JP2009188108A - Superconductive coil and manufacturing method thereof - Google Patents

Superconductive coil and manufacturing method thereof Download PDF

Info

Publication number
JP2009188108A
JP2009188108A JP2008025336A JP2008025336A JP2009188108A JP 2009188108 A JP2009188108 A JP 2009188108A JP 2008025336 A JP2008025336 A JP 2008025336A JP 2008025336 A JP2008025336 A JP 2008025336A JP 2009188108 A JP2009188108 A JP 2009188108A
Authority
JP
Japan
Prior art keywords
superconducting
tape wire
coil
tape
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008025336A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Naoki Hirano
直樹 平野
Koji Shikimachi
浩二 式町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Chubu Electric Power Co Inc
Original Assignee
International Superconductivity Technology Center
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Chubu Electric Power Co Inc filed Critical International Superconductivity Technology Center
Priority to JP2008025336A priority Critical patent/JP2009188108A/en
Publication of JP2009188108A publication Critical patent/JP2009188108A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive coil capable of appropriately holding an allowable current value in the superconductive coil by reducing the tensile stress of a superconductive layer caused by a difference in the thermal coefficient of expansion between the substrate of a superconductive tape wire and a reinforced tape wire, when the superconductive coil is operated under a low-temperature atmosphere. <P>SOLUTION: The superconductive tape wire 11 and the reinforced tape wire 21 are laminated on a first electrode terminal 34 provided at a winding core 33 of a roll frame 31 for connecting its starting end, the roll frame 31 is rotated under a low-temperature atmosphere, and the superconductive tape wire 11 and the reinforced tape wire 21 are rewound from a bobbin 45 and a bobbin 47, respectively, and taken up on an outer-periphery surface of the winding core 33. After completing winding both the superconductive tape wire 11 and reinforced tape wire 21, termination sections of both the tape wires 11, 21 are connected to a second electrode terminal 35. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば超電導電力貯蔵装置、磁気共鳴画像診断装置、核磁気共鳴装置、磁気浮上装置等の各種の機器に用いられる超電導コイル及びその製造方法に関する。   The present invention relates to a superconducting coil used in various devices such as a superconducting power storage device, a magnetic resonance imaging diagnostic device, a nuclear magnetic resonance device, and a magnetic levitation device, and a method for manufacturing the same.

巻枠の巻芯に超電導テープ線材を巻回して製造された超電導コイルに通電した場合、図10(a)に示すように、コイルCに流れる電流が円環状になり、この通電電流によりコイルCの内側に磁束が発生する。この磁束により、図10(b)に示すようにコイルCにはローレンツ力がコイルCの半径方向外方に作用し、コイルCにフープ応力が生じ、この応力によってコイルCにはその長手方向に引張応力が作用する。この引張応力が作用すると、図11に示すように応力(歪)を零とした場合の超電導コイルの許容電流値を1とすると、引張応力が例えば0.2%の場合には、若干電流が増加するがそれよりも引張応力が大きくなると、許容電流値が低下する。反対に、コイルCに圧縮応力が作用する場合にはその圧縮応力の増大に伴って許容電流値が低下する。   When a superconducting coil manufactured by winding a superconducting tape wire around a winding core is energized, as shown in FIG. 10A, the current flowing in the coil C becomes an annular shape, and this energizing current causes the coil C to Magnetic flux is generated inside. Due to this magnetic flux, Lorentz force acts on the coil C outward in the radial direction of the coil C as shown in FIG. 10B, and a hoop stress is generated in the coil C. This stress causes the coil C to move in the longitudinal direction. Tensile stress acts. When this tensile stress is applied, assuming that the allowable current value of the superconducting coil is 1 when the stress (strain) is zero as shown in FIG. 11, when the tensile stress is 0.2%, for example, a slight current is applied. When the tensile stress increases more than that, the allowable current value decreases. On the contrary, when compressive stress acts on the coil C, the allowable current value decreases as the compressive stress increases.

前記の問題を解決するために、特許文献1には、次のような技術が提案されている。即ち、可撓性のあるテープ状の基材上に酸化物超電導層を形成し、前記酸化物超電導層が基材の長手方向に関して圧縮の予歪を有しているテープ状の酸化物超電導線及びこの超電導線を巻芯に巻回した超電導コイルが提案されている。そして、超電導コイルの通電時に、前述したコイルに作用するフープ応力によって前記酸化物超電導層に引張応力が作用した場合に、前記酸化物超電導層の圧縮の予歪が相殺されて、酸化物超電導層の歪が打ち消され、許容電流値が低下するのを防止するようになっている。
特開平3−138817号公報
In order to solve the above problem, Patent Document 1 proposes the following technique. That is, an oxide superconducting layer is formed on a flexible tape-like base material, and the oxide superconducting layer has a compression pre-strain in the longitudinal direction of the base material. And a superconducting coil in which this superconducting wire is wound around a core has been proposed. When a tensile stress acts on the oxide superconducting layer due to the hoop stress acting on the coil when the superconducting coil is energized, the compressive prestrain of the oxide superconducting layer is offset, and the oxide superconducting layer The distortion is canceled and the allowable current value is prevented from decreasing.
Japanese Patent Laid-Open No. 3-138817

ところが、特許文献1に開示された酸化物超電導線は、テープ状の基材の片面に酸化物超電導層を積層した構成及び前記酸化物超電導層の表面に安定化層を形成した構成を対象としているので、これ以外の構成の酸化物超電導線に適用可能な技術が望まれていた。これについて、以下に説明する。   However, the oxide superconducting wire disclosed in Patent Document 1 is intended for a configuration in which an oxide superconducting layer is laminated on one side of a tape-like substrate and a configuration in which a stabilization layer is formed on the surface of the oxide superconducting layer. Therefore, a technique applicable to oxide superconducting wires having other configurations has been desired. This will be described below.

超電導コイルの能力を向上させるために、該コイルに通電される電流は、増大する必要がある。この通電電流の許容値が高くなると、前述したフープ応力も大きくなり、コイルに作用する引張応力も大きくなる。近年、超電導テープ線材を、例えばハステロイ等の引張強度に優れたテープ状の基板と、該基板の片面に形成された超電導層と、該超電導層の表面に形成された安定化層とにより構成している。又、カーボンファイバーを平織してエポキシ樹脂等で扁平状に一体形成し、この補強シート材を裁断して引張強度に優れた補強テープ線材を製造する。そして、巻枠の巻芯に取り付けられた第1電極端子に対し、超電導テープ線材及び前記補強テープ線材の始端部を連結した後、前記巻芯に対し前記両テープ線材を積層状態で共巻きし、終端部をコイル基板に取り付けられた第2電極端子に連結することにより、前記フープ応力によって発生するコイルの引張応力を抑制する対策が考えられる。   In order to improve the performance of the superconducting coil, the current passed through the coil needs to increase. When the allowable value of the energization current is increased, the above-described hoop stress is also increased, and the tensile stress acting on the coil is also increased. In recent years, a superconducting tape wire is composed of a tape-like substrate having excellent tensile strength such as Hastelloy, a superconducting layer formed on one side of the substrate, and a stabilizing layer formed on the surface of the superconducting layer. ing. Further, a plain weave of carbon fiber is integrally formed in a flat shape with an epoxy resin or the like, and this reinforcing sheet material is cut to produce a reinforcing tape wire excellent in tensile strength. Then, after connecting the superconducting tape wire and the starting end of the reinforcing tape wire to the first electrode terminal attached to the core of the winding frame, the both tape wires are wound together in a laminated state on the core. A measure to suppress the tensile stress of the coil generated by the hoop stress is conceivable by connecting the terminal portion to the second electrode terminal attached to the coil substrate.

しかしながら、前記超電導テープ線材と補強テープ線材を共巻した超電導コイルには、次のような新たな問題があることが判明した。すなわち、超電導コイルが作動されて常温状態から極低温状態に切り替えられると、超電導テープ線材のハステロイよりなる基板の冷却時の熱収縮率が大きく、一方、カーボンファイバーよりなる補強テープ線材の熱収縮率が小さいので、超電導テープ線材の基板の冷熱収縮によって収縮しようとする超電導層の収縮が補強テープ線材によって抑制され、該超電導層に引張応力が負荷される。従って、超電導コイルの許容電流値が低下し、超電導コイルに十分な電流を流して高磁場化あるいはエネルギー高密度化を図ることができず、コイルのコンパクト化、低コスト化を十分に図ることができないという問題があった。   However, it has been found that the superconducting coil in which the superconducting tape wire and the reinforcing tape wire are wound together has the following new problems. That is, when the superconducting coil is operated and switched from the normal temperature state to the cryogenic state, the thermal contraction rate of the superconducting tape wire hastelloy when cooling the substrate is large, while the reinforcing tape wire material made of carbon fiber has a heat shrinkage rate. Therefore, the shrinkage of the superconducting layer, which tends to shrink due to the thermal contraction of the substrate of the superconducting tape wire, is suppressed by the reinforcing tape wire, and a tensile stress is applied to the superconducting layer. Therefore, the allowable current value of the superconducting coil decreases, and it is not possible to increase the magnetic field or the energy density by supplying a sufficient current to the superconducting coil, and it is possible to sufficiently reduce the size and cost of the coil. There was a problem that I could not.

本発明の目的は、前記従来の技術に存する問題点を解消して、超電導コイルが低温雰囲気下において運転される場合に、超電導テープ線材の基板と補強テープ線材の熱膨張率の相違に起因する超電導層の引張応力をなくして、超電導コイルの許容電流値を適正に保持することができる超電導コイル及びその製造方法を提供することにある。   The object of the present invention is due to the difference in the thermal expansion coefficient between the substrate of the superconducting tape wire and the reinforcing tape wire when the superconducting coil is operated in a low temperature atmosphere, eliminating the problems existing in the prior art. An object of the present invention is to provide a superconducting coil that can eliminate the tensile stress of the superconducting layer and appropriately maintain the allowable current value of the superconducting coil, and a method of manufacturing the same.

上記問題点を解決するために、請求項1に記載の発明は、テープ状の基板の片面に超電導層を形成してなる超電導テープ線材と、前記基板の熱膨張係数よりも熱膨張係数が小さく設定された補強テープ線材と、コイル基板、巻芯、第1電極端子及び第2電極端子を備えた巻枠とにより構成された超電導コイルであって、低温雰囲気下において、前記巻枠の巻芯の外周面に対し前記超電導テープ線材及び補強テープ線材が積層状態で巻回されるとともに、両テープ線材の始端部及び終端部が前記第1電極端子及び前記第2電極端子に連結されていることを要旨とする。   In order to solve the above problems, the invention according to claim 1 is directed to a superconducting tape wire formed by forming a superconducting layer on one side of a tape-like substrate, and a thermal expansion coefficient smaller than that of the substrate. A superconducting coil comprising a set reinforcing tape wire and a coil substrate, a winding core, and a winding frame provided with a first electrode terminal and a second electrode terminal, wherein the winding core is formed in a low temperature atmosphere. The superconducting tape wire and the reinforcing tape wire are wound on the outer peripheral surface of the tape in a laminated state, and the start and end portions of both tape wires are connected to the first electrode terminal and the second electrode terminal. Is the gist.

請求項2に記載の発明は、請求項1において、前記基板はハステロイ、ステンレススチール及びニッケル・タングステン合金の材料の群から一種選択され、前記補強テープ線材は、テープ状の樹脂に対し多数本のカーボンファイバー又はガラスファイバーを長手方向に埋設して構成されていることを要旨とする。   According to a second aspect of the present invention, in the first aspect, the substrate is selected from the group of materials of Hastelloy, stainless steel, and nickel-tungsten alloy, and the reinforcing tape wire includes a plurality of tape-shaped resins. The gist is that carbon fiber or glass fiber is embedded in the longitudinal direction.

請求項3に記載の発明は、テープ状の基板の片面に超電導層を形成してなる超電導テープ線材と、前記基板の熱膨張係数よりも熱膨張係数が小さく設定された補強テープ線材と、コイル基板、巻芯、第1電極端子及び第2電極端子を備えた巻枠とを用いた超電導コイルの製造方法において、低温雰囲気下において、前記巻枠の巻芯の外周面に対し前記超電導テープ線材及び補強テープ線材を積層状態で巻回する工程と、両テープ線材の始端部と終端部を前記第1及び第2電極端子に連結する工程と、前記電導コイルを低温雰囲気から常温状態に戻す工程とを含むことを要旨とする。   According to a third aspect of the present invention, there is provided a superconducting tape wire formed by forming a superconducting layer on one side of a tape-shaped substrate, a reinforcing tape wire having a thermal expansion coefficient set smaller than that of the substrate, a coil In a method of manufacturing a superconducting coil using a substrate, a winding core, and a winding frame provided with a first electrode terminal and a second electrode terminal, the superconducting tape wire material with respect to the outer peripheral surface of the winding core of the winding frame in a low temperature atmosphere And a step of winding the reinforcing tape wire in a laminated state, a step of connecting the start and end portions of both tape wires to the first and second electrode terminals, and a step of returning the conductive coil from a low temperature atmosphere to a normal temperature state Including the above.

請求項4に記載の発明は、請求項3において、前記巻枠の第1電極端子に対し前記超電導テープ線材及び補強テープ線材の始端部を連結した後、低温雰囲気下において、両テープ線材を前記巻芯の外周面に積層状態で巻回し、両テープ線材が低温に冷却されている状態で、両テープ線材の終端部を第2電極端子に連結することを要旨とする。   The invention according to claim 4 is the invention according to claim 3, wherein after connecting the first end of the superconducting tape wire and the reinforcing tape wire to the first electrode terminal of the winding frame, the two tape wires are connected in a low temperature atmosphere. The gist of the invention is to wind around the outer peripheral surface of the winding core in a laminated state and to connect the end portions of both tape wires to the second electrode terminal in a state where both tape wires are cooled to a low temperature.

請求項5に記載の発明は、請求項4において、低温雰囲気下の温度は64〜77Kの範囲に設定されていることを要旨とする。
(作用)
本発明によれば、低温雰囲気下において、テープ状の基板の片面に超電導層を形成してなる超電導テープ線材と、前記基板の熱膨張係数よりも熱膨張係数が小さく設定された補強テープ線材を積層状態で巻枠の巻芯に巻回し、両テープ線材の始端部及び終端部を巻枠の第1及び第2電極端子に連結した。このため、超電導コイルが作動されて常温状態から低温状態に移行した状態において、超電導テープ線材及び補強テープ線材が共に適正に冷熱収縮され、超電導テープ線材の基板の冷却による収縮に追従して、補強テープ線材も適正に冷熱収縮され、超電導層の冷熱収縮が適正に行われ、該超電導層に前記補強テープ線材による引張応力が負荷されるのを防止することができる。
The gist of the invention described in claim 5 is that, in claim 4, the temperature under the low temperature atmosphere is set in a range of 64 to 77K.
(Function)
According to the present invention, in a low temperature atmosphere, a superconducting tape wire formed by forming a superconducting layer on one side of a tape-like substrate, and a reinforcing tape wire whose thermal expansion coefficient is set smaller than the thermal expansion coefficient of the substrate. It wound around the core of the winding frame in a laminated state, and connected the first end and the second end of the winding frame to the first and second electrode terminals of both tape wires. For this reason, in the state where the superconducting coil is operated and shifted from the normal temperature state to the low temperature state, both the superconducting tape wire and the reinforcing tape wire are properly cooled and contracted, and the superconducting tape wire follows the shrinkage caused by the cooling of the substrate and is reinforced. The tape wire is also properly cooled and contracted, and the superconducting layer is appropriately cooled and contracted, so that it is possible to prevent the superconducting layer from being loaded with tensile stress due to the reinforcing tape wire.

本発明は、超電導コイルが低温雰囲気下において運転される場合に、超電導テープ線材の基板と補強テープ線材の熱膨張率の相違に起因する超電導層の引張応力をなくして、超電導コイルの許容電流値を適正に保持することができる。   The present invention eliminates the tensile stress of the superconducting layer due to the difference in thermal expansion coefficient between the substrate of the superconducting tape wire and the reinforcing tape wire when the superconducting coil is operated in a low temperature atmosphere, and the allowable current value of the superconducting coil. Can be held properly.

以下、本発明を具体化した超電導コイルの製造方法の一実施形態を図1〜図8にしたがって説明する。
超電導コイルを製造するための超電導テープ線材11、補強テープ線材21、巻枠31及び製造装置41について順次説明する。
An embodiment of a method for manufacturing a superconducting coil embodying the present invention will be described below with reference to FIGS.
The superconducting tape wire 11, the reinforcing tape wire 21, the winding frame 31, and the manufacturing apparatus 41 for manufacturing the superconducting coil will be sequentially described.

最初に、図1及び図2に基づいて超電導テープ線材11の構造について説明する。
この超電導テープ線材11を構成するテープ状の基板12は、引張強度に優れたハステロイにより形成されている。前記基板12の片面にはGd−Zr−Oよりなる第1中間層13がイオンビームアシスト蒸着法等の気相法により形成されている。該第1中間層13の表面には酸化セシウム(CeO)よりなる第2中間層14がPLD(Pulse Laser Deposition )蒸着法又はEB(Electron Beam )蒸着法により形成されている。前記第2中間層14の表面には、超電導層15がCVD(Chemical Vapor Deposition )蒸着法,PLD蒸着法あるいはMOD(Metal-organic deposition)蒸着法により形成されている。この超電導層15の材料としては、イットリウム系(Y,Gd等)によるY−Ba−Cu−O系等がある。それらは400〜1000℃の熱処理によって超電導特性を発現する。さらに、前記超電導層15の表面には、安定化層としても機能する銀よりなる保護層16が蒸着により形成されている。この実施形態においては、前記保護層16の表面には銅よりなる安定化層17がAgを含有すハンダ18により接着されている。
First, the structure of the superconducting tape wire 11 will be described with reference to FIGS. 1 and 2.
The tape-shaped substrate 12 constituting the superconducting tape wire 11 is formed of Hastelloy having excellent tensile strength. A first intermediate layer 13 made of Gd 2 —Zr 2 —O 7 is formed on one surface of the substrate 12 by a vapor phase method such as an ion beam assisted vapor deposition method. A second intermediate layer 14 made of cesium oxide (CeO 2 ) is formed on the surface of the first intermediate layer 13 by a PLD (Pulse Laser Deposition) vapor deposition method or an EB (Electron Beam) vapor deposition method. A superconducting layer 15 is formed on the surface of the second intermediate layer 14 by a CVD (Chemical Vapor Deposition) vapor deposition method, a PLD vapor deposition method or a MOD (Metal-organic deposition) vapor deposition method. As the material of the superconducting layer 15, there is a yttrium-based (Y, Gd, etc.) by Y 1 -Ba 2 -Cu 3 -O x system or the like. They develop superconducting properties by heat treatment at 400-1000 ° C. Further, a protective layer 16 made of silver which also functions as a stabilizing layer is formed on the surface of the superconducting layer 15 by vapor deposition. In this embodiment, a stabilization layer 17 made of copper is bonded to the surface of the protective layer 16 by solder 18 containing Ag.

この実施形態においては、前記超電導テープ線材11の幅寸法を例えば10mmとしている。又、前記基板12、第1中間層13、第2中間層14、超電導層15、保護層16及び安定化層17の各厚さ寸法を順に、50〜100μm、0.5〜1μm、0.5〜1μm、1〜2μm、3〜5μm、50〜200μmとしている。   In this embodiment, the width dimension of the superconducting tape wire 11 is, for example, 10 mm. The thickness dimensions of the substrate 12, the first intermediate layer 13, the second intermediate layer 14, the superconducting layer 15, the protective layer 16 and the stabilizing layer 17 are sequentially set to 50 to 100 μm, 0.5 to 1 μm,. 5 to 1 μm, 1 to 2 μm, 3 to 5 μm, and 50 to 200 μm.

前記補強テープ線材21は図1に示すように形成されている。この補強テープ線材21は図3に示すように多数本のカーボンファイバー22を扁平状に平織して幅広い帯状のファイバーシートを形成し、このシートを図1に示すように所定幅のテープ状に裁断して製造される。   The reinforcing tape wire 21 is formed as shown in FIG. As shown in FIG. 3, the reinforcing tape wire 21 forms a wide belt-like fiber sheet by flat weaving a large number of carbon fibers 22 and cuts the sheet into a tape having a predetermined width as shown in FIG. Manufactured.

この実施形態においては、前記補強テープ線材21の幅寸法を例えば10mm、厚さ寸法を100〜200μmとしている。前記補強テープ線材21の熱膨張係数は、後に補強テープ線材21に含浸されるエポキシ樹脂23ではなくカーボンファイバー22の熱膨張係数に左右され、該カーボンファイバー22の熱膨張係数は、前記超電導テープ線材11の基板12を形成するハステロイの熱膨張係数よりも小さい。   In this embodiment, the reinforcing tape wire 21 has a width dimension of, for example, 10 mm and a thickness dimension of 100 to 200 μm. The coefficient of thermal expansion of the reinforcing tape wire 21 depends on the coefficient of thermal expansion of the carbon fiber 22 instead of the epoxy resin 23 that is later impregnated in the reinforcing tape wire 21, and the coefficient of thermal expansion of the carbon fiber 22 is determined by the superconducting tape wire. 11 is smaller than the thermal expansion coefficient of Hastelloy forming the substrate 12.

次に、前記巻枠31について説明する。この巻枠31は図4に示すように絶縁性を有するFRP等の強化プラスチックよりなるコイル基板32の片面に対し、同じくFRP等の強化プラスチックよりなる円筒状の巻芯33を連結するとともに、前記巻芯33の外周面に第1電極端子34を取り付け、前記コイル基板32の外周側に第2電極端子35を取り付けて構成されている。   Next, the reel 31 will be described. As shown in FIG. 4, the winding frame 31 connects a cylindrical core 33 made of reinforced plastic such as FRP to one side of a coil substrate 32 made of reinforced plastic such as FRP having insulating properties, and A first electrode terminal 34 is attached to the outer peripheral surface of the winding core 33, and a second electrode terminal 35 is attached to the outer peripheral side of the coil substrate 32.

次に、図5〜図7に基づいて超電導コイルの製造装置41について説明する。
この製造装置41のケース42には、図5及び図6に示すように前記巻枠31を所定位置において回転させるためのモータ43を備えた巻芯回転機構部44が設けられている。同じくケース42には図6に示すように前記超電導テープ線材11をリール状に巻き取ったボビン45を所定位置において回転可能に支持するボビン支持軸46が備えられている。さらに、前記ケース42には前記補強テープ線材21を巻き取ったボビン47を所定位置において回転可能に支持するボビン支持軸48が装着されている。
Next, the superconducting coil manufacturing apparatus 41 will be described with reference to FIGS.
As shown in FIGS. 5 and 6, the case 42 of the manufacturing apparatus 41 is provided with a core rotation mechanism unit 44 including a motor 43 for rotating the winding frame 31 at a predetermined position. Similarly, as shown in FIG. 6, the case 42 is provided with a bobbin support shaft 46 that rotatably supports a bobbin 45, which is wound around the superconducting tape wire 11 in a reel shape, at a predetermined position. Further, the case 42 is equipped with a bobbin support shaft 48 that rotatably supports a bobbin 47 wound with the reinforcing tape wire 21 at a predetermined position.

図7に示すように、前記製造装置41のケース42は前記モータ43の回転支持軸43a及びボビン支持軸46,48が下向きとなるように支持枠49に支持されている。この支持枠49には図示しないが製造装置41の昇降機構が設けられている。前記支持枠49の内側には、液体窒素等の冷却媒体Lを貯留するための冷却媒体貯留槽51が設けらている。この冷却媒体貯留槽51には冷却媒体Lを冷却するための冷凍機構(図示略)が設けられ、冷却媒体Lを例えば64〜200Kの低温に冷却するようにしている。   As shown in FIG. 7, the case 42 of the manufacturing apparatus 41 is supported by a support frame 49 so that the rotation support shaft 43a of the motor 43 and the bobbin support shafts 46 and 48 face downward. Although not shown, the support frame 49 is provided with a lifting mechanism for the manufacturing apparatus 41. A cooling medium storage tank 51 for storing a cooling medium L such as liquid nitrogen is provided inside the support frame 49. The cooling medium storage tank 51 is provided with a refrigeration mechanism (not shown) for cooling the cooling medium L so as to cool the cooling medium L to a low temperature of, for example, 64 to 200K.

次に、前記超電導テープ線材11、補強テープ線材21、巻枠31及び製造装置41を用いて低温雰囲気下で行われる超電導コイルの製造方法について説明する。
最初に、図6に示すように、前記巻芯回転機構部44のモータ43の回転支持軸43aに巻枠31を同期回転可能に装着する。次に、前記ボビン支持軸46に前記ボビン45を回転可能に支持するとともに、前記ボビン支持軸48に前記ボビン47を回転可能に装着する。そして、ボビン45及びボビン47から巻き戻した超電導テープ線材11の先端部及び補強テープ線材21の先端部を重ね合わせて、前記巻芯33に設けた第1電極端子34にボルトによって連結する。
Next, a superconducting coil manufacturing method performed in a low temperature atmosphere using the superconducting tape wire 11, the reinforcing tape wire 21, the winding frame 31, and the manufacturing apparatus 41 will be described.
First, as shown in FIG. 6, the reel 31 is mounted on the rotation support shaft 43 a of the motor 43 of the core rotation mechanism 44 so as to be able to rotate synchronously. Next, the bobbin 45 is rotatably supported on the bobbin support shaft 46, and the bobbin 47 is rotatably mounted on the bobbin support shaft 48. And the front-end | tip part of the superconducting tape wire 11 and the front-end | tip part of the reinforcement tape wire 21 which were unwound from the bobbin 45 and the bobbin 47 are piled up, and it connects with the 1st electrode terminal 34 provided in the said winding core 33 with a volt | bolt.

次に、前記製造装置41に装着された巻枠31、ボビン45,47等が図7に示すように前記冷却媒体貯留槽51の64〜74Kの温度の冷却媒体Lの内部に進入するように、該製造装置41を下降動作させる。この状態において、前記巻芯回転機構部44のモータ43を駆動して回転支持軸43aにより前記巻枠31を回転する。そして、超電導テープ線材11及び補強テープ線材21を巻き戻し、前記巻芯33の外周面に前記超電導テープ線材11と前記補強テープ線材21を積層させた状態でコイル状に複数回巻き付ける。   Next, the winding frame 31, the bobbins 45, 47 and the like mounted on the manufacturing apparatus 41 enter the inside of the cooling medium L having a temperature of 64 to 74K in the cooling medium storage tank 51 as shown in FIG. Then, the manufacturing apparatus 41 is moved down. In this state, the motor 43 of the core rotation mechanism 44 is driven to rotate the winding frame 31 by the rotation support shaft 43a. Then, the superconducting tape wire 11 and the reinforcing tape wire 21 are rewound, and the superconducting tape wire 11 and the reinforcing tape wire 21 are laminated around the outer peripheral surface of the core 33 a plurality of times in a coil shape.

前記巻芯33に対する超電導テープ線材11及び補強テープ線材21の巻き付け動作が終了した後、図示しない昇降機構を動作させて、冷却媒体貯留槽51から製造装置41を上昇させる。次に、両テープ線材11,21の終端部となる部分を図8に示すように前記第2電極端子35にボルトによって連結する。その後、超電導テープ線材11及び補強テープ線材21を切断し、このようにして得られた超電導コイルを、図示しないエポキシ樹脂溶液の中に侵入させて、前記補強テープ線材21のカーボンファイバー22の隙間に図9(a)に示すようにエポキシ樹脂23を含浸硬化させ、超電導コイルの製造を終了する。   After the winding operation of the superconducting tape wire 11 and the reinforcing tape wire 21 around the winding core 33 is finished, the lifting mechanism (not shown) is operated to raise the manufacturing apparatus 41 from the cooling medium storage tank 51. Next, as shown in FIG. 8, the end portions of both tape wires 11 and 21 are connected to the second electrode terminal 35 by bolts. Thereafter, the superconducting tape wire 11 and the reinforcing tape wire 21 are cut, and the superconducting coil obtained in this way is inserted into an epoxy resin solution (not shown) so as to enter the gap between the carbon fibers 22 of the reinforcing tape wire 21. As shown in FIG. 9A, the epoxy resin 23 is impregnated and cured, and the production of the superconducting coil is completed.

図8に示す超電導コイルの両テープ線材11,21は、図9(a)に示すように、超電導テープ線材11の基板12がコイル層の内側に、安定化層17が外側に位置し、かつ補強テープ線材21が前記安定化層17の外側に位置する状態となっている。   As shown in FIG. 9A, both the tape wires 11 and 21 of the superconducting coil shown in FIG. 8 are such that the substrate 12 of the superconducting tape wire 11 is located inside the coil layer and the stabilizing layer 17 is located outside. The reinforcing tape wire 21 is in a state located outside the stabilization layer 17.

なお、前記超電導コイルの製造に際しては、前記超電導テープ線材11の基板12の下面にポリイミド樹脂よりなる絶縁テープが接触された状態で、該絶縁テープが超電導テープ線材11とともにコイル状に巻回されるが、この絶縁テープは図示されていない。   In manufacturing the superconducting coil, the insulating tape made of polyimide resin is in contact with the lower surface of the substrate 12 of the superconducting tape wire 11 and the insulating tape is wound in a coil shape together with the superconducting tape wire 11. However, this insulating tape is not shown.

前記実施形態の超電導コイルの製造方法によれば、以下のような作用、効果を得ることができる。
(1)前記実施形態では、前記巻枠31の巻芯33に超電導テープ線材11及び補強テープ線材21を積層して巻き取る作業を低温雰囲気下において行うようにした。このため、図8に示す超電導コイルの製造を終了した後、該コイルを使用状態に保持したとき、超電導テープ線材11及び補強テープ線材21が低温の臨界温度(例えば70〜200K)に冷却される過程で、熱膨張係数の大きい超電導テープ線材11の冷却による冷熱収縮によって前記超電導層15に圧縮応力が負荷される。このとき、熱膨張係数の小さい前記補強テープ線材21も超電導テープ線材11の冷却による冷熱収縮動作に追従して適正に収縮される。この補強テープ線材21が適正に収縮される理由は、超電導コイルが製造終了後に常温状態に戻されると、両テープ線材11,21は両端部が第1及び第2電極端子34,35によって固定されているので、超電導テープ線材11の熱膨張量が補強テープ線材21の熱膨張量よりも大きくなる。このため、超電導テープ線材11の熱膨張によって前記補強テープ線材21に引張応力が作用した状態となる。この引張応力によって補強テープ線材21が冷熱収縮し易くなるのである。この結果、超電導コイルの使用状態である冷却雰囲気下において、補強テープ線材21によって超電導テープ線材11の超電導層15に引張応力が生じるのを防止することができるとともに、前記超電導テープ線材11の基板12の冷熱収縮によって超電導層15に圧縮応力が発生する。なお、このように超電導層15に圧縮応力が負荷されるのは、超電導テープ線材11の熱膨張係数が超電導層15の熱膨張係数よりも大きいからである。従って、超電導コイルが通電作動されたとき、前記超電導層15に作用するフープ応力によって生じる引張応力により前記圧縮応力が低減されて、応力が低減された状態となり、超電導層15の許容電流値を適正に保持することができる。
According to the method of manufacturing a superconducting coil of the embodiment, the following actions and effects can be obtained.
(1) In the above embodiment, the superconducting tape wire 11 and the reinforcing tape wire 21 are stacked on the core 33 of the winding frame 31 and wound up in a low temperature atmosphere. For this reason, after the manufacture of the superconducting coil shown in FIG. 8 is finished, when the coil is kept in use, the superconducting tape wire 11 and the reinforcing tape wire 21 are cooled to a low critical temperature (for example, 70 to 200 K). In the process, a compressive stress is applied to the superconducting layer 15 by the thermal contraction due to cooling of the superconducting tape wire 11 having a large thermal expansion coefficient. At this time, the reinforcing tape wire 21 having a small thermal expansion coefficient is appropriately shrunk following the cooling and shrinkage operation by cooling the superconducting tape wire 11. The reason why the reinforcing tape wire 21 is properly contracted is that both ends of the tape wire 11 and 21 are fixed by the first and second electrode terminals 34 and 35 when the superconducting coil is returned to the normal temperature state after the manufacture is completed. Therefore, the thermal expansion amount of the superconducting tape wire 11 is larger than the thermal expansion amount of the reinforcing tape wire 21. Therefore, a tensile stress is applied to the reinforcing tape wire 21 due to the thermal expansion of the superconducting tape wire 11. This tensile stress makes it easier for the reinforcing tape wire 21 to cool and shrink. As a result, it is possible to prevent a tensile stress from being generated in the superconducting layer 15 of the superconducting tape wire 11 by the reinforcing tape wire 21 in a cooling atmosphere in which the superconducting coil is used, and the substrate 12 of the superconducting tape wire 11. Compressive stress is generated in the superconducting layer 15 by the thermal contraction. The reason why compressive stress is applied to the superconducting layer 15 in this way is that the thermal expansion coefficient of the superconducting tape wire 11 is larger than the thermal expansion coefficient of the superconducting layer 15. Accordingly, when the superconducting coil is energized, the compressive stress is reduced due to the tensile stress generated by the hoop stress acting on the superconducting layer 15, and the stress is reduced, and the allowable current value of the superconducting layer 15 is set appropriately. Can be held in.

(2)前記実施形態では、図9(a)に示すように超電導テープ線材11の安定化層17側に、つまり超電導テープ線材11の外周側に補強テープ線材21を積層したので、補強機能を向上することができる。   (2) In the above embodiment, since the reinforcing tape wire 21 is laminated on the stabilization layer 17 side of the superconducting tape wire 11, that is, on the outer peripheral side of the superconducting tape wire 11, as shown in FIG. Can be improved.

なお、前記実施形態は以下のように変更してもよい。
・ 図9(b)に示すように、超電導テープ線材11の基板12がコイルの外側に安定化層17がコイルの内側に位置するように、かつ前記安定化層17の内側に補強テープ線材21が位置するようにしてもよい。この実施形態においては超電導テープ線材11の基板12が外側に位置しているので、前記超電導層15に通電されたときのフープ応力を前記基板12で支持し易くなり、この結果、超電導層15及び保護層16の接合界面の剥離を抑制することができる。
In addition, you may change the said embodiment as follows.
As shown in FIG. 9B, the reinforcing tape wire 21 is disposed so that the substrate 12 of the superconducting tape wire 11 is located outside the coil and the stabilizing layer 17 is located inside the coil, and inside the stabilizing layer 17. May be located. In this embodiment, since the substrate 12 of the superconducting tape wire 11 is located outside, the hoop stress when the superconducting layer 15 is energized can be easily supported by the substrate 12, and as a result, the superconducting layer 15 and Peeling of the bonding interface of the protective layer 16 can be suppressed.

・ ダブルパンケーキ型の超電導コイルあるいはソレノイド型の超電導コイルに具体化してもよい。
・ 前記超電導テープ線材11の第1及び第2中間層13,14を省略したり、安定化層17を省略したりしてもよい。
-It may be embodied in a double pancake type superconducting coil or a solenoid type superconducting coil.
The first and second intermediate layers 13 and 14 of the superconducting tape wire 11 may be omitted, or the stabilization layer 17 may be omitted.

・ 前記超電導テープ線材11の基板12の材料として、例えば、ステンレススチール、ニッケル・タングステン合金等を用いてもよい。
・ 前記補強テープ線材21の材料として、例えば、前記カーボンファイバー22に代えて、ガラスファイバー、ステンレススチール、ニッケル・タングステン合金等の群の中の一種を選択してもよい。
As the material of the substrate 12 of the superconducting tape wire 11, for example, stainless steel, nickel / tungsten alloy or the like may be used.
The material of the reinforcing tape wire 21 may be, for example, selected from a group of glass fiber, stainless steel, nickel / tungsten alloy and the like instead of the carbon fiber 22.

この発明の超電導コイルの製造方法に用いられる超電導テープ線材及び補強テープ線材の部分斜視図。The partial perspective view of the superconducting tape wire used for the manufacturing method of the superconducting coil of this invention, and a reinforcement tape wire. 超電導テープ線材の拡大縦断面図。The expanded longitudinal cross-sectional view of a superconducting tape wire. 補強テープ線材の拡大縦断面図。The expanded longitudinal cross-sectional view of a reinforcement tape wire. 超電導コイルの巻枠の斜視図。The perspective view of the winding frame of a superconducting coil. 超電導コイルの製造装置を示す底面図。The bottom view which shows the manufacturing apparatus of a superconducting coil. 超電導コイルの製造方法を説明する底面図。The bottom view explaining the manufacturing method of a superconducting coil. 超電導コイルの製造方法を説明する正面図。The front view explaining the manufacturing method of a superconducting coil. 超電導コイルの正面図。The front view of a superconducting coil. (a)(b)は超電導コイルの部分拡大縦断面図。(A) and (b) are the partial expanded longitudinal cross-sectional views of a superconducting coil. (a)は超電導コイルに流れる電流と磁束との関係を示す線図、(b)は超電導コイルに作用するフープ応力を説明する線図。(A) is a diagram which shows the relationship between the electric current which flows into a superconducting coil, and magnetic flux, (b) is a diagram explaining the hoop stress which acts on a superconducting coil. 超電導コイルの超電導層に作用する歪と許容電流値との関係を示すグラフ。The graph which shows the relationship between the distortion which acts on the superconducting layer of a superconducting coil, and an allowable electric current value.

符号の説明Explanation of symbols

11,21…テープ線材、11…超電導テープ線材、12…基板、15…超電導層、21…補強テープ線材、22…カーボンファイバー、31…巻枠、32…コイル基板、33…巻芯、34…第1電極端子、35…第2電極端子。   DESCRIPTION OF SYMBOLS 11, 21 ... Tape wire, 11 ... Superconducting tape wire, 12 ... Substrate, 15 ... Superconducting layer, 21 ... Reinforcement tape wire, 22 ... Carbon fiber, 31 ... Winding frame, 32 ... Coil substrate, 33 ... Core, 34 ... 1st electrode terminal, 35 ... 2nd electrode terminal.

Claims (5)

テープ状の基板の片面に超電導層を形成してなる超電導テープ線材と、前記基板の熱膨張係数よりも熱膨張係数が小さく設定された補強テープ線材と、コイル基板、巻芯、第1電極端子及び第2電極端子を備えた巻枠とにより構成された超電導コイルであって、
低温雰囲気下において、前記巻枠の巻芯の外周面に対し前記超電導テープ線材及び補強テープ線材が積層状態で巻回されるとともに、両テープ線材の始端部及び終端部が前記第1電極端子及び前記第2電極端子に連結されていることを特徴とする超電導コイル。
A superconducting tape wire formed by forming a superconducting layer on one surface of a tape-like substrate, a reinforcing tape wire whose thermal expansion coefficient is set smaller than the thermal expansion coefficient of the substrate, a coil substrate, a winding core, and a first electrode terminal And a superconducting coil constituted by a winding frame having a second electrode terminal,
Under a low temperature atmosphere, the superconducting tape wire and the reinforcing tape wire are wound around the outer peripheral surface of the core of the winding frame in a laminated state, and the start and end portions of both tape wires are the first electrode terminal and A superconducting coil connected to the second electrode terminal.
請求項1において、前記基板はハステロイ、ステンレススチール及びニッケル・タングステン合金の材料の群から一種選択され、前記補強テープ線材は、テープ状の樹脂に対し多数本のカーボンファイバー又はガラスファイバーを長手方向に埋設して構成されていることを特徴とする超電導コイル。 2. The substrate according to claim 1, wherein the substrate is selected from the group of materials of hastelloy, stainless steel and nickel / tungsten alloy, and the reinforcing tape wire includes a plurality of carbon fibers or glass fibers in the longitudinal direction with respect to the tape-shaped resin. A superconducting coil characterized by being embedded. テープ状の基板の片面に超電導層を形成してなる超電導テープ線材と、前記基板の熱膨張係数よりも熱膨張係数が小さく設定された補強テープ線材と、コイル基板、巻芯、第1電極端子及び第2電極端子を備えた巻枠とを用いた超電導コイルの製造方法において、
低温雰囲気下において、前記巻枠の巻芯の外周面に対し前記超電導テープ線材及び補強テープ線材を積層状態で巻回する工程と、
両テープ線材の始端部と終端部を前記第1及び第2電極端子に連結する工程と、
前記電導コイルを低温雰囲気から常温状態に戻す工程と
を含むことを特徴とする超電導コイルの製造方法。
A superconducting tape wire formed by forming a superconducting layer on one surface of a tape-like substrate, a reinforcing tape wire whose thermal expansion coefficient is set smaller than the thermal expansion coefficient of the substrate, a coil substrate, a winding core, and a first electrode terminal And a method of manufacturing a superconducting coil using a winding frame having a second electrode terminal,
Under a low temperature atmosphere, the step of winding the superconducting tape wire and the reinforcing tape wire on the outer peripheral surface of the core of the winding frame in a laminated state;
Connecting the start and end portions of both tape wires to the first and second electrode terminals;
And a step of returning the conductive coil from a low-temperature atmosphere to a normal temperature state.
請求項3において、前記巻枠の第1電極端子に対し前記超電導テープ線材及び補強テープ線材の始端部を連結した後、低温雰囲気下において、両テープ線材を前記巻芯の外周面に積層状態で巻回し、両テープ線材が低温に冷却されている状態で、両テープ線材の終端部を第2電極端子に連結することを特徴とする超電導コイルの製造方法。 In Claim 3, after connecting the starting end part of the superconducting tape wire and the reinforcing tape wire to the first electrode terminal of the winding frame, both tape wires are laminated on the outer peripheral surface of the core in a low temperature atmosphere. A method of manufacturing a superconducting coil, comprising winding and connecting the terminal portions of both tape wires to a second electrode terminal in a state where both tape wires are cooled to a low temperature. 請求項4において、低温雰囲気下の温度は64〜77Kの範囲に設定されていることを特徴とする超電導コイルの製造方法。 5. The method of manufacturing a superconducting coil according to claim 4, wherein the temperature in the low temperature atmosphere is set in a range of 64 to 77K.
JP2008025336A 2008-02-05 2008-02-05 Superconductive coil and manufacturing method thereof Pending JP2009188108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025336A JP2009188108A (en) 2008-02-05 2008-02-05 Superconductive coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025336A JP2009188108A (en) 2008-02-05 2008-02-05 Superconductive coil and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009188108A true JP2009188108A (en) 2009-08-20

Family

ID=41071078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025336A Pending JP2009188108A (en) 2008-02-05 2008-02-05 Superconductive coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009188108A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113919A (en) * 2008-11-05 2010-05-20 Chubu Electric Power Co Inc Superconducting tape wire and method of manufacturing the same, and superconducting coil
JP2011113933A (en) * 2009-11-30 2011-06-09 Toshiba Corp Superconducting wire, and superconducting coil using the same
JP2011134610A (en) * 2009-12-24 2011-07-07 Fujikura Ltd Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device
JP2011138906A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Superconducting device
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
JP2021061268A (en) * 2019-10-02 2021-04-15 株式会社東芝 Superconducting coil device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113919A (en) * 2008-11-05 2010-05-20 Chubu Electric Power Co Inc Superconducting tape wire and method of manufacturing the same, and superconducting coil
JP2011113933A (en) * 2009-11-30 2011-06-09 Toshiba Corp Superconducting wire, and superconducting coil using the same
JP2011134610A (en) * 2009-12-24 2011-07-07 Fujikura Ltd Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device
JP2011138906A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Superconducting device
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
US9048015B2 (en) 2010-09-06 2015-06-02 Siemens Aktiengesellschaft High-temperature superconductor (HTS) coil
JP2021061268A (en) * 2019-10-02 2021-04-15 株式会社東芝 Superconducting coil device
JP7210411B2 (en) 2019-10-02 2023-01-23 株式会社東芝 Superconducting coil device

Similar Documents

Publication Publication Date Title
JP2009188109A (en) Superconductive coil and manufacturing method thereof
US8712489B2 (en) Method for manufacturing a magnet coil configuration using a slit band-shaped conductor
US9065306B2 (en) Oxide superconducting coil, oxide-superconducting-coil assembly, and rotating machine
JP2009188108A (en) Superconductive coil and manufacturing method thereof
JP4743150B2 (en) Superconducting coil and superconducting conductor used therefor
JP6270479B2 (en) High temperature superconductor (HTS) coil
JP5097044B2 (en) Superconducting thin film wire using metal coating layer and bonding method thereof
JP2010113919A (en) Superconducting tape wire and method of manufacturing the same, and superconducting coil
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
JP2009043912A (en) Superconducting coil
JP4917524B2 (en) Superconducting wire and method of manufacturing superconducting wire
JP5118990B2 (en) Superconducting tape wire and defect repair method
JP5534712B2 (en) High temperature superconducting pancake coil and high temperature superconducting coil
US10008314B2 (en) Electric coil, apparatus having at least two subcoils and manufacturing method therefor
JP4893301B2 (en) Superconducting coil manufacturing method
JP2018170173A (en) Connection structure
WO2012165085A1 (en) Superconducting coil, superconducting magnet, and method for manufacturing superconducting coil
JP5548108B2 (en) Oxide superconducting solenoid coil and method for manufacturing the same
Awaji et al. Repairing and upgrading of the HTS insert in the 18T cryogen-free superconducting magnet
JP6005386B2 (en) Superconducting coil device and manufacturing method thereof
JP6035050B2 (en) Superconducting coil device and manufacturing method thereof
JP2014165383A (en) Superconducting coil and method for manufacturing the same
JP2014013877A (en) Superconductive pancake coil, and method of manufacturing the same
JP5728365B2 (en) Oxide superconducting coil, superconducting equipment, and oxide superconducting coil manufacturing method
JPH10214713A (en) Superconducting coil