JP4697128B2 - Superconducting coil - Google Patents

Superconducting coil Download PDF

Info

Publication number
JP4697128B2
JP4697128B2 JP2006324716A JP2006324716A JP4697128B2 JP 4697128 B2 JP4697128 B2 JP 4697128B2 JP 2006324716 A JP2006324716 A JP 2006324716A JP 2006324716 A JP2006324716 A JP 2006324716A JP 4697128 B2 JP4697128 B2 JP 4697128B2
Authority
JP
Japan
Prior art keywords
superconducting
thin film
layer
electrode
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006324716A
Other languages
Japanese (ja)
Other versions
JP2008140930A (en
Inventor
敏広 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006324716A priority Critical patent/JP4697128B2/en
Publication of JP2008140930A publication Critical patent/JP2008140930A/en
Application granted granted Critical
Publication of JP4697128B2 publication Critical patent/JP4697128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超電導コイルに関し、より詳しくは、多層構造の薄膜超電導線材を巻回してなるシングルパンケーキ型の超電導コイルに関するものである。   The present invention relates to a superconducting coil, and more particularly to a single pancake type superconducting coil formed by winding a thin film superconducting wire having a multilayer structure.

従来、特開2003−323822号公報等において、多層構造の薄膜超電導線材が提供されている。
前記薄膜超電導線材をプリプレグテープ等の絶縁テープと重ねて巻枠に渦巻状に巻回して形成したシングルパンケーキ型の超電導コイルが提供されており、該シングルパンケーキ型のコイルでは、その最内周ターンの先端に内電極、最外周ターンの先端に外電極が取り付けられる。
Conventionally, a thin film superconducting wire having a multilayer structure is provided in Japanese Patent Application Laid-Open No. 2003-323822 and the like.
There is provided a single pancake type superconducting coil in which the thin film superconducting wire is overlapped with an insulating tape such as a prepreg tape and wound around a winding frame in a spiral shape. An inner electrode is attached to the tip of the circumferential turn, and an outer electrode is attached to the tip of the outermost turn.

前記多層構造の薄膜超電導線材は、金属からなる基板層、セラミックスからなる中間層、超電導層、銀からなる安定化層が積層され、表裏両面が超電導層側と基板側と異なる層となる。そのため、薄膜超電導線材を連続して巻回すると、最内周ターンの内周面と、最外周ターンの外周面とは異なる層となる。   The thin film superconducting wire having a multilayer structure is formed by laminating a substrate layer made of metal, an intermediate layer made of ceramics, a superconducting layer, and a stabilizing layer made of silver, and both the front and back surfaces are different layers on the superconducting layer side and the substrate side. Therefore, when the thin film superconducting wire is continuously wound, the inner peripheral surface of the innermost turn and the outer peripheral surface of the outermost turn become different layers.

シングルパンケーキ型コイルにおいては、図5に示すように、その中心の巻枠12に内電極13が固定されるため、内電極13は薄膜超電導線材11の最内周ターン先端の内周面側を取り付ける必要があり、内周面側が超電導層側Sとなる。その場合、最外周ターン先端の外周面は基板側Bとなる。電極は超電導層側Sに取り付ける必要があるため、図5に示すように、外電極14は必然的に最外周ターン先端の内周面側に取り付けられることになる。   In the single pancake type coil, as shown in FIG. 5, the inner electrode 13 is fixed to the central winding frame 12, so the inner electrode 13 is the inner peripheral surface side of the tip of the innermost turn of the thin film superconducting wire 11. And the inner peripheral surface side is the superconducting layer side S. In that case, the outer peripheral surface at the tip of the outermost turn is the substrate side B. Since the electrode needs to be attached to the superconducting layer side S, as shown in FIG. 5, the outer electrode 14 is necessarily attached to the inner peripheral surface side of the tip of the outermost turn.

特開2003−323822号公報JP 2003-323822 A

しかし、図5に示すように、薄膜超電導線材11の最外周ターンの内周側に外電極14を取り付けると、薄膜超電導線材11の厚み(通常0.2mm以下)と外電極14の厚み(通常2mm以上)の差異により、外電極14と薄膜超電導線材11の間に隙間が発生し、特に、外電極14の角部で薄膜超電導線材11が曲げられて、歪みが生じるおそれがある。   However, as shown in FIG. 5, when the outer electrode 14 is attached to the inner peripheral side of the outermost turn of the thin film superconducting wire 11, the thickness of the thin film superconducting wire 11 (usually 0.2 mm or less) and the thickness of the outer electrode 14 (usually normal). 2 mm or more), a gap is generated between the outer electrode 14 and the thin film superconducting wire 11, and in particular, the thin film superconducting wire 11 is bent at the corners of the outer electrode 14, which may cause distortion.

この種のシングルパンケーキ型の超電導コイルにおいて、薄膜超電導線材をプリプレグテープ等の絶縁テープと重ねて巻枠に巻回して成形した後、これを加熱処理して一体的に固化した所謂、含浸コイルはターン間に絶縁材を介在させて隙間をなくしているため、安定性においても極めて優れている。しかしながら、該含浸コイルの場合には、絶縁シートと共に一体的に固化したコイルターン間に隙間のない強固な構造に成形されるため、前記歪みが部分的に発生すると、全体的に影響を与える恐れがある。   In this type of single pancake type superconducting coil, a so-called impregnated coil in which a thin film superconducting wire is formed on a winding frame by being overlapped with an insulating tape such as a prepreg tape and then solidified by heat treatment. Since the gap is eliminated by interposing an insulating material between the turns, the stability is extremely excellent. However, in the case of the impregnated coil, since it is formed into a strong structure with no gap between the coil turns that are solidified integrally with the insulating sheet, if the distortion occurs partially, there is a risk of affecting the whole. There is.

本発明は前記問題に鑑みてなされたものであり、薄膜超電導線材の電極取付部付近に生じる歪みを大幅に低減し、長期に渡り臨界電流値が低下しない超電導コイルを提供することを課題としている。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a superconducting coil that significantly reduces the strain generated in the vicinity of the electrode mounting portion of the thin film superconducting wire and does not decrease the critical current value over a long period of time. .

前記課題を解決するため、本発明は、一面側が超電導層側、他面側が基板側とされる多層構造の薄膜超電導線材を巻回してなるシングルパンケーキ型の超電導コイルにおいて、
前記薄膜超電導線材の最内周ターンの先端内周面に内電極、最外周ターンの先端外周面に外電極が取り付けられ、
前記内電極の取付位置と外電極の取付位置との間で少なくとも1箇所あるいは奇数箇所で、内周面側から外周面側への積層順位を逆とする切替接合部が設けられ、
内電極および外電極の取付位置では、電極取付面側が前記超電導層側とされていることを特徴とする超電導コイルを提供している。
In order to solve the above problems, the present invention provides a single pancake type superconducting coil formed by winding a thin film superconducting wire having a multilayer structure in which one side is a superconducting layer side and the other side is a substrate side.
An inner electrode on the inner peripheral surface of the innermost turn of the innermost turn of the thin film superconducting wire, an outer electrode attached to the outer peripheral surface of the outermost turn,
At least one or an odd number of positions between the inner electrode mounting position and the outer electrode mounting position, a switching joint that reverses the stacking order from the inner peripheral surface side to the outer peripheral surface side is provided,
A superconducting coil is provided in which the electrode mounting surface side is the superconducting layer side at the mounting position of the inner electrode and the outer electrode.

本発明によれば、少なくとも1箇所あるいは奇数箇所で内周面側と外周面側とを切替接合しているので、該切替接合部で前記薄膜超電導線材の積層順位が逆とされ、最内周ターンの先端内周面に内電極を取り付けた状態で、最外周ターンの先端外周面に外電極を取り付けることができる。すなわち、外電極を超電導コイルの外側に配置することができるので、電極に厚みがあっても超電導コイルの内部に隙間を生じさせることがなく、薄膜超電導線材にも歪みを生じさせることはない。その結果、臨界電流値の低下を抑え、より安定な超電導コイルとすることができる。   According to the present invention, the inner circumferential surface side and the outer circumferential surface side are switched and joined at least at one place or odd places, so that the stacking order of the thin film superconducting wires is reversed at the switching joint, and the innermost circumference. The outer electrode can be attached to the outer peripheral surface of the tip of the outermost turn while the inner electrode is attached to the inner peripheral surface of the tip of the turn. That is, since the outer electrode can be arranged outside the superconducting coil, no gap is generated inside the superconducting coil even if the electrode is thick, and the thin-film superconducting wire is not distorted. As a result, a decrease in the critical current value can be suppressed and a more stable superconducting coil can be obtained.

さらに、本発明によれば、短尺の薄膜超電導線材を接合して長尺化することができる。そのため、薄膜超電導線材の端材を有効利用することができるほか、バッチプロセスで製造した薄膜超電導線材を使用することができる。
通常、薄膜超電導線材の製造は連続プロセスで行われているが、その製造工程には蒸着、スパッタリング等の真空プロセスを含むため、バッチプロセスで製造した方が真空状態が安定し、より性能の良い薄膜超電導線材を製造することができる。
Furthermore, according to the present invention, a long thin film superconducting wire can be joined and lengthened. Therefore, the end material of a thin film superconducting wire can be used effectively, and a thin film superconducting wire manufactured by a batch process can be used.
Usually, the production of thin film superconducting wire is performed in a continuous process, but since the production process includes vacuum processes such as vapor deposition and sputtering, the vacuum state is more stable and better performance is produced by a batch process. A thin film superconducting wire can be manufactured.

前記切替接合部を少なくとも1箇所あるいは奇数箇所としているのは、偶数箇所とすれば、最外周ターンの内周面に外電極を取り付けることになり、切替接合部を有しない従来と同様の超電導コイルの構成となるからである。
臨界抵抗値を低下させない、さらに安定な超電導コイルとする観点からは、切替接合部はできるだけ少ない方が好ましく、3箇所以下であることがより好ましい。最も好ましくは、1箇所である。
If the switching junction is at least one or an odd number, the outer electrode is attached to the inner peripheral surface of the outermost turn if the number is an even number, and the superconducting coil similar to the conventional one having no switching junction is used. This is because of the configuration.
From the viewpoint of obtaining a more stable superconducting coil that does not lower the critical resistance value, the number of switching junctions is preferably as small as possible, and more preferably three or less. Most preferably, it is one location.

本発明においては、内電極と外電極の取り付け面は超電導層側としている。
これは、電極取付面を基板側とするより超電導層側とする方が電極から超電導層までの距離を短くでき、より抵抗を小さくすることができるためである。
In the present invention, the attachment surface of the inner electrode and the outer electrode is on the superconducting layer side.
This is because the distance from the electrode to the superconducting layer can be shortened and the resistance can be further reduced when the electrode mounting surface is on the substrate side rather than the substrate side.

前記切替接合部では、2本の薄膜超電導線材の超電導層同士が半田付け、超音波溶接、抵抗溶接または導電性接着剤により接合されていることが好ましい。
薄膜超電導線材の超電導層側同士を接合することにより、2つの薄膜超電導線材の超電導層の距離を近接させて電気的に接合することができるため、余分な抵抗を発生させることがない。
また、接合方法は2つの薄膜超電導線材が電気的に接合されていればよいが、高い導電性および十分な接合強度が得られる点で前記接合方法とするのが好ましく、なかでも半田付け、超音波溶接、抵抗溶接がより好ましい。
In the switching joining portion, it is preferable that the superconducting layers of the two thin film superconducting wires are joined by soldering, ultrasonic welding, resistance welding, or a conductive adhesive.
By joining the superconducting layer sides of the thin film superconducting wire to each other, the distance between the superconducting layers of the two thin film superconducting wires can be brought close to each other and electrically joined, so that no extra resistance is generated.
In addition, the joining method is not limited as long as two thin film superconducting wires are electrically joined. However, the joining method is preferable in terms of obtaining high electrical conductivity and sufficient joining strength. Sonic welding and resistance welding are more preferable.

前記切替接合部の長さは5mm以上30mm以下としていることが好ましい。これは切替接合部の長さが5mm未満であると電気的に安全に接合することができないおそれがあり、30mmを超えると厚みが増えるため最大曲げ径が大きくなるからである。   The length of the switching joint is preferably 5 mm or more and 30 mm or less. This is because if the length of the switching joint portion is less than 5 mm, it may not be possible to electrically and safely join, and if it exceeds 30 mm, the thickness increases and the maximum bending diameter increases.

前記薄膜超電導線材は、金属からなる基板層、セラミックスからなる中間層、超電導層、銀からなる安定化層が積層されていると共に、全周が銅被覆され、前記銀安定化層を介して超電導層が位置される側を前記超電導層側としていることが好ましい。   The thin film superconducting wire has a substrate layer made of metal, an intermediate layer made of ceramics, a superconducting layer, and a stabilization layer made of silver, and the entire circumference is coated with copper, and the superconductivity is passed through the silver stabilization layer. The side on which the layer is located is preferably the superconducting layer side.

前記基板は、金属であることが好ましく、さらに少なくとも表面に結晶配向性を有する結晶を含有する基板であることがより好ましく、配向金属基板が最も好ましく用いられる。しかし、これに限られず、金属以外の単結晶板を用いることもできる。
具体的には、前記金属として、ニッケル、ハステロイ(登録商標)等のニッケル合金、ステンレス鋼、もしくは銅(合金)やアルミニウム(合金)とニッケル(合金)とを貼り合わせた積層体等を用いることができる。これらのなかでも、特に、ニッケル、ハステロイ(登録商標)を用いることが好ましい。
基板はテープ状であることが好ましく、線材に強度を付与する必要があることから、その厚みは80〜100μm程度であることが好ましい。
The substrate is preferably a metal, more preferably a substrate containing crystals having crystal orientation on at least the surface, and an oriented metal substrate is most preferably used. However, the present invention is not limited to this, and a single crystal plate other than metal can also be used.
Specifically, a nickel alloy such as nickel or Hastelloy (registered trademark), stainless steel, or a laminate of copper (alloy), aluminum (alloy), and nickel (alloy) bonded together is used as the metal. Can do. Among these, nickel and Hastelloy (registered trademark) are particularly preferably used.
The substrate is preferably in the form of a tape, and since it is necessary to impart strength to the wire, the thickness is preferably about 80 to 100 μm.

前記中間層は、基板と超電導層の結晶格子の不整合を緩和したり、超電導層を形成する際の加熱等における基板と超電導層との相互拡散による超電導層の性能劣化を回避するために前記金属基板上に形成する。そのため、超電導層の結晶に近い結晶組織を有し、超電導層の熱膨張率に近い熱膨張率を有するものが好ましく、例えば、YSZ(イットリウム安定化ジルコニア)、SrTiO、MgO、CeOなどセラミックス系の材料で形成することが好ましい。
中間層は、スパッタ法、真空蒸着法、レーザ蒸着法、化学気相成長法(CVD)などのいずれの成膜法を用いても良い。なかでも、成膜速度が速く、量産に優れるパルスレーザ蒸着法(PLD法)を用いることが好ましい。
中間層の厚みは、一般に数μm程度である。
The intermediate layer is used to alleviate the mismatch of the crystal lattice between the substrate and the superconducting layer, or to avoid deterioration of the performance of the superconducting layer due to mutual diffusion between the substrate and the superconducting layer in heating or the like when forming the superconducting layer. It is formed on a metal substrate. Therefore, having a crystal structure close to the crystal of the superconducting layer, preferably has a thermal expansion coefficient close to the thermal expansion coefficient of the superconducting layer, for example, YSZ (yttrium stabilized zirconia), SrTiO 3, MgO, etc. CeO 2 ceramics It is preferable to form with a system material.
The intermediate layer may be formed by any film forming method such as sputtering, vacuum deposition, laser deposition, or chemical vapor deposition (CVD). Among these, it is preferable to use a pulsed laser deposition method (PLD method) that has a high film formation rate and is excellent in mass production.
The thickness of the intermediate layer is generally about several μm.

超電導層は、超電導の性質を示すものであればよく、酸化物超電導体が好ましい。例えば、希土類元素含有のペロブスカイト型酸化物超電導体や、Bi−Sr−Ca−Cu−O系酸化物超電導体、Tl−Ba−Ca−Cu−O系酸化物超電導体が適用される。   The superconducting layer is not particularly limited as long as it exhibits superconducting properties, and an oxide superconductor is preferable. For example, a rare earth element-containing perovskite oxide superconductor, Bi-Sr-Ca-Cu-O-based oxide superconductor, or Tl-Ba-Ca-Cu-O-based oxide superconductor is used.

希土類元素を含有しペロブスカイト型構造を有する酸化物超電導体は、例えば、REMCuO7−X系の酸化物が挙げられる。ここでREは、Y、La、Nd、Sm、Eu、Gd、Dy,Ho、Er、Tm、Yb等の希土類元素から選ばれた少なくとも1種の元素であり、MはBa、Sr、Caから選ばれた少なくとも1種の元素、Xは1以下の数である。
REMCuO7−Xのうち、Cuの一部はTi、V、Cr、Mn、Fe、Co、Ni、Znで置換することも可能である。
具体的には、YBaCuO7−Xが挙げられる。
Examples of the oxide superconductor containing a rare earth element and having a perovskite structure include a REM 2 CuO 7-X- based oxide. Here, RE is at least one element selected from rare earth elements such as Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb, and M is selected from Ba, Sr, and Ca. At least one element selected, X is a number of 1 or less.
Of REM 2 CuO 7-X , a part of Cu can be substituted with Ti, V, Cr, Mn, Fe, Co, Ni, and Zn.
Specific examples include YBa 2 CuO 7-X.

また、Bi−Sr−Ca−Cu−O系の酸化物超電導体には、BiSrCaCuやBi(Sr,Ca)Cuで示される酸化物が含まれる。このうち、Biの一部はPbで置換することが可能である。代表的には、(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなどが挙げられる。Tl−Ba−Ca−Cu−O系酸化物超電導体は、TlBaCaCuやTl(Ba,Ca)Cu、TlBaCaCu、TlBaCaCu等で表される酸化物が挙げられる。
これらの酸化物超電導体のなかでも、希土類元素を含有しペロブスカイト型構造を有する酸化物超電導体が好適に用いられる。このなかでも特に、ホルミウム系、イットリウム系の酸化物超電導体が好ましく、ホルミウム系が最も好ましい。
In addition, the oxide superconductor of Bi-Sr-Ca-Cu- O system, include oxide represented by Bi 2 Sr 2 Ca 2 Cu 3 O X and Bi 2 (Sr, Ca) 3 Cu 2 O X It is. Among these, a part of Bi can be replaced with Pb. Typically, (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O X , (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O X, and the like can be given. Tl-Ba-Ca-Cu- O based oxide superconductor, Tl 2 Ba 2 Ca 2 Cu 3 O X and Tl 2 (Ba, Ca) 3 Cu 2 O X, Tl 1 Ba 2 Ca 2 Cu 3 O X , Oxides represented by Tl 1 Ba 2 Ca 3 Cu 4 O X, and the like.
Among these oxide superconductors, oxide superconductors containing a rare earth element and having a perovskite structure are preferably used. Of these, holmium-based and yttrium-based oxide superconductors are particularly preferable, and holmium-based is most preferable.

前記超電導層は、物理蒸着法であるスパッタ法、反応性蒸着法、レーザ蒸着法、あるいは化学蒸着法であるCVD法、有機金属化学蒸着法(MOCVD法)等の各種薄膜形成方法を用いて前記中間層の上に形成することができる。中でも、成膜速度が速く均一な膜を連続的に長時間成膜することが可能なPLD法を用いることが好ましい。PLD法でレーザ蒸着を行うには、超電導体材料の焼結体をターゲットとし、このターゲットに真空中でエキシマレーザを照射してプラズマ化して、ターゲットに対向された中間層付き基板に超電導層を堆積させる。   The superconducting layer is formed by using various thin film forming methods such as sputtering, which is physical vapor deposition, reactive vapor deposition, laser vapor deposition, chemical vapor deposition, CVD, and metal organic chemical vapor deposition (MOCVD). It can be formed on an intermediate layer. Among them, it is preferable to use a PLD method that can form a uniform film at a high film forming speed continuously for a long time. In order to perform laser deposition by the PLD method, a sintered body of a superconductor material is used as a target, and this target is irradiated with an excimer laser in a vacuum to form a plasma, and a superconducting layer is formed on a substrate with an intermediate layer facing the target. Deposit.

安定化層は、超電導層と反応しないか、反応が少ない材料を用いる。特に、酸化物超電導体と熱膨張係数が近いかまたは大きい値を有する金属材料が好ましく用いられる。例えば、金や銀、白金あるいはその合金が挙げられる。特に、経済性で銀が好ましい。
安定化層の厚みは、約1μm〜数10μm程度である。
安定化層を形成する方法は、前述の各種成膜法のいずれを用いても良い。金や銀の安定化層は、レーザ蒸着によって非常に速い成膜速度で形成することが可能である。特に、酸化物超電導層を形成する装置と安定化層を形成する装置とを連続して運転できるようにすることによって、高い生産性が達成される。
The stabilizing layer is made of a material that does not react with the superconducting layer or has little reaction. In particular, a metal material having a thermal expansion coefficient close to or larger than that of the oxide superconductor is preferably used. For example, gold, silver, platinum, or an alloy thereof can be used. In particular, silver is preferable in terms of economy.
The thickness of the stabilization layer is about 1 μm to several tens of μm.
Any of the various film forming methods described above may be used as a method of forming the stabilization layer. The gold or silver stabilization layer can be formed at a very high deposition rate by laser vapor deposition. In particular, high productivity is achieved by enabling the apparatus for forming the oxide superconducting layer and the apparatus for forming the stabilizing layer to be operated continuously.

さらに、前記薄膜超電導線材は、全周が金属膜で覆われ、基板と超電導層の導通をとっていることが好ましい。金属膜は、金、白金、銀、銅等で形成することが好ましく、特に銅であることが好ましい。
このように基板と超電導層の導通をとることにより、基板側にも安定化層の機能を付与することができる。
前記金属膜は、薄膜超電導線材に無電解メッキを行って形成することが好ましい。
金属膜の厚みは、約1μm〜数10μm程度である。
Furthermore, it is preferable that the thin film superconducting wire is covered with a metal film on the entire circumference so that the substrate and the superconducting layer are electrically connected. The metal film is preferably formed of gold, platinum, silver, copper or the like, and particularly preferably copper.
Thus, the function of the stabilization layer can be imparted also to the substrate side by establishing conduction between the substrate and the superconducting layer.
The metal film is preferably formed by electroless plating on a thin film superconducting wire.
The thickness of the metal film is about 1 μm to several tens of μm.

このように薄膜超電導線材は、多層構造を有しており、特にセラミックス系材料で形成される中間層は、圧縮には強いが引っ張りに対して弱い。そのため、中間層を内周側に位置させ、超電導層側を内周側として巻回していることが好ましい。   As described above, the thin film superconducting wire has a multilayer structure. In particular, an intermediate layer formed of a ceramic material is strong against compression but weak against tension. For this reason, it is preferable that the intermediate layer is positioned on the inner peripheral side and the superconducting layer side is wound on the inner peripheral side.

前記切替接合部の位置は、前記外電極から100mm以内あるいは最外周ターンに位置させていることが好ましい。
切替接合部を最外周ターンに位置させることにより、コイルターン間には接合部がなく、密な含浸コイル構造を維持することができる。
さらに、切替接合部の位置を100mm以内として外電極に近づけると、より内周側とする超電導層側をより多くすることができ、薄膜超電導線材により歪みが生じにくい構成とすることができる。
The position of the switching joint is preferably within 100 mm from the outer electrode or in the outermost turn.
By positioning the switching joint in the outermost peripheral turn, there is no joint between the coil turns, and a dense impregnated coil structure can be maintained.
Furthermore, when the position of the switching junction is within 100 mm and is closer to the outer electrode, the superconducting layer side that is the inner peripheral side can be increased, and the thin-film superconducting wire can be made less susceptible to distortion.

さらに、前記内電極および外電極は銅からなり、半田付け、超音波溶接、抵抗溶接または導電性接着剤により前記薄膜超電導線材に取り付けていることが好ましい。
内電極および外電極は、金、白金、銀、銅、またはこれらを少なくとも1種含む合金であることが好ましく、特に銅からなることが好ましい。
接合方法は電極と薄膜超電導線材が電気的に接合されていればよいが、高い導電性および十分な接合強度が得られる点で前記接合方法が好ましく、なかでも半田付け、超音波溶接、抵抗溶接がより好ましい。
Further, it is preferable that the inner electrode and the outer electrode are made of copper and attached to the thin film superconducting wire by soldering, ultrasonic welding, resistance welding or conductive adhesive.
The inner electrode and the outer electrode are preferably gold, platinum, silver, copper, or an alloy containing at least one of these, and particularly preferably made of copper.
The joining method may be that the electrode and the thin film superconducting wire are electrically joined, but the joining method is preferable in that high conductivity and sufficient joining strength can be obtained, and in particular, soldering, ultrasonic welding, resistance welding. Is more preferable.

前述したように、本発明によれば、内電極と外電極の電極取付面を薄膜超電導線材の同一面としながらも、薄膜超電導線材の最外周ターンの外周面側に外電極を取り付けることができるため、薄膜超電導線材の電極取付部において歪み発生を低減することができ、長期に渡り臨界電流値が低下しない超電導コイルとすることができる。
さらに、短尺の薄膜超電導線材を接合して長尺化することができるため、薄膜超電導線材の端材を有効利用できるほか、バッチプロセスで製造した性能の高い薄膜超電導線材を使用した超電導コイルとすることができる。
As described above, according to the present invention, the outer electrode can be attached to the outer peripheral surface side of the outermost peripheral turn of the thin film superconducting wire while the electrode attachment surfaces of the inner electrode and the outer electrode are the same surface of the thin film superconducting wire. Therefore, it is possible to reduce the occurrence of distortion at the electrode mounting portion of the thin film superconducting wire, and to obtain a superconducting coil in which the critical current value does not decrease over a long period of time.
Furthermore, since it is possible to lengthen by joining short thin film superconducting wires, the end materials of thin film superconducting wires can be used effectively, and superconducting coils using high performance thin film superconducting wires manufactured by a batch process are used. be able to.

以下、本発明の実施形態を図面を参照して説明する。
図1乃至図3に本発明の第1実施形態を示す。
超電導コイル10は、多層構造の薄膜超電導線材11をプリプレグテープ等の絶縁テープ(図示せず)と共に巻枠12に渦巻き状に巻回し、加熱処理して一体に固めて形成したシングルパンケーキ型コイルである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of the present invention.
The superconducting coil 10 is a single pancake type coil formed by winding a thin film superconducting wire 11 having a multilayer structure around a winding frame 12 together with an insulating tape (not shown) such as a prepreg tape, and heat-treating it so as to be integrally formed. It is.

前記薄膜超電導線材11は厚さt1は100〜150μm、幅w1は10〜12mmである。該薄膜超電導線材11の最内周ターンの先端内周面に前記内電極13を取り付けて電気接続し、該内電極13を前記巻枠12に設けた取付部に固定している。一方、薄膜超電導線材11の最外周ターンの先端外周面に外電極14を取り付けて電気接続している。   The thin film superconducting wire 11 has a thickness t1 of 100 to 150 μm and a width w1 of 10 to 12 mm. The inner electrode 13 is attached and electrically connected to the inner peripheral surface of the tip of the innermost turn of the thin film superconducting wire 11, and the inner electrode 13 is fixed to an attachment portion provided on the winding frame 12. On the other hand, the outer electrode 14 is attached to the outer peripheral surface of the outermost turn of the thin film superconducting wire 11 for electrical connection.

前記多層構造の薄膜超電導線材11は図2に示す如く、基板50、中間層60、超電導層70、安定化層80を順次積層し、その全周を銅からなる金属保護膜90で被覆している。
該薄膜超電導線材11は、シングルパンケーキの最外周ターンとなる位置で前記積層順位が逆となるように接合した薄膜超電導線材11−1と薄膜超電導線材11−2とから形成している。
As shown in FIG. 2, the multi-layered thin film superconducting wire 11 is formed by sequentially laminating a substrate 50, an intermediate layer 60, a superconducting layer 70, and a stabilizing layer 80, and covering the entire periphery with a metal protective film 90 made of copper. Yes.
The thin film superconducting wire 11 is formed of a thin film superconducting wire 11-1 and a thin film superconducting wire 11-2 that are joined so that the stacking order is reversed at the position of the outermost turn of the single pancake.

即ち、最外周ターンの位置で、薄膜超電導線材11−1を切断し、薄膜超電導線材11−2と超電導層側S同士を半田16により接合し、切替接合部15を設けている。この切替接合部15の位置は、本実施形態では最外周ターンT2の先端部から50mmの位置とし、かつ、切替接合部15の長さLは25mmとしている。   That is, the thin film superconducting wire 11-1 is cut at the position of the outermost turn, the thin film superconducting wire 11-2 and the superconducting layer side S are joined by the solder 16, and the switching joint 15 is provided. In the present embodiment, the position of the switching joint 15 is 50 mm from the tip of the outermost peripheral turn T2, and the length L of the switching joint 15 is 25 mm.

これにより、前記切替接合部15で連続した1本の薄膜超電導線材11とし、薄膜超電導線材11−1の内周側は安定化層80を介して超電導層70を位置させた超電導層側Sとし、外周側が基板側Bとしている。一方、薄膜超電導線材11−2の外周側は安定化層80を介して超電導層70を位置させた超電導層側Sとし、内周側を基板側Bとしている。   Thereby, it is set as the one thin film superconducting wire 11 continuous in the said switching junction 15, and the inner peripheral side of the thin film superconducting wire 11-1 is made into the superconducting layer side S which located the superconducting layer 70 through the stabilization layer 80. The outer peripheral side is the substrate side B. On the other hand, the outer peripheral side of the thin film superconducting wire 11-2 is the superconducting layer side S where the superconducting layer 70 is located via the stabilization layer 80, and the inner peripheral side is the substrate side B.

図3に示すように、前記薄膜超電導線材11−1の内周側となる超電導層側Sの先端に前記内電極13を取り付けると共に、薄膜超電導線材11−2の外周側となる超電導層側Sの先端に前記外電極14を取り付けている。   As shown in FIG. 3, the inner electrode 13 is attached to the tip of the superconducting layer side S which is the inner peripheral side of the thin film superconducting wire 11-1, and the superconducting layer side S which is the outer peripheral side of the thin film superconducting wire 11-2. The outer electrode 14 is attached to the tip of the.

前記薄膜超電導線材11−1は超電導層側Sを内周面として、巻枠12に渦巻き状に巻き付け、前記内電極13を最内周ターンT1の先端内周面に位置させ、前記巻枠12の取付部に固定している。
前記薄膜超電導線材11−1を巻き付けて最外周ターンT2となる位置に達すると、前記外周側を超電導層側Sとした薄膜超電導線11−2が巻き付けられ、その先端の外周面に前記外電極14を位置させている。
この薄膜超電導線材11の最外周ターンの先端からは絶縁テープのみを更に複数回数巻き付けて保護層(図示せず)を形成している。
The thin film superconducting wire 11-1 has a superconducting layer side S as an inner peripheral surface and is wound around the winding frame 12 in a spiral shape, and the inner electrode 13 is positioned on the inner peripheral surface of the innermost turn T1. It is fixed to the mounting part.
When the thin film superconducting wire 11-1 is wound and reaches a position where the outermost turn T2 is reached, the thin film superconducting wire 11-2 having the outer peripheral side as the superconducting layer side S is wound, and the outer electrode is placed on the outer peripheral surface of the tip. 14 is located.
From the tip of the outermost turn of the thin film superconducting wire 11, only the insulating tape is wound a plurality of times to form a protective layer (not shown).

前記内電極13及び外電極14はそれぞれ銅電極からなり、半田付けで薄膜超電導線材11に取り付けている。内電極13および外電極14の厚さt2は2〜3mm、幅w2を20〜30mm、長さL2(薄膜超電導線材11の長さ方向と対応する長さ)は20mmである。   The inner electrode 13 and the outer electrode 14 are each made of a copper electrode, and are attached to the thin film superconducting wire 11 by soldering. The thickness t2 of the inner electrode 13 and the outer electrode 14 is 2 to 3 mm, the width w2 is 20 to 30 mm, and the length L2 (the length corresponding to the length direction of the thin film superconducting wire 11) is 20 mm.

前記薄膜超電導線材11の積層構造を詳述すると、前記基板50はハステロイ(登録商標)テープからなり、中間層60はYSZ(イットリウム安定化ジルコニア)からなり、超電導層70はホルミウム系酸化物超電導体からなり、安定化層80は銀からなり、基板50の表面に順次、レーザ蒸着等により中間層60、超電導層70、安定化層80を形成し、さらに該積層体の全周は無電解メッキにより銅からなる金属保護膜90で被覆している。   The laminated structure of the thin film superconducting wire 11 will be described in detail. The substrate 50 is made of Hastelloy (registered trademark) tape, the intermediate layer 60 is made of YSZ (yttrium stabilized zirconia), and the superconducting layer 70 is a holmium oxide superconductor. The stabilization layer 80 is made of silver, and the intermediate layer 60, the superconducting layer 70, and the stabilization layer 80 are sequentially formed on the surface of the substrate 50 by laser vapor deposition or the like, and the entire periphery of the laminate is electrolessly plated. Is covered with a metal protective film 90 made of copper.

前記中間層60の厚みは数μm、超電導層70の厚みは約1μm〜数10μm、安定化層80の厚みは約1μm〜数10μm、金属膜90の厚みは約1μm〜数10μmとし、薄膜超電導線材11の厚み全体(t1)としては100〜150μmとしている。そのため、薄膜超電導線材11の表面と裏面では超電導層70までの距離が異なり、表面と裏面側の表面抵抗が異なる。   The intermediate layer 60 has a thickness of several μm, the superconducting layer 70 has a thickness of about 1 μm to several tens of μm, the stabilization layer 80 has a thickness of about 1 μm to several tens of μm, and the metal film 90 has a thickness of about 1 μm to several tens of μm. The total thickness (t1) of the wire 11 is 100 to 150 μm. Therefore, the distance to the superconducting layer 70 is different between the front surface and the back surface of the thin film superconducting wire 11, and the surface resistance between the front surface and the back surface side is different.

前記構成からなる超電導コイル10では、薄膜超電導線材11の最内周ターンT1の先端内周面に取り付ける内電極13は超電導層側Sに取り付けられると共に、最外周ターンT2の先端外周面に取り付けられる外電極14は超電導層側Sに取り付けられる。
このように、内電極13と外電極14の取付面側はいずれも超電導層側Sとしていることで、内電極13と外電極14の各薄膜超電導線材11との電気接続部に、同一の電気接続特性を付与することができると共に、超電導層側Sに内電極13、外電極14を接続しているため、余分な抵抗が発生することもなく、高い導電性を維持することができる。
特に、外電極14は最外周ターンT2の先端の外周側に取り付けているため、薄膜超電導線材11−2に歪みが発生することを防止でき、長期に渡り臨界電流値の低下が少ない超電導コイルとすることができる。
In the superconducting coil 10 having the above configuration, the inner electrode 13 attached to the inner peripheral surface of the innermost turn T1 of the thin film superconducting wire 11 is attached to the superconducting layer side S and attached to the outer peripheral surface of the outermost turn T2. The outer electrode 14 is attached to the superconducting layer side S.
As described above, since both the mounting surfaces of the inner electrode 13 and the outer electrode 14 are the superconducting layer side S, the same electrical connection is made to the electrical connection portion between the thin film superconducting wire 11 of the inner electrode 13 and the outer electrode 14. Connection characteristics can be imparted and, since the inner electrode 13 and the outer electrode 14 are connected to the superconducting layer side S, no extra resistance is generated and high conductivity can be maintained.
In particular, since the outer electrode 14 is attached to the outer peripheral side of the tip of the outermost peripheral turn T2, it is possible to prevent the thin film superconducting wire 11-2 from being distorted and to reduce the critical current value for a long period of time. can do.

なお、前記第1実施形態では、切替接合部15は最外周ターンT2に設けているが、最外周ターンT2と最内周ターンT1との間の中間ターンに設けてもよく、切替接合部15を1カ所とすることで、内電極13の取付位置の最内周ターンT1の内周面と、外電極14の取付位置の最外周ターンT2の外周面をいずれも超電導層側Sとすることができる。   In the first embodiment, the switching joint 15 is provided in the outermost turn T2, but it may be provided in an intermediate turn between the outermost turn T2 and the innermost turn T1. The superconducting layer side S is used for both the inner peripheral surface of the innermost turn T1 at the mounting position of the inner electrode 13 and the outer peripheral surface of the outermost turn T2 at the mounting position of the outer electrode 14. Can do.

図4に第2実施形態の超電導コイル20を示す。
第1実施形態との相違点は、第1実施形態では切替接合部15を1箇所としているが、第2実施形態では3カ所の切替接合部15A、15B、15C設けている点と、切替接合部15A〜15Cにおける接合と、内電極13及び外電極14の薄膜超電導線材11への取り付けを、抵抗溶接或いは超音波溶接による溶接で行っている点である。
即ち、内周層の薄膜超電導線材11−1と第一中間層の薄膜超電導線材11−2を切替接合部15Aで接合し、第一中間層の薄膜超電導線材11−2と第二中間層の薄膜超電導線材11−3と切替接合部15Bで接合し、第二中間層の薄膜超電導線材11−3と外周層の薄膜超電導線材11−4とを切替接合部15Cで接合している。
FIG. 4 shows a superconducting coil 20 according to the second embodiment.
The difference from the first embodiment is that the switching joint 15 is provided in one place in the first embodiment, but in the second embodiment, three switching joints 15A, 15B and 15C are provided, and the switching joint 15 is provided. It is the point which joins in part 15A-15C and attachment to the thin film superconducting wire 11 of the inner electrode 13 and the outer electrode 14 by the welding by resistance welding or ultrasonic welding.
That is, the inner layer thin film superconducting wire 11-1 and the first intermediate layer thin film superconducting wire 11-2 are joined at the switching junction 15A, and the first intermediate layer thin film superconducting wire 11-2 and the second intermediate layer The thin film superconducting wire 11-3 and the switching junction 15B are joined, and the thin film superconducting wire 11-3 of the second intermediate layer and the thin film superconducting wire 11-4 of the outer peripheral layer are joined by the switching junction 15C.

前記のように3ケ所で切り替えると、最内周ターンT1の先端内周面と、最外周ターンT2の先端外周面の両方を同一積層順位して超電導層側Sとすることができる。
よって、最内周ターンT1の先端内周面に内電極13、最外周ターンT2の先端外周面に外電極14を取り付けると、いずれも電極取付面側が超電導層側Sとなる。
また、3カ所の切替接合部15A〜15Cは溶接で接合しているため、切替接合部が半田付けと比較して厚くならない。
As described above, when switching is performed at three places, both the inner peripheral surface of the tip end of the innermost turn T1 and the outer peripheral surface of the tip end of the outermost turn T2 can be stacked in the same stacking order to be the superconducting layer side S.
Therefore, when the inner electrode 13 is attached to the inner peripheral surface of the tip end of the innermost turn T1 and the outer electrode 14 is attached to the outer peripheral surface of the tip end of the outermost turn T2, the electrode mounting surface side becomes the superconducting layer side S.
Moreover, since the three switching joints 15A to 15C are joined by welding, the switching joints do not become thicker than soldering.

このように、第2実施形態においても、第1実施形態と同様、内外電極13、14を超電導層側Sに取り付けることができると共に、第2実施形態では、短尺の薄膜超電導線材を接合して長尺化することができる。そのため、バッチプロセスで製造した性能の高い薄膜超電導線材を使用することができる。
例えば、4m長さの短尺の薄膜超電導線材を3箇所において切替接合することにより4本繋ぎ合わせて、16m長さの長尺の薄膜超電導線材を巻回した超電導コイルとすることができる。
他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
Thus, in the second embodiment, the inner and outer electrodes 13 and 14 can be attached to the superconducting layer side S as in the first embodiment, and in the second embodiment, a short thin film superconducting wire is joined. The length can be increased. Therefore, a thin film superconducting wire with high performance manufactured by a batch process can be used.
For example, a 4 m long thin film superconducting wire can be switched and joined at three locations to connect them together to form a superconducting coil wound with a 16 m long thin film superconducting wire.
Since other configurations and operational effects are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

本発明は、前記第1、第2実施形態に限定されず、特許請求の範囲と均等の範囲内の変更が含まれる。   The present invention is not limited to the first and second embodiments, but includes modifications within the scope equivalent to the scope of claims.

本発明の第1実施形態の超電導コイルの(A)は概略斜視図であり、(B)は(A)の電極取付部周辺の要部拡大図である。(A) of the superconducting coil of 1st Embodiment of this invention is a schematic perspective view, (B) is the principal part enlarged view of the electrode attachment part periphery of (A). 薄膜超電導線材の断面模式図である。It is a cross-sectional schematic diagram of a thin film superconducting wire. 第1実施形態の超電導コイルの(A)は平面模式図、(B)は(A)の外電極の電極取付部周辺の要部拡大図である。(A) of the superconducting coil of 1st Embodiment is a plane schematic diagram, (B) is the principal part enlarged view of the electrode attachment part periphery of the outer electrode of (A). 第2実施形態の超電導コイルの平面模式図である。It is a plane schematic diagram of the superconducting coil of the second embodiment. 従来の超電導コイルの(A)は平面模式図、(B)は(A)の外電極の電極取付部周辺の要部拡大図である。(A) of the conventional superconducting coil is a schematic plan view, and (B) is an enlarged view of the main part around the electrode mounting portion of the outer electrode of (A).

符号の説明Explanation of symbols

10,20 超電導コイル
11(11−1、11−2、11−3、11−4) 薄膜超電導線材
12 巻枠
13 内電極
14 外電極
15 切替接合部
S 超電導層側
B 基板側
10, 20 Superconducting coil 11 (11-1, 11-2, 11-3, 11-4) Thin film superconducting wire 12 Winding frame 13 Inner electrode 14 Outer electrode 15 Switching junction S Superconducting layer side B Substrate side

Claims (5)

一面側が超電導層側、他面側が基板側とされる多層構造の薄膜超電導線材を巻回してなるシングルパンケーキ型の超電導コイルにおいて、
前記薄膜超電導線材の最内周ターンの先端内周面に内電極、最外周ターンの先端外周面に外電極が取り付けられ、
前記内電極の取付位置と外電極の取付位置との間で少なくとも1箇所あるいは奇数箇所で、内周面側から外周面側への積層順位を逆とする切替接合部が設けられ、
内電極および外電極の取付位置では、電極取付面側が前記超電導層側とされていることを特徴とする超電導コイル。
In a single pancake type superconducting coil formed by winding a thin film superconducting wire having a multilayer structure in which one side is a superconducting layer side and the other side is a substrate side,
An inner electrode on the inner peripheral surface of the innermost turn of the innermost turn of the thin film superconducting wire, an outer electrode attached to the outer peripheral surface of the outermost turn,
At least one or an odd number of positions between the inner electrode mounting position and the outer electrode mounting position, a switching joint that reverses the stacking order from the inner peripheral surface side to the outer peripheral surface side is provided,
A superconducting coil characterized in that an electrode mounting surface side is the superconducting layer side at a mounting position of an inner electrode and an outer electrode.
前記切替接合部では、前記薄膜超電導線材の超電導層側同士が半田付け、超音波溶接、抵抗溶接または導電性接着剤により接合されている請求項1に記載の超電導コイル。   The superconducting coil according to claim 1, wherein the superconducting layer side of the thin film superconducting wire is joined by soldering, ultrasonic welding, resistance welding, or a conductive adhesive at the switching joint. 前記切替接合部の長さが5mm以上30mm以下である請求項1または請求項2に記載の超電導コイル。   The superconducting coil according to claim 1 or 2, wherein a length of the switching joint is 5 mm or more and 30 mm or less. 前記切替接合部の位置は、前記外電極から100mm以内あるいは最外周ターンに位置させている請求項1乃至請求項3のいずれか1項に記載の超電導コイル。   4. The superconducting coil according to claim 1, wherein the position of the switching joint is located within 100 mm from the outer electrode or in an outermost turn. 5. 前記薄膜超電導線材は、金属からなる基板層、セラミックスからなる中間層、超電導層、銀からなる安定化層が積層されていると共に、全周が銅被覆され、前記銀安定化層を介して超電導層が位置される側を前記超電導層側とし、
前記内電極および外電極は銅からなり、半田付け、超音波溶接、抵抗溶接または導電性接着剤により前記薄膜超電導線材に取り付けている請求項1乃至請求項4のいずれか1項に記載の超電導コイル。
The thin film superconducting wire has a substrate layer made of metal, an intermediate layer made of ceramics, a superconducting layer, and a stabilization layer made of silver, and the entire circumference is coated with copper, and the superconductivity is passed through the silver stabilization layer. The side on which the layer is located is the superconducting layer side,
The superconducting device according to any one of claims 1 to 4, wherein the inner electrode and the outer electrode are made of copper and are attached to the thin film superconducting wire by soldering, ultrasonic welding, resistance welding, or a conductive adhesive. coil.
JP2006324716A 2006-11-30 2006-11-30 Superconducting coil Expired - Fee Related JP4697128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324716A JP4697128B2 (en) 2006-11-30 2006-11-30 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324716A JP4697128B2 (en) 2006-11-30 2006-11-30 Superconducting coil

Publications (2)

Publication Number Publication Date
JP2008140930A JP2008140930A (en) 2008-06-19
JP4697128B2 true JP4697128B2 (en) 2011-06-08

Family

ID=39602107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324716A Expired - Fee Related JP4697128B2 (en) 2006-11-30 2006-11-30 Superconducting coil

Country Status (1)

Country Link
JP (1) JP4697128B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175653B2 (en) * 2008-08-12 2013-04-03 株式会社東芝 Superconducting magnet
JP5274983B2 (en) * 2008-10-31 2013-08-28 株式会社東芝 Superconducting coil device
GB2468359B (en) * 2009-03-06 2013-09-11 3 Cs Ltd Magnetic resonance system
JP5384245B2 (en) * 2009-08-04 2014-01-08 公益財団法人鉄道総合技術研究所 RE-based superconducting coil conduction cooling method and apparatus therefor
JP5375599B2 (en) * 2009-12-28 2013-12-25 住友電気工業株式会社 Superconducting equipment
JP5568361B2 (en) 2010-04-16 2014-08-06 株式会社フジクラ Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5879749B2 (en) 2011-05-30 2016-03-08 住友電気工業株式会社 Superconducting coil, superconducting magnet, and manufacturing method of superconducting coil
JP2012256744A (en) * 2011-06-09 2012-12-27 Fujikura Ltd Superconductive coil
JP5858723B2 (en) * 2011-10-19 2016-02-10 株式会社東芝 Laminated superconducting coil device and superconducting coil device
DE102012223366A1 (en) 2012-12-17 2014-06-18 Siemens Aktiengesellschaft Superconducting coil device with coil winding and contacts
JP6136316B2 (en) * 2013-02-04 2017-05-31 住友電気工業株式会社 Superconducting coil and superconducting coil device
JP6305689B2 (en) * 2013-04-17 2018-04-04 住友重機械工業株式会社 Superconducting coil
DE102013209967A1 (en) * 2013-05-28 2014-12-18 Siemens Aktiengesellschaft Superconducting coil device with coil winding and manufacturing method
JP6199628B2 (en) * 2013-06-28 2017-09-20 株式会社東芝 Superconducting coil device
JP2015043364A (en) * 2013-08-26 2015-03-05 住友電気工業株式会社 Superconducting coil and superconducting coil device
KR101466799B1 (en) * 2013-12-18 2014-11-28 안동대학교 산학협력단 Joining of HTS 2G coated conductor using ultrasonic welding method
JP6297397B2 (en) * 2014-04-23 2018-03-20 公益財団法人鉄道総合技術研究所 High temperature superconducting coil winding method and high temperature superconducting coil winding machine
JP6364235B2 (en) * 2014-05-21 2018-07-25 中部電力株式会社 Superconducting coil electrode structure
JP6419596B2 (en) 2015-02-13 2018-11-07 株式会社東芝 Thin-film wire connection structure, high-temperature superconducting wire using the connection structure, and high-temperature superconducting coil using the connection structure
WO2020161909A1 (en) * 2019-02-08 2020-08-13 住友電気工業株式会社 Superconducting wire connection structure
WO2020165939A1 (en) * 2019-02-12 2020-08-20 住友電気工業株式会社 Superconducting wire connection structure
JP2020136637A (en) * 2019-02-26 2020-08-31 株式会社東芝 High-temperature superconducting magnet device
JP2022099697A (en) * 2020-12-23 2022-07-05 トヨタ自動車株式会社 Induction heating coil, manufacturing method thereof, and manufacturing method of hardened product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676512A (en) * 1979-11-28 1981-06-24 Hitachi Ltd Pancake-shaped coil
JPH02252664A (en) * 1988-11-25 1990-10-11 Hitachi Ltd Oxide-based high-temperature superconducting conjugate and method for joining
JPH09167705A (en) * 1995-12-14 1997-06-24 Hitachi Cable Ltd Current-carrying lead for oxide superconductive coil
JP2000133067A (en) * 1998-10-30 2000-05-12 Fujikura Ltd Connection structure and connection method of oxide superconducting conductor
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676512A (en) * 1979-11-28 1981-06-24 Hitachi Ltd Pancake-shaped coil
JPH02252664A (en) * 1988-11-25 1990-10-11 Hitachi Ltd Oxide-based high-temperature superconducting conjugate and method for joining
JPH09167705A (en) * 1995-12-14 1997-06-24 Hitachi Cable Ltd Current-carrying lead for oxide superconductive coil
JP2000133067A (en) * 1998-10-30 2000-05-12 Fujikura Ltd Connection structure and connection method of oxide superconducting conductor
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod

Also Published As

Publication number Publication date
JP2008140930A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4697128B2 (en) Superconducting coil
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
EP2544198B1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
US10062488B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP2012256744A (en) Superconductive coil
JP4182832B2 (en) Superconducting plate connection method and connection part thereof
JP2007305386A (en) Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
JP2011008949A (en) Superconductive wire rod and its manufacturing method
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP5677116B2 (en) High temperature superconducting coil
JP5887085B2 (en) Superconducting coil and manufacturing method thereof
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP2014002833A (en) Oxide superconducting wire and method of manufacturing the same
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP2007115635A (en) High temperature superconducting coil and its manufacturing method
JP6707164B1 (en) Superconducting wire connection structure and superconducting wire
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JP2011165625A (en) Oxide superconductive wire material
JP2021015729A (en) Oxide superconducting wire and method of producing the same
JP2023032076A (en) superconducting coil
JP2020161278A (en) Bonded superconducting wire and superconducting coil
JP2013187103A (en) Oxide superconducting wire and manufacturing method therefor
JP2012253128A (en) Oxide superconducting coil and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees