
熱伝導性の高強度絶縁性長繊維からなる織布又は不織布のシート体に硬化樹脂を塗布し含浸させてこれを半硬化させたプリプレグを得るプリプレグ形成ステップと、
前記プリプレグ中の前記シート体を起毛させる起毛ステップと、
前記プリプレグを超電導線材とともに巻合わせる巻合ステップと、
前記硬化樹脂を硬化させる硬化ステップと、を含むことを特徴とする超電導コイルの製造方法。
A method of manufacturing a superconducting coil, comprising:
A prepreg forming step for obtaining a prepreg obtained by semi-curing a cured resin by applying and impregnating a cured resin to a woven fabric or a nonwoven fabric sheet composed of thermally conductive high-strength insulating long fibers;
A raising step for raising the sheet body in the prepreg;
A winding step of winding the prepreg together with the superconducting wire;
And a curing step for curing the cured resin.
前記起毛ステップは、前記プリプレグの複数を重ね合わせて前記高強度絶縁性長繊維で前記シート体同士を架橋させるように起毛させるステップであることを特徴とする請求項1記載の超電導コイルの製造方法。   The method for producing a superconducting coil according to claim 1, wherein the raising step is a step of raising a plurality of the prepregs so that the sheet bodies are bridged with the high-strength insulating long fibers. . 前記起毛ステップは、前記プリプレグを重ね合わせるにあたって、前記高強度絶縁性長繊維からなる追加繊維をその間に分散させるステップを含むことを特徴とする請求項2記載の超電導コイルの製造方法。   3. The method of manufacturing a superconducting coil according to claim 2, wherein the raising step includes a step of dispersing additional fibers made of the high-strength insulating long fibers between the prepregs. 超電導コイルの製造方法であって、
熱伝導性の高強度絶縁性長繊維からなる織布又は不織布のシート体を起毛させる起毛ステップと、
前記シート体に硬化樹脂を塗布し含浸させてこれを半硬化させたプリプレグを得るプリプレグ形成ステップと、
前記プリプレグを超電導線材とともに巻合わせる巻合ステップと、
前記硬化樹脂を硬化させる硬化ステップと、を含むことを特徴とする超電導コイルの製造方法。
A method of manufacturing a superconducting coil, comprising:
A raising step for raising a woven or non-woven sheet made of thermally conductive high-strength insulating long fibers;
A prepreg forming step of obtaining a prepreg obtained by applying and impregnating a cured resin to the sheet body and semi-curing it;
A winding step of winding the prepreg together with the superconducting wire;
And a curing step for curing the cured resin.
前記起毛ステップは、前記シート体の複数を重ね合わせて前記高強度絶縁性長繊維でこれらを架橋させるように起毛させるステップであることを特徴とする請求項4記載の超電導コイルの製造方法。   5. The method of manufacturing a superconducting coil according to claim 4, wherein the raising step is a step of raising a plurality of the sheet bodies so as to be bridged with the high-strength insulating long fibers. 前記起毛ステップは、前記シート体を重ね合わせるにあたって、前記高強度絶縁性長繊維からなる追加繊維をその間に分散させるステップを含むことを特徴とする請求項5記載の超電導コイルの製造方法。   6. The method of manufacturing a superconducting coil according to claim 5, wherein the raising step includes a step of dispersing additional fibers made of the high-strength insulating long fibers therebetween when the sheet bodies are overlapped. 前記起毛ステップは、前記シート体を貫くようにニードルを抜き差しし起毛処理するステップであることを特徴とする請求項1乃至6のうちの1つに記載の超電導コイルの製造方法。   The method of manufacturing a superconducting coil according to claim 1, wherein the raising step is a step of raising and removing a needle so as to penetrate the sheet body. 請求項1乃至7のうちのいずれか1つの製造方法によって製造されることを特徴とする超電導コイル。   A superconducting coil manufactured by a manufacturing method according to any one of claims 1 to 7.
JP2014013632A 2014-01-28 2014-01-28 Superconducting coil and manufacturing method thereof Expired - Fee Related JP6297845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013632A JP6297845B2 (en) 2014-01-28 2014-01-28 Superconducting coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013632A JP6297845B2 (en) 2014-01-28 2014-01-28 Superconducting coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015141989A true JP2015141989A (en) 2015-08-03
JP6297845B2 JP6297845B2 (en) 2018-03-20

Family

ID=53772175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013632A Expired - Fee Related JP6297845B2 (en) 2014-01-28 2014-01-28 Superconducting coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6297845B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194252A (en) * 1985-02-19 1986-08-28 日東紡績株式会社 Inorganic fiber fabric and its production
JPS625923U (en) * 1985-06-28 1987-01-14
US5217796A (en) * 1985-02-19 1993-06-08 Nitto Boseki Co., Ltd. Woven material of inorganic fiber and process for making the same
JPH07130532A (en) * 1993-10-29 1995-05-19 Toshiba Corp Superconducting coil
JPH115856A (en) * 1997-04-25 1999-01-12 Sumitomo Bakelite Co Ltd Composite prepreg and production of laminated plate
JPH11228717A (en) * 1998-02-19 1999-08-24 Sumitomo Bakelite Co Ltd Prepreg and laminate
JP2008130785A (en) * 2006-11-21 2008-06-05 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with the same
JP2008140905A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2008140900A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2011014830A (en) * 2009-07-06 2011-01-20 Sumitomo Electric Ind Ltd Method of manufacturing superconductive coil body, and superconductive coil body
JP2011025626A (en) * 2009-07-29 2011-02-10 Nikkiso Co Ltd Method for producing fiber-reinforced resin composite material
JP2011108918A (en) * 2009-11-19 2011-06-02 Fujikura Ltd Superconductive coil
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
JP2012186242A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat radiation substrate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194252A (en) * 1985-02-19 1986-08-28 日東紡績株式会社 Inorganic fiber fabric and its production
US5217796A (en) * 1985-02-19 1993-06-08 Nitto Boseki Co., Ltd. Woven material of inorganic fiber and process for making the same
JPS625923U (en) * 1985-06-28 1987-01-14
JPH07130532A (en) * 1993-10-29 1995-05-19 Toshiba Corp Superconducting coil
JPH115856A (en) * 1997-04-25 1999-01-12 Sumitomo Bakelite Co Ltd Composite prepreg and production of laminated plate
JPH11228717A (en) * 1998-02-19 1999-08-24 Sumitomo Bakelite Co Ltd Prepreg and laminate
JP2008130785A (en) * 2006-11-21 2008-06-05 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with the same
JP2008140905A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2008140900A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2011014830A (en) * 2009-07-06 2011-01-20 Sumitomo Electric Ind Ltd Method of manufacturing superconductive coil body, and superconductive coil body
JP2011025626A (en) * 2009-07-29 2011-02-10 Nikkiso Co Ltd Method for producing fiber-reinforced resin composite material
JP2011108918A (en) * 2009-11-19 2011-06-02 Fujikura Ltd Superconductive coil
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
JP2012186242A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat radiation substrate

Also Published As

Publication number Publication date
JP6297845B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
US7973243B2 (en) Coil insulator, armature coil insulated by the coil insulator and electrical rotating machine having the armature coil
US20230170756A1 (en) Electric Rotating Machine, Electric Motor, or Liquid Pump with Air Gap Sleeve
US20210021175A1 (en) Can for an electric machine made from a fiber composite material, electric machine, and production method
JP5993342B2 (en) Composite container manufacturing method and composite container manufacturing system
US20150123760A1 (en) Method and design for stabilizing conductors in a coil winding
CN116214956A (en) Materials comprising shape memory alloy wires and methods of making these materials
US20160265157A1 (en) Structured flock fiber reinforced layer
JP5295899B2 (en) Manufacturing method of fiber reinforced resin composite material
WO2015119013A1 (en) Superconductive coil
JP6297845B2 (en) Superconducting coil and manufacturing method thereof
JP6297844B2 (en) Manufacturing method of superconducting coil winding shaft
TWI783004B (en) Core-sheath composite yarn for fiber-reinforced resin and fiber-reinforced resin using same
JP5993343B2 (en) Composite container manufacturing method and composite container manufacturing system
KR20200141725A (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
JP2013143460A (en) High-temperature superconducting coil and method of manufacturing the same
US20180077756A1 (en) Strip-shaped carbon heating filament and method for its production
JP6490413B2 (en) Fiber reinforced composite shaft
RU2001111395A (en) HIGH VOLTAGE INSULATION SYSTEM
WO2019168037A1 (en) Anisotropic thermal conductive resin fiber, anisotropic thermal conductive resin member, and manufacturing method of these
CN106710654A (en) Basalt fiber-based heat-insulating layer for nuclear radiation protection
JPH11343177A (en) High temperature pressure molding furnace member consisting of carbon fiber reinforced carbon composite material and its production
CN215662205U (en) Building composite layer cloth based on carbon fiber cloth
JP2011179587A (en) Pressure vessel
JP2011144840A (en) Pressure vessel
JPS58123704A (en) Molded coil impregnated with resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180222

R150 Certificate of patent or registration of utility model

Ref document number: 6297845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees