JP2011134610A - Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device - Google Patents

Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device Download PDF

Info

Publication number
JP2011134610A
JP2011134610A JP2009293416A JP2009293416A JP2011134610A JP 2011134610 A JP2011134610 A JP 2011134610A JP 2009293416 A JP2009293416 A JP 2009293416A JP 2009293416 A JP2009293416 A JP 2009293416A JP 2011134610 A JP2011134610 A JP 2011134610A
Authority
JP
Japan
Prior art keywords
superconducting
connection
layer
conductive layer
connection structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009293416A
Other languages
Japanese (ja)
Other versions
JP5548441B2 (en
Inventor
Shinji Fujita
真司 藤田
Masanori Daiho
雅載 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009293416A priority Critical patent/JP5548441B2/en
Publication of JP2011134610A publication Critical patent/JP2011134610A/en
Application granted granted Critical
Publication of JP5548441B2 publication Critical patent/JP5548441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting connection structure with high connection strength, a connection method of a superconducting wire rod capable of being formed in a simple connection work, and a superconducting coil device. <P>SOLUTION: The superconducting connection structure 1A includes a base material 11, an oxide superconducting layer 17 fitted on the base material 11, and a stabilizing layer 19 fitted on the oxide superconducting layer 17, as well as at least two superconducting wire rods 2, 3 with one end part each to be a connecting end 21, 31, and a plurality of connection superconducting tapes 4 connecting the connecting ends 21, 31 themselves of the wire rods 2, 3. Each superconducting wire rod 2, 3 has a surface 21a, 31a of each stabilized layer 19 side so arranged to be on the same side, and that, to have side-end faces of the connecting ends 21, 31 adjacent to each other, and each connection superconducting tape 4 has its surface 4a at a stabilized layer 19 side jointed to over all surfaces 21a, 31a at each stabilized layer 19 side of each connecting end 21, 31 so as to be arrayed with intervals. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、少なくとも2本の超電導線材どうしが接続された超電導接続構造体および超電導線材の接続方法、超電導コイル装置に関する。   The present invention relates to a superconducting connection structure in which at least two superconducting wires are connected to each other, a superconducting wire connecting method, and a superconducting coil device.

近年になって発見されたRE−123系酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)は、液体窒素温度以上で超電導性を示すことから実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体として用いることが強く要望されている。そして、酸化物超電導体を線材に加工するための方法として、強度が高く、耐熱性もあり、線材に加工することが容易な金属を長尺のテープ状に加工し、この金属基材上に酸化物超電導体を薄膜状に形成する方法が研究されている。 The RE-123 oxide superconductor discovered recently (REBa 2 Cu 3 O 7-X, where RE is a rare earth element including Y) is extremely promising in practice because it exhibits superconductivity above liquid nitrogen temperature. There is a strong demand for processing this into a wire and using it as a conductor for power supply. Then, as a method for processing the oxide superconductor into a wire, a metal having high strength, heat resistance, and easy to be processed into a wire is processed into a long tape shape on the metal base A method for forming an oxide superconductor into a thin film has been studied.

また、酸化物超電導体は電気的異方性を有しているので、基材上に酸化物超電導体を形成する場合に、結晶の配向制御を行う必要がある。しかしながら、金属基材自体は非結晶もしくは多結晶体であり、その結晶構造も酸化物超電導体と大きく異なるために、基材上に上記のような結晶配向性の良好な酸化物超電導体膜を形成することは困難である。
そこで、上記のような問題を解決するために、まず金属基材上に熱膨張率や格子定数等の物理的な特性値が基材と酸化物超電導体との中間的な値を示すMgO、YSZ(イットリア安定化ジルコニウム)、SrTiO等の材料から成る中間層を形成し、この中間層の上に酸化物超電導薄膜を形成することが行われている。
In addition, since the oxide superconductor has electrical anisotropy, it is necessary to control the crystal orientation when forming the oxide superconductor on the substrate. However, since the metal substrate itself is amorphous or polycrystalline, and its crystal structure is also significantly different from that of the oxide superconductor, an oxide superconductor film with good crystal orientation as described above is formed on the substrate. It is difficult to form.
Therefore, in order to solve the above problems, first, MgO, on which a physical characteristic value such as a coefficient of thermal expansion and a lattice constant is an intermediate value between the base material and the oxide superconductor on the metal base material, An intermediate layer made of a material such as YSZ (yttria stabilized zirconium) or SrTiO 3 is formed, and an oxide superconducting thin film is formed on the intermediate layer.

そして、上記中間層の製造方法の一例として、イオンビームアシスト法(IBAD法:Ion Beam Assisted Deposition)が知られており、この方法は、スパッタリング法によりターゲットから叩き出した構成粒子を基材上に堆積させる際に、イオン銃から発生されたアルゴンイオン等を同時に斜め方向(例えば、45度)から照射しながら中間層を堆積させる方法として知られている。このIBAD法によれば、基材上の成膜面に対して、高いc軸配向性およびa軸面内配向性を有する中間層を得ることができるので、この中間層上に酸化物超電導薄膜を形成することで超電導特性の優れた酸化物超電導導体を得ることができる。
また、このような酸化物超電導体では、酸化物超電導層上に、銀や銅のような良導電性金属材料よりなる安定化層が設けられるのが一般的である。安定化層は、超電導層が超電導状態から常電導状態に遷移しようとしたとき、該超電導層の電流を転流させるバイパスとして機能する。
As an example of the method for producing the intermediate layer, an ion beam assisted method (IBAD method) is known. This method uses constituent particles struck from a target by a sputtering method on a substrate. It is known as a method of depositing an intermediate layer while irradiating argon ions generated from an ion gun or the like simultaneously from an oblique direction (for example, 45 degrees). According to this IBAD method, an intermediate layer having high c-axis orientation and a-axis in-plane orientation can be obtained with respect to the film-forming surface on the substrate. Therefore, an oxide superconducting thin film is formed on this intermediate layer. An oxide superconducting conductor with excellent superconducting properties can be obtained by forming
In such an oxide superconductor, a stabilization layer made of a highly conductive metal material such as silver or copper is generally provided on the oxide superconducting layer. The stabilization layer functions as a bypass that commutates the current of the superconducting layer when the superconducting layer attempts to transition from the superconducting state to the normal conducting state.

ところで、このような酸化物超電導導体を、線材として実用機器に応用するには、酸化物超電導線材の接続技術の確立が不可欠であり、接続技術に関しての検討が進められている(例えば、特許文献1〜4参照)。
まず、特許文献1には、基材テープ上に酸化物超電導層と安定化銀層とがこの順に設けられた2本の酸化物超電導線材どうしを、安定化銀層側の表面を対向させ、ハンダを介して接続した構造が提案されている。
しかし、この接続構造は、接続された超電導線材どうしで表裏が反転する問題があり、超電導線材どうしの安定化銀層が同じ側を向いている場合、安定化銀層側の表面どうしを対向させるために一方のコイル線材の端部を反転させなくてはならない問題がある。
また、特許文献1には、超電導線材端部の超電導層どうしを面一に配置してから接続用超電導テープをのせて安定化銀層で覆って接続した構造も開示されているが、この構造では接続強度などの面において満足するものではない。なお、この接続用超電導テープの酸化物超電導層には、接続対象となる酸化物超電導層よりも低融点のものが選択され、低融点の酸化物超電導層が接続対象側の各酸化物超電導層に溶融、接着されているが、前述の融点関係を満たすために、各酸化物超電導層の構成材料が制限される問題がある。
By the way, in order to apply such an oxide superconducting conductor as a wire to a practical device, it is indispensable to establish a connection technology for the oxide superconducting wire, and studies on the connection technology are underway (for example, patent documents). 1-4).
First, in Patent Document 1, two oxide superconducting wires having an oxide superconducting layer and a stabilized silver layer provided in this order on a base tape are opposed to each other on the surface of the stabilized silver layer, A structure connected via solder has been proposed.
However, this connection structure has a problem that the front and back surfaces of the superconducting wires are reversed. When the stabilizing silver layers of the superconducting wires are facing the same side, the surfaces of the stabilizing silver layers are opposed to each other. Therefore, there is a problem that the end of one coil wire must be reversed.
Further, Patent Document 1 discloses a structure in which superconducting layers at the ends of superconducting wires are arranged flush with each other, and then a superconducting tape for connection is placed on and covered with a stabilized silver layer. However, it is not satisfactory in terms of connection strength. In addition, the oxide superconducting layer of the superconducting tape for connection is selected to have a lower melting point than the oxide superconducting layer to be connected, and the oxide superconducting layer having a low melting point is connected to each oxide superconducting layer on the connection target side. However, in order to satisfy the above-described melting point relationship, there is a problem that the constituent material of each oxide superconducting layer is limited.

また、特許文献2〜4には、2本の酸化物超電導線材の各接続端に、各接続端間を跨いで双方の各酸化物超電導層と接触する接続用超電導層を成膜することによって、各酸化物超電導層どうしを接続した接続方法が提案されている。
ここで、接続用超電導層は、気相成膜技術によって成膜されるため、この接続方法を行うには、大掛かりな成膜装置が必要となり、また、接続用超電導層を成膜するのに時間がかかり、接続作業が長時間に亘ってしまう。したがって、この接続方法は、作業現場で行うには適さず、実用性に欠ける問題がある。
Further, in Patent Documents 2 to 4, a connection superconducting layer is formed on each connection end of two oxide superconducting wires so as to contact each oxide superconducting layer across each connection end. A connection method in which the oxide superconducting layers are connected to each other has been proposed.
Here, since the connecting superconducting layer is formed by a vapor deposition technique, a large-scale film forming apparatus is required to perform this connecting method, and the connecting superconducting layer is formed. It takes time and the connection work takes a long time. Therefore, this connection method is not suitable for use at the work site and has a problem of lack of practicality.

特開2000−133067号公報JP 2000-133067 A 特開2001−319750号公報JP 2001-319750 A 特開2005−63695号公報JP 2005-63695 A 特開2008−66399号公報JP 2008-66399 A

本発明は、以上のような従来の実情に鑑みなされたものであり、複数の超電導線材どうしを接続抵抗が低く、接続強度が高い状態で接合可能な超電導接続構造体、このような超電導接続構造体を特別な装置を用いることなく、簡便な接続作業で形成できる超電導線材の接続方法、及び、このような超電導接続構造体を用いた超電導コイル装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and a superconducting connection structure capable of joining a plurality of superconducting wires with low connection resistance and high connection strength, and such a superconducting connection structure. It is an object of the present invention to provide a superconducting wire connecting method that can be formed by a simple connection operation without using a special device, and a superconducting coil device using such a superconducting connection structure.

本発明は、上記課題を解決するために以下の構成を有する。
本発明の超電導接続構造体は、基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備え、その端部が接続端とされた少なくとも2本の超電導線材と、基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備え、前記各超電導線材の各接続端どうしを接続する複数の接続用超電導テープとを有し、前記各超電導線材は、互いに、前記各導電層側の表面が同じ側となり、且つ、前記各接続端の側端面どうしが隣接するように配されており、前記各接続用超電導テープは、互いに間隔を空けて配列するように、それぞれ、その導電層側の表面を前記各接続端の前記各導電層側の表面の双方に亘って接合されていることを特徴とする。
The present invention has the following configuration in order to solve the above problems.
The superconducting connection structure of the present invention comprises a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer, and at least two of which end portions are connected ends. A plurality of superconducting wires, a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer, and connecting a plurality of connecting ends of the superconducting wires. A superconducting tape for connection, and the superconducting wires are arranged such that the surfaces of the conductive layers are on the same side, and the side end surfaces of the connection ends are adjacent to each other, Each of the superconducting tapes for connection has its surface on the conductive layer side bonded to both of the surfaces on the side of each of the conductive layers of the respective connection ends so as to be arranged at intervals. And

本発明において、前記各接続端と、前記各接続用超電導テープとの間に、それぞれ、金属板が介在しており、前記各金属板は、前記各接続端の前記導電層側の表面と、前記接続用超電導テープの前記導電層側の表面に接合されている構造を採用できる。
本発明において、金属板が、前記接続用超電導テープの配列と並んで、前記各接続端の前記各導電層側の表面の双方に亘って接合されている構造を採用できる。
本発明において、前記接続端の長さ方向に並ぶ各接続用超電導テープを覆うとともに、前記各接続端の導電層側表面の双方に亘って、少なくとも両端部を各接続端の導電層表面に接合した金属カバーが設けられている構造を採用できる。
In the present invention, a metal plate is interposed between each connection end and each connection superconducting tape, and each metal plate has a surface on the conductive layer side of each connection end; A structure bonded to the surface of the connecting superconducting tape on the conductive layer side can be employed.
In the present invention, it is possible to employ a structure in which the metal plate is joined to both the surfaces of the connection ends on the side of the conductive layers side by side with the arrangement of the connection superconducting tapes.
In the present invention, the superconducting tapes for connection arranged in the length direction of the connection ends are covered, and at least both ends are bonded to the conductive layer surfaces of the connection ends over both the conductive layer side surfaces of the connection ends. It is possible to adopt a structure provided with a metal cover.

本発明の超電導線材の接続方法は、基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える少なくとも2本の超電導線材を、前記各導電層側の表面が同じ側となり、且つ、前記各接続端の側端面どうしが隣接するように配置する工程と、基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える複数の接続用超電導テープを用意し、前記各接続用超電導テープを、互いに間隔を空けて配列させ、それぞれ、その導電層側の表面を、前記各接続端の各導電層側表面の双方に亘って、ハンダを介して接合する工程とを有することを特徴とする。   The superconducting wire connecting method of the present invention includes a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer. A layer side surface is the same side, and the side end surfaces of the connection ends are adjacent to each other; a base material; a superconducting layer provided on the base material; and the superconducting layer. A plurality of superconducting tapes for connection comprising a conductive layer provided, the superconducting tapes for connection are arranged with a space between each other, and the surface on the conductive layer side is arranged for each of the connection ends. And a step of joining via solder over both surfaces of the conductive layer side.

本発明の超電導線材の接続方法は、基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える少なくとも2本の超電導線材を、前記各導電層側の表面が同じ側となり、且つ、前記各接続端の側端面どうしが隣接するように配置する工程と、複数の金属板を、互いに間隔を空けて配列させ、それぞれ、前記各接続端の前記各導電層側表面の双方に亘って、第1のハンダを介して接合する工程と、基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える複数の接続用超電導テープを用意し、各接続用超電導テープの導電層側の表面を、前記各金属板の表面に、第2のハンダを介して接合する工程とを有することを特徴とする。
本発明において、前記第2のハンダは、前記第1のハンダよりも融点が低いことが好ましい。
The superconducting wire connecting method of the present invention includes a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer. The step of arranging the surface on the layer side to be the same side and the side end surfaces of each connection end being adjacent to each other, and arranging a plurality of metal plates at intervals, respectively, The step of joining via the first solder over both the conductive layer side surfaces, the base material, the superconducting layer provided on the base material, and the conductive layer provided on the superconducting layer Preparing a plurality of connecting superconducting tapes, and bonding the surface of each connecting superconducting tape on the conductive layer side to the surface of each of the metal plates via a second solder. And
In the present invention, the second solder preferably has a melting point lower than that of the first solder.

本発明の超電導コイル装置は、導電層側の表面を外側にして巻回された超電導線材の巻回体からなる少なくとも2つの超電導コイルを有し、各超電導線材が、各接続端が接続されて超電導接続構造体を構成している超電導コイル装置であって、前記超電導接続構造体は、本発明の超電導接続構造体であることを特徴とする。   The superconducting coil device of the present invention has at least two superconducting coils made of a wound body of superconducting wire wound with the surface on the conductive layer side facing outside, and each superconducting wire is connected to each connection end. A superconducting coil device constituting a superconducting connection structure, wherein the superconducting connection structure is the superconducting connection structure of the present invention.

本発明の超電導接続構造体によれば、少なくとも2本の超電導線材を、各導電層側の表面が同じ側となり、且つ、各接続端どうしが隣接するように配し、また、各接続用超電導テープを、互いに間隔を空けて配列させ、それぞれ、それらの導電層側の表面を各接続端の導電層側表面の双方に亘って接合するため、各接続端どうしが複数の接続用超電導テープを介して連結される。これにより、接続抵抗が低く、接続強度の高い超電導接続構造体を得ることができる。   According to the superconducting connection structure of the present invention, at least two superconducting wires are arranged such that the surfaces of the respective conductive layers are on the same side, and the connection ends are adjacent to each other, and each connection superconductivity is provided. Since the tapes are arranged with a space between each other, and the respective conductive layer side surfaces are bonded to both the conductive layer side surfaces of each connection end, each connection end has a plurality of superconducting tapes for connection. Connected through. Thereby, a superconducting connection structure with low connection resistance and high connection strength can be obtained.

また、この超電導接続構造体は、複数の接続用超電導テープが間隔を空けて配されているので、常温と冷却状態の低温との間で温度変化したとき、接続用超電導テープの接合材や接合材との接着部に生じる熱膨張差に起因する応力が分散され、各接続端の各導電層側表面に対する各接続用超電導テープの接合状態が保持される。
また、この超電導接続構造体では、接続された超電導線材どうしで裏表が一致しているため、超電導接続構造体として良好な取り扱い性を得ることができる。
In addition, since this superconducting connection structure has a plurality of connecting superconducting tapes spaced apart from each other, when the temperature changes between room temperature and a low temperature in a cooled state, the connecting material and joining of the connecting superconducting tape The stress resulting from the difference in thermal expansion that occurs in the bonded portion with the material is dispersed, and the connection state of each connection superconducting tape to the surface of each connection layer on each conductive layer side is maintained.
Further, in this superconducting connection structure, the connected superconducting wires have the same front and back, so that good handling properties can be obtained as a superconducting connection structure.

また、この超電導接続構造体は、各超電導線材の各接続端の表面と、各接続用超電導テープとの間に、それぞれ、金属板が介在している場合に、接続用超電導テープによる接合部が金属板によって補強され、より高い接続強度を得ることができる。
金属板が、前記複数の接続用超電導テープの配列と並んで、各接続端の各導電層側表面の双方に亘って接合されている場合には、各接続端が、各接続用超電導テープによって連結されるとともに、金属板によっても連結され、より高い接続強度を得ることができる。
各接続端の各導電層側表面の双方に亘って、各接続用超電導テープを覆うように金属カバーが設けられている場合には、各接続端が、各接続用超電導テープによって連結されるとともに、金属カバーによっても連結され、より高い接続強度を得ることができる。
更に、金属カバーで各接続用超電導テープを覆うとともに、金属カバーの少なくとも両端部を接続端の表面側に接合している構造であると、冷媒による冷却時において、酸化物超電導層及び基材よりも金属カバーの材料の方が熱膨張係数が大きくので、より多く収縮する結果、金属カバーが各接続用超電導テープを超電導線材側に押し付けるので、各接続端の表面に対する各接続用超電導テープの密着性が向上する。これにより、冷媒で冷却して超電導線材に通電する場合の実使用時に、各接続用超電導テープと各超電導線材間のコンタクト抵抗を低くすることができる。
また、本発明の超電導線材の接続方法によれば、以上のような超電導接続構造体を、成膜装置などの特別な装置を用いることなく、簡単な接続作業で接続することができる。このため、接続作業現場であっても、作業に支障なく短時間に各超電導線材を接続することができる。
In addition, this superconducting connection structure has a connecting portion formed by a connecting superconducting tape when a metal plate is interposed between the surface of each connecting end of each superconducting wire and each connecting superconducting tape. Reinforced by the metal plate, higher connection strength can be obtained.
When the metal plate is joined to both the conductive layer side surfaces of each connection end alongside the array of the plurality of connection superconducting tapes, each connection end is connected to each connection superconducting tape. In addition to being coupled with each other by a metal plate, higher connection strength can be obtained.
When a metal cover is provided so as to cover each connection superconducting tape over both conductive layer side surfaces of each connection end, each connection end is connected by each connection superconducting tape. Also, it is connected by a metal cover, and higher connection strength can be obtained.
Further, the superconducting tape for connection is covered with a metal cover, and at least both ends of the metal cover are joined to the surface side of the connection end. Since the metal cover material has a larger coefficient of thermal expansion, the metal cover presses the superconducting tape for each connection against the superconducting wire as a result of more shrinkage, so that the superconducting tape for each connection adheres to the surface of each connection end. Improves. Thereby, the contact resistance between each superconducting tape for connection and each superconducting wire can be lowered during actual use when the superconducting wire is energized after being cooled with a refrigerant.
Further, according to the method for connecting superconducting wires of the present invention, the superconducting connection structure as described above can be connected by a simple connecting operation without using a special apparatus such as a film forming apparatus. For this reason, even in the connection work site, each superconducting wire can be connected in a short time without any trouble in the work.

また、本発明の超電導コイル装置によれば、前述の超電導接続構造体を用いるため、超電導線材(コイル線材)間の接続抵抗が低く抑えられ、良好なコイル特性を得ることができる。また、常温と低温の間で温度変化したときにも、各接続用超電導テープの超電導線材への接合状態を保持することができ、低い接続抵抗および高い接続強度を維持できる。   Moreover, according to the superconducting coil device of the present invention, since the above-described superconducting connection structure is used, the connection resistance between the superconducting wires (coil wires) can be kept low, and good coil characteristics can be obtained. Further, even when the temperature changes between normal temperature and low temperature, the bonding state of each connection superconducting tape to the superconducting wire can be maintained, and low connection resistance and high connection strength can be maintained.

本発明の超電導接続構造体の第1実施形態を示す概略斜視図。The schematic perspective view which shows 1st Embodiment of the superconducting connection structure of this invention. 図1に示す超電導接続構造体が備える第1の超電導線材および第2の超電導線材を示す概略斜視図。The schematic perspective view which shows the 1st superconducting wire and 2nd superconducting wire with which the superconducting connection structure shown in FIG. 1 is provided. 本発明の超電導接続構造体の第2実施形態を示す概略斜視図。The schematic perspective view which shows 2nd Embodiment of the superconducting connection structure of this invention. 本発明の超電導接続構造体の第3実施形態を示す概略斜視図。The schematic perspective view which shows 3rd Embodiment of the superconducting connection structure of this invention. 本発明の超電導接続構造体の第4実施形態を示す概略斜視図。The schematic perspective view which shows 4th Embodiment of the superconducting connection structure of this invention. 本発明の超電導コイル装置の実施形態を示す概略斜視図。The schematic perspective view which shows embodiment of the superconducting coil apparatus of this invention.

以下、本発明に係る超電導接続構造体の第1実施形態について説明する。
図1は、本発明の超電導接続構造体の第1実施形態を示す概略斜視図、図2は、図1に示す超電導接続構造体が備える第1の超電導線材および第2の超電導線材を示す概略斜視図である。なお、図1および後述する図3〜5では、説明を簡単にするため、各超電導線材の一部の層を省略して示している。
Hereinafter, a first embodiment of a superconducting connection structure according to the present invention will be described.
FIG. 1 is a schematic perspective view showing a first embodiment of the superconducting connection structure of the present invention, and FIG. 2 is a schematic view showing a first superconducting wire and a second superconducting wire provided in the superconducting connection structure shown in FIG. It is a perspective view. In FIG. 1 and FIGS. 3 to 5 to be described later, some layers of each superconducting wire are omitted for simplicity of explanation.

図1に示す超電導接続構造体1Aは、2本の超電導線材(第1の超電導線材2および第2の超電導線材3)と、各超電導線材2、3どうしを電気的および機械的に接続する複数の接続用超電導テープ4とを有している。
第1の超電導線材2および第2の超電導線材3は、それぞれ、各基材11と反対側の表面(後述する各安定化層19の表面)が上側となり、且つ、各接続端21、31の一方の側端面どうしが隣接するように配されており、各接続端21、31の上面(安定化層19の表面)21a、31aに、それぞれ、複数の(図1の形態では3つの)接続用超電導テープ4が接着されている。以下の説明では、第1の超電導線材2の接続端21の上面21aを「第1の接続領域21a」と称し、第2の超電導線材の接続端31の上面31aを「第2の接続領域31a」と称する。
図2に示すように、各超電導線材2、3は、それぞれ、テープ状の基材11の上にベッド層12と中間層15とキャップ層16と酸化物超電導層17とが積層されるとともに、酸化物超電導層17の上に安定化基層18と安定化層(導電層)19が積層され、全体が絶縁性の被覆層20で覆われて概略構成されている。なお、各超電導線材2、3においてベッド層12は略することもできる。また、第1の超電導線材2および第2の超電導線材3の端部側において被覆層20が除去され、被覆層20から引き出された接続端21、31の部分どうしが後述する如く接合されている。
A superconducting connection structure 1A shown in FIG. 1 includes a plurality of superconducting wires (first superconducting wire 2 and second superconducting wire 3) and a plurality of superconducting wires 2 and 3 electrically and mechanically connected to each other. And a superconducting tape 4 for connection.
Each of the first superconducting wire 2 and the second superconducting wire 3 has a surface opposite to each substrate 11 (a surface of each stabilizing layer 19 described later) on the upper side, and each of the connection ends 21 and 31. One side end surfaces are arranged adjacent to each other, and a plurality of (three in the form of FIG. 1) connections are provided on the upper surfaces (surfaces of the stabilization layer 19) 21a and 31a of the connection ends 21 and 31, respectively. The superconducting tape 4 is adhered. In the following description, the upper surface 21a of the connection end 21 of the first superconducting wire 2 is referred to as “first connection region 21a”, and the upper surface 31a of the connection end 31 of the second superconducting wire is referred to as “second connection region 31a”. ".
As shown in FIG. 2, each of the superconducting wires 2 and 3 has a bed layer 12, an intermediate layer 15, a cap layer 16, and an oxide superconducting layer 17 laminated on a tape-like base material 11, respectively. A stabilization base layer 18 and a stabilization layer (conductive layer) 19 are laminated on the oxide superconducting layer 17, and the entire structure is covered with an insulating coating layer 20. In each superconducting wire 2 and 3, the bed layer 12 can be omitted. Further, the coating layer 20 is removed from the end portions of the first superconducting wire 2 and the second superconducting wire 3, and the portions of the connection ends 21 and 31 drawn from the coating layer 20 are joined as described later. .

本実施形態の各超電導線材2、3に適用できる基材11は、通常の超電導線材の基材として使用でき、高強度であれば良く、長尺のケーブルとするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。例えば、銀、白金、ステンレス鋼、銅、ハステロイ等のニッケル合金等の各種金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材11の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmである。
ベッド層12は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層12は、必要に応じて配され、例えば、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。このベッド層は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜200nmである。
The base material 11 applicable to each of the superconducting wires 2 and 3 of the present embodiment can be used as a base material of a normal superconducting wire, has only to be high strength, and is in the form of a tape to make a long cable. Preferably, those made of a heat resistant metal are preferred. For example, various metal materials such as silver, platinum, stainless steel, copper, nickel alloys such as Hastelloy, or ceramics arranged on these various metal materials can be used. Among various heat resistant metals, nickel alloys are preferable. Especially, if it is a commercial item, Hastelloy (trade name made by US Haynes Co., Ltd.) is suitable, and Hastelloy B, C, G, N, W, which have different component amounts such as molybdenum, chromium, iron, cobalt, etc. Any type can be used. What is necessary is just to adjust the thickness of the base material 11 suitably according to the objective, and it is 10-500 micrometers normally.
The bed layer 12 has high heat resistance and is intended to reduce interfacial reactivity, and is used to obtain the orientation of a film disposed thereon. Such a bed layer 12 is arranged as necessary, and is made of, for example, yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like. Composed. The bed layer is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 200 nm, for example.

中間層15は、単層構造あるいは複層構造のいずれでも良く、その上に積層される酸化物超電導層17の結晶配向性を制御するために2軸配向する物質から選択される。中間層15の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、AlO3、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
この中間層15をIBAD法により良好な結晶配向性(例えば結晶配向度15゜以下)で成膜するならば、その上に形成するキャップ層16の結晶配向性を良好な値(例えば結晶配向度5゜前後)とすることができ、これによりキャップ層16の上に成膜する酸化物超電導層17の結晶配向性を良好なものとして優れた超電導特性を発揮できるようにすることができる。
The intermediate layer 15 may have either a single layer structure or a multilayer structure, and is selected from materials that are biaxially oriented in order to control the crystal orientation of the oxide superconducting layer 17 laminated thereon. Specifically, preferred materials for the intermediate layer 15 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3, Gd 2 O. 3 , metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified.
If the intermediate layer 15 is formed with a good crystal orientation (for example, a crystal orientation of 15 ° or less) by the IBAD method, the crystal orientation of the cap layer 16 formed thereon has a good value (for example, the crystal orientation). Thus, the oxide superconducting layer 17 formed on the cap layer 16 can have a good crystal orientation and can exhibit excellent superconducting characteristics.

中間層15の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.005〜2μmの範囲とすることができる。
中間層15は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で積層できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層17やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、下地の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO−Y(YSZ)からなる中間層15は、IBAD法における結晶配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
The thickness of the intermediate layer 15 may be adjusted as appropriate according to the purpose, but is usually in the range of 0.005 to 2 μm.
The intermediate layer 15 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted vapor deposition (hereinafter abbreviated as IBAD), chemical vapor deposition (CVD). Method: Thermal coating decomposition method (MOD method); It can be laminated by a known method for forming an oxide thin film such as thermal spraying. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 17 and the cap layer is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to an underlying vapor deposition surface during vapor deposition. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 15 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) reduces the value of ΔΦ (FWHM: full width at half maximum), which is an index representing the degree of crystal orientation in the IBAD method. This is particularly preferable because it can be performed.

キャップ層16は、前記中間層15の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層は、前記金属酸化物層からなる中間層15よりも高い面内配向度が得られる。
キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
The cap layer 16 is formed through a process of epitaxial growth on the surface of the intermediate layer 15, and then grain growth (overgrowth) in the lateral direction (plane direction), and crystal grains are selectively grown in the in-plane direction. The ones made are preferred. Such a cap layer has a higher in-plane orientation degree than the intermediate layer 15 made of the metal oxide layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

このCeO層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが望ましい。PLD法によるCeO2層の成膜条件としては、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
CeO層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましく、500nm以上であれば更に好ましい。但し、厚すぎると結晶配向性が悪くなるので、500〜1000nmとすることが好ましい。
The CeO 2 layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is desirable to use the PLD method from the viewpoint of obtaining a high film formation rate. The film formation conditions for the CeO2 layer by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
The film thickness of the CeO 2 layer may be 50 nm or more, but is preferably 100 nm or more, and more preferably 500 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates.

酸化物超電導層17は公知のもので良く、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層17として、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)などを例示することができる。
酸化物超電導層17は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)、PLD法又はCVD法を用いることが好ましい。
このMOD法は、金属有機酸塩を塗布後熱分解させるもので、金属成分の有機化合物を均一に溶解した溶液を基材上に塗布した後、これを加熱して熱分解させることにより基材上に薄膜を形成する方法であり、真空プロセスを必要とせず、低コストで高速成膜が可能であるため長尺のテープ状酸化物超電導導体の製造に適している。
The oxide superconducting layer 17 may be a known one, and specifically, a material made of REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd) is exemplified. it can. Examples of the oxide superconducting layer 17 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 17 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, it is preferable to use the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method), PLD method or CVD method.
This MOD method is a method in which a metal organic acid salt is applied and then thermally decomposed. After a solution in which a metal component organic compound is uniformly dissolved is applied onto a substrate, the substrate is heated and thermally decomposed. This is a method of forming a thin film on top, and is suitable for the production of a long tape-shaped oxide superconducting conductor because it does not require a vacuum process and enables high-speed film formation at low cost.

ここで前述のように、良好な配向性を有するキャップ層16上に酸化物超電導層17を形成すると、このキャップ層16上に積層される酸化物超電導層17もキャップ層16の配向性に整合するように結晶化する。よって前記キャップ層16上に形成された酸化物超電導層17は、結晶配向性に乱れが殆どなく、この酸化物超電導層17を構成する結晶粒の1つ1つにおいては、金属基材11の厚さ方向に電気を流しにくいc軸が配向し、金属基材11の長さ方向にa軸どうしあるいはb軸どうしが配向している。従って得られた酸化物超電導層16は、結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が殆どないので、金属基材2の長さ方向に電気を流し易くなり、十分に高い臨界電流密度が得られる。   Here, as described above, when the oxide superconducting layer 17 is formed on the cap layer 16 having a good orientation, the oxide superconducting layer 17 laminated on the cap layer 16 also matches the orientation of the cap layer 16. Crystallize as follows. Therefore, the oxide superconducting layer 17 formed on the cap layer 16 has almost no disorder in the crystal orientation, and in each of the crystal grains constituting the oxide superconducting layer 17, The c-axis that hardly allows electricity to flow in the thickness direction is oriented, and the a-axis or the b-axis is oriented in the length direction of the metal substrate 11. Therefore, the obtained oxide superconducting layer 16 is excellent in quantum connectivity at the crystal grain boundary, and hardly deteriorates in the superconducting characteristics at the crystal grain boundary, so that it is easy to flow electricity in the length direction of the metal base 2. A sufficiently high critical current density is obtained.

酸化物超電導層17の上に積層されている安定化基層18はAgなどの良電導性かつ酸化物超電導層17と接触抵抗が低くなじみの良い金属材料からなる層として形成される。
安定化層2は、良導電性の金属材料からなり、酸化物超電導層17が超電導状態から常電導状態に遷移したときに、安定化基層18とともに、酸化物超電導層17の電流が転流するバイパスとして機能する。
安定化層2を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが、Cu等の比較的安価なものを用いるのが好ましい。これにより、材料コストを低く抑えながら安定化層2を厚膜化することが可能となり、事故電流に耐える各超電導線材2、3を安価に得ることができる。
The stabilizing base layer 18 laminated on the oxide superconducting layer 17 is formed as a layer made of a metal material having good conductivity, such as Ag, and a low contact resistance with the oxide superconducting layer 17.
The stabilizing layer 2 is made of a highly conductive metal material, and when the oxide superconducting layer 17 transitions from the superconducting state to the normal conducting state, the current of the oxide superconducting layer 17 commutates together with the stabilizing base layer 18. Acts as a bypass.
The metal material constituting the stabilization layer 2 is not particularly limited as long as it has good conductivity, but it is preferable to use a relatively inexpensive material such as Cu. This makes it possible to increase the thickness of the stabilization layer 2 while keeping the material cost low, and the superconducting wires 2 and 3 that can withstand accidental currents can be obtained at low cost.

図1に示すように、以上のように構成された第1の超電導線材2および第2の超電導線材3においては、各接続端21、31の各安定化層19の表面(第1の接続領域21aおよび第2の接続領域31a)に、複数枚(本実施形態では3枚)の接続用超電導テープ4が接合されている。各接続用超電導テープ4は、各超電導線材2、3どうしを電気的および機械的に接続するものであり、第1の接続領域21と第2の接続領域31との合計幅Wと略同じ長さの帯状をなしている。
各接続用超電導テープ4としては、各超電導線材2、3と同様のものを用いることができる。ここで、各超電導線材2、3と各接続用超電導線材4とは、同じ層構成(設けられる層の種類および構成材料が同じ)であってもよく、異なる層構成であってもよいが、同じ層構成とする方が、各超電導線材2、3の一部を切断して接続用超電導テープ4として用いることができるため、簡便である。本実施形態では、各接続用超電導テープ4として、各超電導線材2、3と同じ層構成のものを用いる場合を例にする。
As shown in FIG. 1, in the 1st superconducting wire 2 and the 2nd superconducting wire 3 which were comprised as mentioned above, the surface (1st connection area | region) of each stabilization layer 19 of each connection end 21 and 31 is shown. A plurality of (three in the present embodiment) connecting superconducting tapes 4 are joined to 21a and the second connecting region 31a). Each connection superconducting tape 4 electrically and mechanically connects the respective superconducting wires 2 and 3, and has approximately the same length as the total width W of the first connection region 21 and the second connection region 31. It has a strip shape.
As each superconducting tape 4 for connection, the same thing as each superconducting wire 2 and 3 can be used. Here, each superconducting wire 2, 3 and each connecting superconducting wire 4 may have the same layer configuration (the same kind of layers and constituent materials are provided) or different layer configurations, It is easier to use the same layer structure because a part of each superconducting wire 2 and 3 can be cut and used as the connecting superconducting tape 4. In the present embodiment, the case where the same superconducting wire 2 and 3 as each superconducting wire 4 is used as an example is used as each superconducting tape 4 for connection.

各接続用超電導テープ4は、それぞれ、それらの安定化層19の表面4aが、各超電導線材2、3の各接続領域21a、31aに対向し、その長さ方向を各接続領域21a、31aの幅方向と略直交するように、各接続領域21a、31aどうしの境界を横切って配されており、互いに間隔Wをあけて並列されている。そして、各接続用超電導テープ4の各安定化層19の表面4aが、ハンダを介して各超電導線材2、3の各接続領域21a、31aに接合されている。
これにより、第1の超電導線材2と第2の超電導線材3は、各接続用超電導テープ4によって各接続端21、31どうしが連結され、電気的および機械的に接続されている。このように各超電導線材2、3どうしを、接続用超電導テープ4を介して接続することにより、接続抵抗が低く抑えられ、各超電導線材2、3どうしを強固に接続することができる。
Each superconducting tape 4 for connection has a surface 4a of the stabilization layer 19 facing each connection region 21a, 31a of each superconducting wire 2, 3, and the length direction of each connection region 21a, 31a. as the width direction substantially perpendicular to, the connection region 21a, are disposed across the boundary of and what 31a, are arranged in parallel with an interval W 2 to each other. And the surface 4a of each stabilization layer 19 of each connection superconducting tape 4 is joined to each connection region 21a, 31a of each superconducting wire 2, 3 via solder.
As a result, the first superconducting wire 2 and the second superconducting wire 3 are connected electrically and mechanically by connecting the connection ends 21 and 31 to each other by the connecting superconducting tape 4. By connecting the superconducting wires 2 and 3 via the connecting superconducting tape 4 in this way, the connection resistance can be kept low and the superconducting wires 2 and 3 can be firmly connected.

そして、本実施形態の超電導接続構造体1Aは、複数の接続用超電導テープ4が、互いに間隔Wを空けて設けられている点に特徴がある。これにより、超電導接続構造体1Aが常温と低温の間で温度変化しても、各接続領域21a、31aに対する各接続用超電導テープ4の接合状態が保持され、低い接続抵抗および高い接続強度を維持することができる。
すなわち、超電導接続構造体1Aは、常温から低温、低温から常温への温度変化(常温・低温サイクル)が負荷されることがある。この温度変化に伴って、超電導接続構造体1Aを構成する各部が、それぞれの熱膨張率に応じて負荷がかかることがある。
The superconductive connection structure 1A of this embodiment, a plurality of connecting the superconducting tape 4, is characterized in that provided at a distance W 2 from each other. Thereby, even if the temperature of the superconducting connection structure 1A changes between normal temperature and low temperature, the bonding state of each connection superconducting tape 4 to each connection region 21a, 31a is maintained, and low connection resistance and high connection strength are maintained. can do.
That is, the superconducting connection structure 1A may be subjected to a temperature change (normal temperature / low temperature cycle) from normal temperature to low temperature and from low temperature to normal temperature. Along with this temperature change, each part constituting the superconducting connection structure 1A may be loaded depending on the coefficient of thermal expansion.

ここで、本発明と異なり、幅広の接続用超電導テープを用いた場合、超電導接続構造体1Aの温度が、常温から低温、低温から常温に変化すると、ハンダやハンダとの接着部に比較的大きな応力が生じる。その結果、幅広の接続用超電導テープを接合しているハンダの一部が剥離し、密着性が損なわれるおそれがある。
これに対して、幅狭の接続用超電導テープ4を複数枚用い、互いに間隔を空けて設けると、超電導接続構造体1Aが常温と低温と間で温度変化しても、各接続用超電導テープの接合材や接合材との接着部に生じる応力を分散できるので、各接続領域21a、31aに対する各接続用超電導テープ4の接合状態を保持し易い。
また、この超電導接続構造体1Aでは、接続された超電導線材2、3どうしで裏表が一致するため、良好な取り扱い性を得ることができる。
Here, unlike the present invention, when a wide superconducting tape for connection is used, when the temperature of the superconducting connection structure 1A changes from room temperature to low temperature and from low temperature to room temperature, it is relatively large in the solder and the bonding portion with the solder. Stress is generated. As a result, a part of the solder joining the wide connecting superconducting tape may be peeled off and the adhesion may be impaired.
On the other hand, when a plurality of narrow connection superconducting tapes 4 are used and spaced apart from each other, even if the temperature of the superconducting connection structure 1A changes between normal temperature and low temperature, Since the stress generated in the bonding material and the bonding portion with the bonding material can be dispersed, it is easy to maintain the bonding state of each connection superconducting tape 4 to each connection region 21a, 31a.
Moreover, in this superconducting connection structure 1A, since the front and back of the connected superconducting wires 2 and 3 coincide, good handleability can be obtained.

次に、本発明に係る超電導線材の接続方法の第1実施形態について、図1に示す超電導接続構造体1Aを形成する場合を例にして説明する。
まず、接続対象となる2本の超電導線材(第1の超電導線材2および第2の超電導線材3)と複数枚(本実施形態では3枚)の接続用超電導テープ4を用意する。
次に、各接続領域21a、31aの各接続用超電導テープの接合領域に、ハンダを介して、各接続用超電導テープ4を接着する。
ハンダとしては、特に限定されず、例えば、Pb−Sn系合金ハンダの他、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金等の鉛フリーハンダ等が挙げられ、これらのうちから1種または2種以上を組み合わせて用いることができる。このうち、ハンダとしては、融点が300℃以下のものを用いるのが好ましい。これにより、300℃以下の温度でハンダ付けすることが可能となるので、ハンダ付けの熱によって酸化物超電導層17の酸素が抜け、その特性が劣化するのを抑止することができる。
Next, a first embodiment of the superconducting wire connecting method according to the present invention will be described by taking as an example the case of forming the superconducting connection structure 1A shown in FIG.
First, two superconducting wires (first superconducting wire 2 and second superconducting wire 3) to be connected and a plurality (three in this embodiment) of connecting superconducting tapes 4 are prepared.
Next, each connection superconducting tape 4 is bonded to the connection region of each connection superconducting tape in each connection region 21a, 31a via solder.
The solder is not particularly limited. For example, in addition to Pb—Sn alloy solder, lead-free solder such as Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, etc. Of these, one or a combination of two or more can be used. Of these, solder having a melting point of 300 ° C. or lower is preferably used. As a result, soldering can be performed at a temperature of 300 ° C. or lower, so that it is possible to prevent the oxide superconducting layer 17 from being desorbed by heat of soldering and deteriorating its characteristics.

このように、本実施形態の超電導線材の接続方法では、2本の超電導線材2、3を、特別な装置を用いることなく、簡単なハンダ付け作業で接続することができる。このため、この超電導線材の接続方法によれば、場所を選ぶことなく、無理なく短時間に各超電導線材2、3を接続することができる。なお、ハンダについては、メッキ法により接続用超電導テープ4の安定化層19の表面に予め形成しておいたものを加熱圧着するなどの方法を採用することができる。   As described above, in the superconducting wire connecting method of the present embodiment, the two superconducting wires 2 and 3 can be connected by a simple soldering operation without using a special device. For this reason, according to this superconducting wire connecting method, the superconducting wires 2 and 3 can be connected without difficulty in a short time without selecting a place. In addition, about solder, the method of carrying out the thermocompression bonding of what was previously formed in the surface of the stabilization layer 19 of the superconducting tape 4 for a connection by the plating method is employable.

次に、本発明の超電導接続構造体および超電導線材の接続方法の各第2実施形態について説明する。
図3は、本発明の超電導接続構造体の第2実施形態を示す概略斜視図である。
以下、第2実施形態に係る超電導接続構造体および超電導線材の接続方法について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
本実施形態にかかる超電導接続構造体1Bは、各超電導線材2、3の各接続領域21a、31aと、各接続用超電導テープ4との間に、それぞれ、金属板5が介在されている以外は、前記第1実施形態の超電導接続構造体1Aと同様の構成とされている。
Next, each 2nd Embodiment of the connection method of the superconducting connection structure of this invention and a superconducting wire is described.
FIG. 3 is a schematic perspective view showing a second embodiment of the superconducting connection structure of the present invention.
Hereinafter, the superconducting connection structure and the superconducting wire connecting method according to the second embodiment will be described. However, differences from the first embodiment will be mainly described, and description of similar matters will be omitted.
The superconducting connection structure 1B according to the present embodiment is configured except that the metal plate 5 is interposed between the connection regions 21a and 31a of the superconducting wires 2 and 3 and the superconducting tape 4 for connection. The superconducting connection structure 1A of the first embodiment has the same configuration.

各金属板5は、それぞれ、その上方に設けられた各接続用超電導テープ4と同じ平面形状をなしており、各接続領域21a、31aに、第1のハンダを介し接合されている。
また、各接続用超電導テープ4は、それぞれ、各金属板5の各接続領域21a、31a側と反対側の表面に、その安定化層19側の表面4aを対向させ、第1のハンダよりも融点の低い第2のハンダを介し接合されている。
Each metal plate 5 has the same planar shape as each connection superconducting tape 4 provided thereabove, and is joined to each connection region 21a, 31a via a first solder.
In addition, each superconducting tape 4 for connection has a surface 4a on the stabilization layer 19 side opposed to the surface on the opposite side of each connection region 21a, 31a side of each metal plate 5, and more than the first solder. It is joined via a second solder having a low melting point.

この第2実施形態においても、前記第1実施形態と同様の効果が得られる。
また、第2実施形態の超電導接続構造体1Bでは、特に、各接続領域21a、31aと各接続用超電導テープ4との間に、それぞれ、各金属板5が介在されていることにより、各接続用超電導テープ4が各金属板5によって補強され、より高い接続強度を得ることができる。
各金属板5の構成材料としては、機械的強度に優れるとともに、良導電性を有するものであるのが好ましい。各金属板5の構成材料としては、銀や銅が好適である。
In the second embodiment, the same effect as in the first embodiment can be obtained.
Further, in the superconducting connection structure 1B of the second embodiment, each metal plate 5 is interposed between each connection region 21a, 31a and each connection superconducting tape 4, in particular. The superconducting tape 4 is reinforced by the respective metal plates 5, and higher connection strength can be obtained.
As a constituent material of each metal plate 5, it is preferable that it is excellent in mechanical strength and has good conductivity. As a constituent material of each metal plate 5, silver or copper is suitable.

次に、本発明の超電導線材の接続方法の第2実施形態について、図3に示す超電導接続構造体1Bを形成する場合を例にして説明する。
まず、接続対象となる2本の超電導線材(第1の超電導線材2および第2の超電導線材3)と、複数枚(本実施形態では3枚)の接続用超電導テープ4と、各接続用超電導テープ4と同じ枚数の金属板5を用意する。
そして、各超電導線材2、3を、安定化層19側の表面(各接続領域21a、31a)が上方となり、各接続端部21、31の側端面が隣接するように設置した後、各超電導線材2、3の各接続領域21a、31aの各金属板接合領域に、第1のハンダを介して、各金属板5をハンダ付けする。
次に、各金属板5上に、第1のハンダよりも融点の低い第2のハンダを介して、各接続用超電導テープ4をハンダ付けする。
ここで、各接続用超電導テープ4を接着するハンダとして、第1のハンダよりも融点の低い第2のハンダを用いることにより、各金属板5の接着工程よりも低い温度で各接続用超電導テープ4のハンダ付けを行うことができる。これにより、この工程で、第1のハンダが溶融して金属板5が位置ズレするのを抑えることができ、各金属板4および各接続用超電導テープ4を位置精度よく接着することができる。
以上の工程により、図3に示す超電導接続構造体1Bを形成することができる。
Next, a second embodiment of the superconducting wire connecting method of the present invention will be described by taking as an example the case of forming the superconducting connection structure 1B shown in FIG.
First, two superconducting wires (first superconducting wire 2 and second superconducting wire 3) to be connected, a plurality (three in this embodiment) of connecting superconducting tapes 4, and each connecting superconducting device The same number of metal plates 5 as the tape 4 are prepared.
And after installing each superconducting wire 2 and 3 so that the surface (each connection area | region 21a, 31a) by the side of the stabilization layer 19 becomes upper and the side end surface of each connection edge part 21 and 31 adjoins, each superconductivity Each metal plate 5 is soldered to each metal plate joining region of each connection region 21a, 31a of the wires 2 and 3 via the first solder.
Next, each connection superconducting tape 4 is soldered on each metal plate 5 via a second solder having a melting point lower than that of the first solder.
Here, by using a second solder having a melting point lower than that of the first solder as the solder for bonding each connection superconducting tape 4, each connection superconducting tape at a lower temperature than the bonding process of each metal plate 5. 4 can be soldered. Thereby, it can suppress that the 1st solder fuse | melts at this process and the metal plate 5 shifts | deviates, and each metal plate 4 and each superconducting tape 4 for connection can be adhere | attached with a sufficient positional accuracy.
Through the above steps, the superconducting connection structure 1B shown in FIG. 3 can be formed.

次に、本発明の超電導接続構造体および超電導線材の接続方法の各第3実施形態について説明する。
図4は、本発明の超電導接続構造体の第3実施形態を示す概略斜視図である。
以下、第3実施形態にかかる超電導接続構造体および超電導線材の接続方法について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
Next, each 3rd Embodiment of the connection method of the superconducting connection structure of this invention and a superconducting wire is described.
FIG. 4 is a schematic perspective view showing a third embodiment of the superconducting connection structure of the present invention.
Hereinafter, although the superconducting connection structure and the superconducting wire connecting method according to the third embodiment will be described, differences from the first embodiment will be mainly described, and description of similar matters will be omitted.

本実施形態にかかる超電導接続構造体1Cは、各超電導線材2、3の各接続領域21a、31aに、接続用超電導テープ4の配列と並んで、金属板6が配設されている以外は、前記第1実施形態の超電導接続構造体1Aと同様の構成とされている。
金属板6は、各超電導線材2、3の第1の接続領域21aと第2の接続領域31aとの合計幅Wと略同じ長さの帯状をなしている。
金属板6は、その長さ方向が各接続領域21a、31aの幅方向と略直交するように、各接続領域21a、31aどうしの境界を横切って配されており、最前列の接続用超電導テープ4の前方に、該接続用超電導テープ4と間隔を空けて配されている。そして、この金属板6は、ハンダを介して各接続領域21a、31aに接合されている。
The superconducting connection structure 1C according to the present embodiment has a configuration in which the metal plate 6 is disposed in each connection region 21a, 31a of each superconducting wire 2 and 3 along with the arrangement of the superconducting tape 4 for connection. The configuration is the same as that of the superconducting connection structure 1A of the first embodiment.
The metal plate 6 has a strip shape having a length substantially the same as the total width W of the first connection region 21 a and the second connection region 31 a of each superconducting wire 2, 3.
The metal plate 6 is arranged across the boundary between the connection regions 21a and 31a so that the length direction thereof is substantially orthogonal to the width direction of the connection regions 21a and 31a. In front of 4, the connecting superconducting tape 4 is spaced apart. And this metal plate 6 is joined to each connection area | region 21a, 31a via solder.

この第3実施形態においても、前記第1実施形態と同様の効果が得られる。
また、第3実施形態の超電導接続構造体1Cでは、特に、各超電導線材2、3の各接続領域21a、31aに、接続用超電導テープ4の配列と並んで、金属板6が配設されていることにより、各超電導線材2、3の各接続端21、31が、各接続用超電導テープ4によって連結されるとともに、この金属板6によっても連結される。したがって、より高い接続強度を得ることができる。
また、このように接続端21、31の表面に、各接続用超電導テープ4と金属板6を並べる構成では、金属板の上に接続用超電導テープ4を重ねる構成に比べて各接続端21、31の厚さを薄くできるという効果も得られる。
In the third embodiment, the same effect as in the first embodiment can be obtained.
Further, in the superconducting connection structure 1C of the third embodiment, in particular, the metal plates 6 are arranged in the connection regions 21a and 31a of the superconducting wires 2 and 3 along with the arrangement of the superconducting tapes 4 for connection. Accordingly, the connection ends 21 and 31 of the superconducting wires 2 and 3 are connected by the connecting superconducting tape 4 and also by the metal plate 6. Therefore, higher connection strength can be obtained.
Further, in the configuration in which the connection superconducting tape 4 and the metal plate 6 are arranged on the surfaces of the connection ends 21 and 31, the connection ends 21 and 31 are compared with the configuration in which the connection superconducting tape 4 is stacked on the metal plate. The effect that the thickness of 31 can be made thin is also acquired.

次に、本発明の超電導接続構造体および超電導線材の接続方法の各第4実施形態について説明する。
図5は、本発明の超電導接続構造体の第4実施形態を示す概略斜視図である。
以下、第4実施形態にかかる超電導接続構造体および超電導線材の接続方法について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
Next, each 4th Embodiment of the connection method of the superconducting connection structure of this invention and a superconducting wire is described.
FIG. 5 is a schematic perspective view showing a fourth embodiment of the superconducting connection structure of the present invention.
Hereinafter, the superconducting connection structure and the superconducting wire connecting method according to the fourth embodiment will be described. However, differences from the first embodiment will be mainly described, and description of similar matters will be omitted.

本実施形態にかかる超電導接続構造体1Dは、各超電導線材2、3の各接続領域21a、31aの双方に亘って、各接続用超電導テープ4を覆うように金属カバー7が設けられている以外は、前記第1実施形態の超電導接続構造体1Aと同様の構成とされている。
金属カバー7は、その中央領域が撓んだ帯状をなし、各超電導線材2、3の第1の接続領域2と第2の接続領域3の合計幅Wと略同一の幅と、接続用超電導テープ4の配列長より長い長さを有している。
この金属カバー7は、凹側の表面を各接続領域21a、31aに対峙させ、その長手方向が各超電導線材2、3の長手方向と略一致するように、各接続用超電導テープ4を覆うように配され、各接続領域21a、31aおよび各接続用超電導テープ4の上に、ハンダを介して接合されている。
The superconducting connection structure 1D according to this embodiment is provided with a metal cover 7 so as to cover each connection superconducting tape 4 over both connection regions 21a and 31a of each superconducting wire 2 and 3. Is configured similarly to the superconducting connection structure 1A of the first embodiment.
The metal cover 7 has a belt-like shape in which the central region is bent, and has a width substantially the same as the total width W of the first connection region 2 and the second connection region 3 of each superconducting wire 2, 3, and superconducting for connection. The length is longer than the arrangement length of the tapes 4.
The metal cover 7 covers the connection superconducting tape 4 so that the concave surface faces the connection regions 21a and 31a and the longitudinal direction thereof substantially coincides with the longitudinal direction of the superconducting wires 2 and 3. Arranged on the connection regions 21a and 31a and the superconducting tapes 4 for connection via solder.

この第4実施形態においても、前記第1実施形態と同様の効果が得られる。
また、第4実施形態の超電導接続構造体1Dでは、特に、各接続領域21a、31aに、各接続用超電導テープ4を覆うように金属カバー7が設けられていることにより、各超電導線材2、3の各接続端21、31が、各接続用超電導テープ4によって連結されるとともに、この金属カバー7によっても連結される。また、各接続用超電導テープ4が金属カバー7によって補強される。したがって、さらに高い接続強度を得ることができる。
Also in the fourth embodiment, the same effect as in the first embodiment can be obtained.
In the superconducting connection structure 1D of the fourth embodiment, in particular, each connection region 21a, 31a is provided with a metal cover 7 so as to cover each connection superconducting tape 4, thereby each superconducting wire 2, 3 are connected by the superconducting tape 4 for connection and also by the metal cover 7. Each connection superconducting tape 4 is reinforced by a metal cover 7. Therefore, higher connection strength can be obtained.

金属カバーの構成材料としては、機械的強度に優れるとともに、良導電性を有するものであるのが好ましい。金属板7が良導電性を有することにより、超電導線材2、3の超電導層が超電導状態から常電導状態に遷移しようとしたとき、該金属カバー7が、超電導線材2、3の電流を転流するバイパスとして機能する。これにより、超電導線材2、3の接合部分及び各接続用超電導テープ4の部分において発熱することを防止できる。このような点から、金属板カバー7の構成材料としては、良電導性の銀や銅が好適である。   As a constituent material of the metal cover, it is preferable that it is excellent in mechanical strength and has good conductivity. Since the metal plate 7 has good conductivity, when the superconducting layer of the superconducting wires 2 and 3 tries to transition from the superconducting state to the normal conducting state, the metal cover 7 commutates the current of the superconducting wires 2 and 3. To act as a bypass. As a result, it is possible to prevent heat generation at the joint portions of the superconducting wires 2 and 3 and the portions of the superconducting tapes 4 for connection. From such a point, as the constituent material of the metal plate cover 7, highly conductive silver or copper is suitable.

また、金属カバー7は銅や銀などの良導電性の金属材料からなり、各超電導線材2、3の酸化物超電導層17を構成するセラミックス、基材11を構成するハステロイ等の耐熱合金あるいは希土類系の酸化物超電導材料よりも熱膨張率が大きいため、超電導接続構造体1Dが冷媒により冷却されたとき、各超電導線材2、3よりも大きく収縮しようとする。その結果、金属カバー7は、長手方向の両側から引っ張られた状態で縮小することになり、各接続用超電導テープ4に対しては、これらを各接続領域21a、31a側に押し付けるように押圧力が作用する。これにより、各接続用超電導テープ4と各接続領域21a、31aとの密着性を高くすることができる。   Further, the metal cover 7 is made of a highly conductive metal material such as copper or silver, ceramics constituting the oxide superconducting layer 17 of each superconducting wire 2, 3, heat-resistant alloy such as Hastelloy constituting the substrate 11, or rare earth. Since the thermal expansion coefficient is larger than that of the oxide superconducting material, the superconducting connection structure 1D tends to shrink more than the superconducting wires 2 and 3 when cooled by the refrigerant. As a result, the metal cover 7 is reduced while being pulled from both sides in the longitudinal direction, and the pressing force is applied to each connection superconducting tape 4 so as to press them against the connection regions 21a and 31a. Works. Thereby, the adhesiveness of each superconducting tape 4 for connection and each connection area | region 21a, 31a can be made high.

図5に示す超電導接続構造体1Dを形成するには、図1に示す構造を作製した後、各超電導線材2、3の各接続領域21a、31aに、各接続用超電導テープ4を覆うように、ハンダを介して、金属カバー7を接続端21、31の表面にハンダ付けすれば良い。
ここで、各接続用超電導テープ4が互いに間隔を空けて設けられていることにより、各接続用超電導テープ4どうしの間にもハンダを充填することができる。その結果、各接続用超電導テープ4上に、金属カバー7を均一かつより強固に接着することができる。
以上の工程により、図5に示す超電導接続構造体1Dを形成できる。
このように、本実施形態の超電導線材の接続方法では、2本の超電導線材2、3を、特別な装置を用いることなく、簡単な接続作業で接続することができる。このため、この超電導線材の接続方法によれば、作業場所を選ぶことなく、無理なく短時間に各超電導線材2、3を接続することができる。
In order to form the superconducting connection structure 1D shown in FIG. 5, after the structure shown in FIG. 1 is fabricated, the connection superconducting tape 4 is covered with the connection regions 21a and 31a of the superconducting wires 2 and 3, respectively. The metal cover 7 may be soldered to the surfaces of the connection ends 21 and 31 through solder.
Here, since the connecting superconducting tapes 4 are provided with a space therebetween, solder can be filled between the connecting superconducting tapes 4. As a result, the metal cover 7 can be uniformly and more firmly bonded to each connection superconducting tape 4.
Through the above steps, the superconducting connection structure 1D shown in FIG. 5 can be formed.
As described above, in the superconducting wire connecting method of the present embodiment, the two superconducting wires 2 and 3 can be connected by a simple connecting operation without using a special device. For this reason, according to this superconducting wire connecting method, it is possible to connect the superconducting wires 2 and 3 without difficulty in a short time without selecting a work place.

次に、本発明に係る超電導コイル装置の一実施形態について説明する。
図6は、本発明の超電導コイル装置の一実施形態を示すものであり、図6(a)は概略斜視図、図6(b)は側面図である。
この超電導コイル装置100は、第1の超電導線材2によって構成された第1の超電導コイル101と、第2の超電導線材3によって構成された第2の超電導コイル102と、各超電導線材2、3どうしを接続する複数枚(本実施形態では3枚)の接続用超電導テープ4を有している。
各超電導線材2、3および各接続用超電導テープ4としては、前記第1実施形態と同様のものを用いることができる。
第1の超電導コイル101は、第1の超電導線材2が、安定化層19の表面を外側にして、左回りに多数回巻回されて構成されている。
また、第2の超電導コイル102は、第1の超電導コイル101の上方に重ねられ、第2の超電導線材3が、安定化層19の表面を外側にして右回りに多数回巻回されて構成されている。
そして、第1の超電導線材2および第2の超電導線材3の外側の各端部(接続端21、31)は、側端面どうしが隣接するように配されており、各接続端21、31の外側面に、複数の接続用超電導テープ4が接着されている。
以下の説明では、第1の超電導線材2の接続端21の外側面を「第1の接続領域21a」と言い、第2の超電導線材3の接続端31の外側面を「第2の接続領域31a」と言う。
Next, an embodiment of a superconducting coil device according to the present invention will be described.
FIG. 6 shows one embodiment of the superconducting coil device of the present invention. FIG. 6 (a) is a schematic perspective view, and FIG. 6 (b) is a side view.
The superconducting coil device 100 includes a first superconducting coil 101 composed of a first superconducting wire 2, a second superconducting coil 102 composed of a second superconducting wire 3, and each superconducting wire 2,3. A plurality of (three in the present embodiment) connecting superconducting tapes 4 are connected.
As each superconducting wire 2, 3 and each superconducting tape 4 for connection, the same ones as in the first embodiment can be used.
The first superconducting coil 101 is configured by winding the first superconducting wire 2 many times counterclockwise with the surface of the stabilization layer 19 facing outside.
Further, the second superconducting coil 102 is stacked above the first superconducting coil 101, and the second superconducting wire 3 is wound many times clockwise with the surface of the stabilization layer 19 facing outside. Has been.
And each edge part (connection end 21 and 31) of the outer side of the 1st superconducting wire 2 and the 2nd superconducting wire 3 is distribute | arranged so that the side end surfaces may adjoin each other, A plurality of connecting superconducting tapes 4 are bonded to the outer surface.
In the following description, the outer surface of the connection end 21 of the first superconducting wire 2 is referred to as “first connection region 21a”, and the outer surface of the connection end 31 of the second superconducting wire 3 is referred to as “second connection region”. 31a ".

各接続用超電導テープ4は、それぞれ、その安定化層19の表面4aが、各超電導線材2、3の各接続領域21a、31aに対向し、その長さ方向が各接続領域21a、31aの幅方向と略直交するように、各接続領域21a、31aどうしの境界を横切って配されており、互いに間隔Wを空けて並列されている。そして、各接続用超電導テープ4の各安定化層19の表面が、ハンダを介して各超電導線材2、3の各接続領域21a、31aに接合されている。すなわち、各接続用超電導テープ4は、互いに間隔Wを空けて配列するように、それぞれ、その安定化層19の表面4aが、各接続領域21a、31aの双方に亘って接合されている。
これにより、第1の超電導線材2(第1の超電導コイル101)と第2の超電導線材3(第2の超電導コイル102)とは、各接続用超電導テープ4によって各接続端21、31どうしが連結され、電気的および機械的に接続される。このように各超電導線材2、3どうしを、各接続用超電導テープ4を介して接続することにより、接続抵抗が低く抑えられ、良好なコイル特性を得ることができる。また、各超電導線材2、3どうしが強固に連結され、優れた接続強度を得ることができる。
Each of the superconducting tapes 4 for connection has a surface 4a of the stabilization layer 19 facing the connection regions 21a and 31a of the superconducting wires 2 and 3, respectively, and its length direction is the width of each connection region 21a and 31a. as a direction substantially orthogonal, each connection region 21a, are disposed across the boundary of and what 31a, are arranged in parallel at an interval W 2 to each other. And the surface of each stabilization layer 19 of each superconducting tape 4 for connection is joined to each connection area | region 21a, 31a of each superconducting wire 2 and 3 via solder. That is, each connecting the superconducting tape 4, so as to be arranged at a distance W 2 from each other, respectively, the surface 4a of the stabilizing layer 19 is joined each connection area 21a, over both 31a.
As a result, the first superconducting wire 2 (first superconducting coil 101) and the second superconducting wire 3 (second superconducting coil 102) are connected to each other at the connection ends 21 and 31 by the connection superconducting tape 4. Connected, electrically and mechanically connected. Thus, by connecting the superconducting wires 2 and 3 via the connecting superconducting tapes 4, the connection resistance can be kept low, and good coil characteristics can be obtained. Further, the superconducting wires 2 and 3 are firmly connected to each other, and an excellent connection strength can be obtained.

以上、本発明の超電導接続構造体および超電導線材の接続方法、超電導コイル装置について説明したが、各実施形態において、超電導接続構造体の各部、超電導線材の接続方法の各工程、超電導コイル装置を構成する各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することができる。例えば、第4実施形態の超電導コイル装置では、第1実施形態の超電導接続構造体を用いているが、本発明の超電導コイル装置としては、第2実施形態〜第3実施形態の超電導接続構造体を用いたものであってもよい。   The superconducting connection structure, the superconducting wire connecting method, and the superconducting coil device of the present invention have been described above. In each embodiment, each part of the superconducting connecting structure, each step of the superconducting wire connecting method, and the superconducting coil device are configured. Each part to be performed is an example, and can be appropriately changed without departing from the scope of the present invention. For example, although the superconducting connection device of the first embodiment is used in the superconducting coil device of the fourth embodiment, the superconducting connection device of the second embodiment to the third embodiment is used as the superconducting coil device of the present invention. May be used.

本発明は、例えば超電導モータ、限流器など、各種電力機器に用いられる超電導接続構造体に利用することができる。   The present invention can be used for a superconducting connection structure used in various power devices such as a superconducting motor and a current limiting device.

1A、1B、1C、1D…超電導接続構造体、2…第1の超電導線材、21…接続端、21a…第1の接続領域、3…第2の超電導線材、31…接続端、31a…第2の接続領域、4…接続用超電導テープ、5、6…金属板、7…金属カバー、11…基材、12…ベッド層、15…中間層、16…キャップ層、17…酸化物超電導層、18…安定化基層、19…安定化層、100…超電導コイル装置、101…第1の超電導コイル、102…第2の超電導コイル。   DESCRIPTION OF SYMBOLS 1A, 1B, 1C, 1D ... Superconducting connection structure, 2 ... 1st superconducting wire, 21 ... Connection end, 21a ... 1st connection area, 3 ... 2nd superconducting wire, 31 ... Connection end, 31a ... 1st 2 connection regions, 4 ... superconducting tape for connection, 5, 6 ... metal plate, 7 ... metal cover, 11 ... base material, 12 ... bed layer, 15 ... intermediate layer, 16 ... cap layer, 17 ... oxide superconducting layer , 18 ... Stabilization base layer, 19 ... Stabilization layer, 100 ... Superconducting coil device, 101 ... First superconducting coil, 102 ... Second superconducting coil.

Claims (8)

基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備え、その端部が接続端とされた少なくとも2本の超電導線材と、
基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備え、前記各超電導線材の各接続端どうしを接続する複数の接続用超電導テープとを有し、
前記各超電導線材は、互いに、前記各導電層側の表面が同じ側となり、且つ、前記各接続端の側端面どうしが隣接するように配されており、
前記各接続用超電導テープは、互いに間隔を空けて配列するように、それぞれ、その導電層側の表面を前記各接続端の前記各導電層側の表面の双方に亘って接合されていることを特徴とする超電導接続構造体。
A substrate, a superconducting layer provided on the substrate, and a conductive layer provided on the superconducting layer, and at least two superconducting wires whose ends are connected ends;
A substrate, a superconducting layer provided on the substrate, and a conductive layer provided on the superconducting layer, and a plurality of superconducting tapes for connecting the connection ends of the superconducting wires. Have
The superconducting wires are arranged such that the surfaces on the conductive layer side are the same side, and the side end surfaces of the connection ends are adjacent to each other.
Each of the superconducting tapes for connection is bonded to both the surfaces of the respective conductive layers at the respective connection ends so as to be arranged at intervals. A superconducting connection structure.
前記各接続端と、前記各接続用超電導テープとの間に、それぞれ、金属板が介在しており、
前記各金属板は、前記各接続端の前記導電層側の表面と、前記接続用超電導テープの前記導電層側の表面に接合されていることを特徴とする請求項1に記載の超電導接続構造体。
A metal plate is interposed between each connection end and each connection superconducting tape,
2. The superconducting connection structure according to claim 1, wherein each of the metal plates is bonded to a surface of the connection end on the conductive layer side and a surface of the connection superconducting tape on the conductive layer side. body.
金属板が、前記接続用超電導テープの配列と並んで、前記各接続端の前記各導電層側の表面の双方に亘って接合されていることを特徴とする請求項1又は2に記載の超電導接続構造体。   The superconductivity according to claim 1 or 2, wherein a metal plate is joined to both the surfaces of the respective connection ends on the side of each conductive layer side by side with the array of the superconducting tapes for connection. Connection structure. 前記接続端の長さ方向に並ぶ各接続用超電導テープを覆うとともに、前記各接続端の導電層側表面の双方に亘って、少なくとも両端部を各接続端の導電層表面に接合した金属カバーが設けられていることを特徴とする請求項1〜3のいずれかに記載の超電導接続構造体。   A metal cover that covers each of the connection superconducting tapes arranged in the length direction of the connection end and has at least both ends bonded to the conductive layer surface of each connection end across both surfaces of the connection layer on the conductive layer side. The superconducting connection structure according to claim 1, wherein the superconducting connection structure is provided. 基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える少なくとも2本の超電導線材を、前記各導電層側の表面が同じ側となり、且つ、前記各接続端の側端面どうしが隣接するように配置する工程と、
基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える複数の接続用超電導テープを用意し、前記各接続用超電導テープを、互いに間隔を空けて配列させ、それぞれ、その導電層側の表面を、前記各接続端の各導電層側表面の双方に亘って、ハンダを介して接合する工程とを有することを特徴とする超電導線材の接続方法。
At least two superconducting wires comprising a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer, the surfaces of the respective conductive layers are on the same side, and , A step of arranging the side end surfaces of each connection end to be adjacent to each other;
A plurality of superconducting tapes for connection comprising a substrate, a superconducting layer provided on the substrate, and a conductive layer provided on the superconducting layer are prepared, and the connecting superconducting tapes are spaced apart from each other. Connecting the superconducting wires, characterized in that they have a step of joining them via soldering over the respective conductive layer side surfaces of the respective connection ends. Method.
基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える少なくとも2本の超電導線材を、前記各導電層側の表面が同じ側となり、且つ、前記各接続端の側端面どうしが隣接するように配置する工程と、
複数の金属板を、互いに間隔を空けて配列させ、それぞれ、その導電層側の表面を、前記各接続端の前記各導電層側表面の双方に亘って、第1のハンダを介して接合する工程と、
基材と、該基材上に設けられた超電導層と、該超電導層上に設けられた導電層とを備える複数の接続用超電導テープを用意し、各接続用超電導テープの導電層側の表面を、前記各金属板の表面に、第2のハンダを介して接合する工程とを有することを特徴とする超電導線材の接続方法。
At least two superconducting wires comprising a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer, the surfaces of the respective conductive layers are on the same side, and , A step of arranging the side end surfaces of each connection end to be adjacent to each other;
A plurality of metal plates are arranged with a space between each other, and the surface on the conductive layer side is bonded to both the conductive layer side surfaces of the connection ends via the first solder. Process,
A plurality of superconducting tapes for connection comprising a base material, a superconducting layer provided on the base material, and a conductive layer provided on the superconducting layer are prepared, and the surface on the conductive layer side of each superconducting tape for connection A method of joining the surface of each metal plate to the surface of the metal plate via a second solder.
前記第2のハンダは、前記第1のハンダよりも融点が低いことを特徴とする請求項6に記載の超電導線材の接続方法。   The superconducting wire connecting method according to claim 6, wherein the second solder has a melting point lower than that of the first solder. 導電層側の表面を外側にして巻回された超電導線材の巻回体からなる少なくとも2つの超電導コイルを有し、各超電導線材が、各接続端が接続されて超電導接続構造体を構成している超電導コイル装置であって、
前記超電導接続構造体は、前記請求項1〜4のいずれかに記載の超電導接続構造体であることを特徴とする超電導コイル装置。
It has at least two superconducting coils composed of a wound body of superconducting wire wound with the surface on the conductive layer side outside, and each superconducting wire is connected to each connection end to constitute a superconducting connection structure. A superconducting coil device comprising:
The superconducting connection device according to any one of claims 1 to 4, wherein the superconducting connection structure is a superconducting coil device.
JP2009293416A 2009-12-24 2009-12-24 Superconducting connection structure, superconducting wire connecting method, superconducting coil device Active JP5548441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293416A JP5548441B2 (en) 2009-12-24 2009-12-24 Superconducting connection structure, superconducting wire connecting method, superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293416A JP5548441B2 (en) 2009-12-24 2009-12-24 Superconducting connection structure, superconducting wire connecting method, superconducting coil device

Publications (2)

Publication Number Publication Date
JP2011134610A true JP2011134610A (en) 2011-07-07
JP5548441B2 JP5548441B2 (en) 2014-07-16

Family

ID=44347112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293416A Active JP5548441B2 (en) 2009-12-24 2009-12-24 Superconducting connection structure, superconducting wire connecting method, superconducting coil device

Country Status (1)

Country Link
JP (1) JP5548441B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004029A (en) * 2010-06-18 2012-01-05 Fujikura Ltd Metal terminal joint structure of superconducting wire rod and method for joining superconducting wire rod and metal terminal
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
WO2014109326A1 (en) * 2013-01-09 2014-07-17 株式会社フジクラ Oxide superconducting wire, connection structure thereof, and superconducting device
JP2014165304A (en) * 2013-02-25 2014-09-08 Sumitomo Electric Ind Ltd Superconducting apparatus
JP2016163026A (en) * 2015-03-05 2016-09-05 株式会社東芝 High-temperature superconducting coil
WO2019044783A1 (en) * 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 High-temperature superconductor wire connection
JP2021064687A (en) * 2019-10-11 2021-04-22 株式会社フジクラ Superconducting coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395607A (en) * 1986-10-09 1988-04-26 Furukawa Electric Co Ltd:The Method of connecting pancake magnet coil
JP2001257114A (en) * 2000-03-13 2001-09-21 Toshiba Corp Superconductive coil and connection method for superconductor
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod
JP2008270517A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Superconducting coil and superconductor used for the same
JP2009188108A (en) * 2008-02-05 2009-08-20 Chubu Electric Power Co Inc Superconductive coil and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395607A (en) * 1986-10-09 1988-04-26 Furukawa Electric Co Ltd:The Method of connecting pancake magnet coil
JP2001257114A (en) * 2000-03-13 2001-09-21 Toshiba Corp Superconductive coil and connection method for superconductor
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod
JP2008270517A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Superconducting coil and superconductor used for the same
JP2009188108A (en) * 2008-02-05 2009-08-20 Chubu Electric Power Co Inc Superconductive coil and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004029A (en) * 2010-06-18 2012-01-05 Fujikura Ltd Metal terminal joint structure of superconducting wire rod and method for joining superconducting wire rod and metal terminal
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
WO2014109326A1 (en) * 2013-01-09 2014-07-17 株式会社フジクラ Oxide superconducting wire, connection structure thereof, and superconducting device
US9362026B2 (en) 2013-01-09 2016-06-07 Fujikura Ltd. Oxide superconductor wire, connection structure thereof, and superconductor equipment
JP2014165304A (en) * 2013-02-25 2014-09-08 Sumitomo Electric Ind Ltd Superconducting apparatus
JP2016163026A (en) * 2015-03-05 2016-09-05 株式会社東芝 High-temperature superconducting coil
WO2019044783A1 (en) * 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 High-temperature superconductor wire connection
JP2019046557A (en) * 2017-08-30 2019-03-22 国立研究開発法人理化学研究所 High-temperature superconducting wire connection body
US11177588B2 (en) 2017-08-30 2021-11-16 Riken High-temperature superconducting wire connection assembly
JP2021064687A (en) * 2019-10-11 2021-04-22 株式会社フジクラ Superconducting coil

Also Published As

Publication number Publication date
JP5548441B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5697845B2 (en) Architecture for high temperature superconductor wires
AU2006346993B8 (en) High temperature superconducting wires and coils
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP4697128B2 (en) Superconducting coil
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
US7463915B2 (en) Stacked filamentary coated superconductors
US7496390B2 (en) Low ac loss filamentary coated superconductors
US20120010084A1 (en) Low resistance splice for high temperature superconductor wires
JP2005044636A (en) Superconductive wire rod
JP5675232B2 (en) Superconducting current lead
JP2012064323A (en) Superconductive current lead
JP2014002833A (en) Oxide superconducting wire and method of manufacturing the same
JP5614831B2 (en) Oxide superconducting current lead
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP5723553B2 (en) Oxide superconducting wire manufacturing apparatus and oxide superconducting wire manufacturing method
JP2012253128A (en) Oxide superconducting coil and manufacturing method thereof
JP2012022839A (en) Oxide superconductive wire rod and method for producing oxide superconductive wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R151 Written notification of patent or utility model registration

Ref document number: 5548441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250