JP2011008949A - Superconductive wire rod and its manufacturing method - Google Patents

Superconductive wire rod and its manufacturing method Download PDF

Info

Publication number
JP2011008949A
JP2011008949A JP2009148688A JP2009148688A JP2011008949A JP 2011008949 A JP2011008949 A JP 2011008949A JP 2009148688 A JP2009148688 A JP 2009148688A JP 2009148688 A JP2009148688 A JP 2009148688A JP 2011008949 A JP2011008949 A JP 2011008949A
Authority
JP
Japan
Prior art keywords
superconducting
layer
substrate
protective layer
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009148688A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuami
寛 朽網
Yasuhiro Iijima
康裕 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009148688A priority Critical patent/JP2011008949A/en
Publication of JP2011008949A publication Critical patent/JP2011008949A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive wire rod with excellent superconductive characteristics, capable of suppressing intrusion of moisture into a superconductive layer and moreover suppressing deterioration of a critical current density by having a structure with which it hardly gets external mechanical or chemical damages, and provide a simple manufacturing method of the same.SOLUTION: The superconductive wire rod 100 is provided at least with a first base body 10 on which an intermediate layer 2, a superconductive layer 3, and a protective layer 4 are superimposed in order on one of the faces of a first base material 1 of a lengthy shape and a second base body 20 which is superimposed on the protective layer 4 and is made of a second base material 5 of a lengthy shape composed of a stabilizing material. On a face opposed to the protective layer 4 of the second base body 20, there is arranged a recess part continuing in the length direction, and an inner bottom face of the recess part is jointed with the protective layer 4 with a conductive jointing member 6 interposed, and moreover, the superconductive layer 3 is arranged so that its side face can be accommodated entirely in the recess part.

Description

本発明は、超電導電力ケーブル、超電導マグネット、超電導エネルギー貯蔵装置、超電導発電装置、医療用MRI装置、超電導電流リードなどへの応用開発が進められている長尺状の超電導線材及びその製造方法に関する。   The present invention relates to a long superconducting wire that is being developed and applied to a superconducting power cable, a superconducting magnet, a superconducting energy storage device, a superconducting power generation device, a medical MRI device, a superconducting current lead, and the like.

従来、レーザー蒸着法やCVD法などの成膜法により、テープ状の基材上に酸化物超電導層を形成して超電導導体を形成することがなされている。そして、この種の成膜法によって形成した薄膜状の酸化物超電導層は、従来知られている酸化物超電導体の構成元素の粉末導体よりも高い臨界電流密度(Jc)を示すことが知られている。また、この種の超電導導体は、液体窒素温度(77K)で冷却して超電導状態とした上で磁場を作用させた場合に、磁場による超電導特性の劣化割合も少ないとされているので、この種のテープ状の酸化物超電導導体を用いてコイル加工を施し、小型で軽量の超電導マグネットを製造する試みがなされている。   Conventionally, a superconducting conductor is formed by forming an oxide superconducting layer on a tape-like substrate by a film forming method such as a laser vapor deposition method or a CVD method. A thin-film oxide superconducting layer formed by this kind of film-forming method is known to exhibit a higher critical current density (Jc) than a powder conductor of a constituent element of a conventionally known oxide superconductor. ing. In addition, this type of superconducting conductor is said to have a small deterioration rate of superconducting characteristics due to the magnetic field when it is cooled to liquid nitrogen temperature (77K) to be in a superconducting state and a magnetic field is applied. Attempts have been made to produce a small and lightweight superconducting magnet by performing coil processing using a tape-shaped oxide superconducting conductor.

金属テープなどの長尺の基材の上に酸化物超電導層を直接成膜すると、結晶配向性が乱れて良好な超電導特性が得られないという問題があるため、従来、金属テープの上に結晶を面内配向させた中間層、例えばMgOやSrTiO、GdZr、CeO、イットリウム安定化ジルコニア(YSZ)などの中間層を形成し、この中間層上に酸化物超電導層を成膜することで、金属テープなどの長尺の基材上に結晶配向性の優れた酸化物超電導層を配する構成が用いられている。
このような中間層を金属テープと酸化物超電導層の間に形成することにより、熱膨張係数の差異に起因する熱歪の蓄積を緩和することもでき、酸化物超電導層と金属テープとの間の元素拡散も抑制できるため、特性の優れた酸化物超電導層を備えた酸化物超電導導体を得ることができる。
When an oxide superconducting layer is directly formed on a long substrate such as a metal tape, there is a problem that the crystal orientation is disturbed and good superconducting properties cannot be obtained. An in-plane oriented intermediate layer such as MgO, SrTiO 3 , Gd 2 Zr 2 O 7 , CeO 2 , yttrium stabilized zirconia (YSZ) is formed, and an oxide superconducting layer is formed on the intermediate layer. A structure is used in which an oxide superconducting layer having excellent crystal orientation is arranged on a long base material such as a metal tape by forming a film.
By forming such an intermediate layer between the metal tape and the oxide superconducting layer, the accumulation of thermal strain due to the difference in thermal expansion coefficient can also be reduced, and the gap between the oxide superconducting layer and the metal tape can be reduced. Therefore, the oxide superconducting conductor provided with the oxide superconducting layer having excellent characteristics can be obtained.

ところが、超電導コイルを製造するために長尺状の酸化物超電導体に曲げ加工を施すと、超電導層に歪みが負荷されることにより臨界電流密度が低下し、ひいては超電導特性が劣化するという問題があった。
そこで本発明者らは、ハステロイなどからなる金属テープの上に中間層、酸化物超電導体の中でもReBaCuO系(ReはGd、Y、Ho、Snなどの希土類元素)の超電導体からなる超電導層を順に形成し、この超電導層上に良導電性の安定化金属層を形成することで超電導特性の優れた長尺状の超電導導体を製造する試みを種々行っている。
However, if a long oxide superconductor is bent to produce a superconducting coil, strain is applied to the superconducting layer, which reduces the critical current density and thus degrades the superconducting characteristics. there were.
Therefore, the inventors of the present invention provided an intermediate layer on a metal tape made of Hastelloy or the like, and a superconducting layer made of a superconductor of ReBaCuO type (Re is a rare earth element such as Gd, Y, Ho, or Sn) among oxide superconductors. Various attempts have been made to produce long superconducting conductors having excellent superconducting characteristics by forming them sequentially and forming a highly conductive stabilized metal layer on the superconducting layer.

このような試みの中から本発明者らは、例えば特許文献1では、安定化金属層の材料および厚さを最適化することにより、曲げ加工を施した際にも超電導層に歪みがかかりにくく超電導特性の劣化を生じにくい構成を見いだした。
図3は従来の酸化物超電導導体の一構成例を示す模式図である。酸化物超電導導体200は、ハステロイテープなどの長尺状の基材201上に中間層202、YBaCuO系の超電導体からなる超電導層203、良導電性の安定化層204が順次積層されている。
しかしながら、この構成では水分によりダメージを受けやすい超電導層203の側面が外部に露呈しているため、製造工程中などに水分が侵入することにより超電導特性の低下を引き起こす虞がある。
Among such attempts, the present inventors, for example, in Patent Document 1, by optimizing the material and thickness of the stabilizing metal layer, the superconducting layer is hardly strained even when bending is performed. We have found a configuration that does not easily cause degradation of superconducting properties.
FIG. 3 is a schematic view showing a structural example of a conventional oxide superconducting conductor. In the oxide superconducting conductor 200, an intermediate layer 202, a superconducting layer 203 made of a YBaCuO-based superconductor, and a highly conductive stabilizing layer 204 are sequentially laminated on a long base material 201 such as Hastelloy tape.
However, in this configuration, since the side surface of the superconducting layer 203 that is easily damaged by moisture is exposed to the outside, the penetration of moisture during the manufacturing process or the like may cause deterioration of superconducting characteristics.

一方、例えば特許文献2および3には、超電導層を金属テープで挟み、該金属テープの間を半田などの接合部材で充填して接合する構成が記載されている。このような構成では超電導層の側面は外部に露呈されないが、充分な接合強度を得るためには超電導線材を厚み方向から加圧、接着する工程が必要となる。その場合、超電導線材の厚み方向に加わる圧力により超電導層がダメージを受け、超電導特性の劣化が生じる虞がある。   On the other hand, for example, Patent Documents 2 and 3 describe a configuration in which a superconducting layer is sandwiched between metal tapes, and the metal tape is filled and joined with a joining member such as solder. In such a configuration, the side surface of the superconducting layer is not exposed to the outside, but in order to obtain sufficient bonding strength, a step of pressing and bonding the superconducting wire from the thickness direction is required. In that case, the superconducting layer may be damaged by the pressure applied in the thickness direction of the superconducting wire, and the superconducting characteristics may be deteriorated.

特開平7−73758号公報Japanese Unexamined Patent Publication No. 7-73758 特許第3949960号公報Japanese Patent No. 3949960 特開2008−243588号公報JP 2008-243588 A

本発明は、上記事情に鑑みてなされたものであり、超電導層への水分の侵入を抑えるとともに外部からの機械的あるいは化学的なダメージを受け難い構造を有することにより、臨界電流密度の低下の抑制を図ることができ、ひいては良好な超電導特性を有する超電導線材を提供することを第一の目的とする。
また、本発明は、上述した良好な超電導特性を有する超電導線材を、簡便にかつ安定して形成できる超電導線材の製造方法を提供することを第二の目的とする。
The present invention has been made in view of the above circumstances, and has a structure that suppresses the penetration of moisture into the superconducting layer and is resistant to mechanical or chemical damage from the outside, thereby reducing the critical current density. It is a first object to provide a superconducting wire that can be suppressed and consequently has good superconducting properties.
The second object of the present invention is to provide a method for producing a superconducting wire that can easily and stably form the above-described superconducting wire having good superconducting properties.

前記課題を解決するため、本発明の請求項1に係る超電導線材は、長尺状の第一基材の一方の面に、中間層、超電導層、保護層の順に重ねて配してなる第一基体と、該保護層に重なり、安定化材から構成された長尺状の第二基材からなる第二基体と、を少なくとも備え、前記第二基体の前記保護層と対向する面には、その長手方向に連続する凹部が配されており、該凹部の内底面が前記保護層と導電性の接合部材を介して接合され、かつ、前記超電導層は、その側面が全て該凹部内に収まるように配されたことを特徴とする。   In order to solve the above-mentioned problem, a superconducting wire according to claim 1 of the present invention is formed by stacking an intermediate layer, a superconducting layer, and a protective layer in this order on one surface of a long first base material. And at least a second substrate made of a long second substrate made of a stabilizing material and overlying the protective layer, the surface of the second substrate facing the protective layer A concave portion that is continuous in the longitudinal direction is disposed, the inner bottom surface of the concave portion is bonded to the protective layer via a conductive bonding member, and the side surfaces of the superconducting layer are all in the concave portion. It is characterized by being arranged to fit.

本発明の請求項2に係る超電導線材は、請求項1において、前記第一基材の他方の面は、前記第二基体の前記凹部が形成された面に対して、同じ高さか、あるいは低く構成されていることを特徴とする。
本発明の請求項3に係る超電導線材は、請求項1または2において、前記接合部材が、さらに、前記超電導層の側面も覆うように配されていることを特徴とする。
The superconducting wire according to claim 2 of the present invention is the superconducting wire according to claim 1, wherein the other surface of the first base is the same height as or lower than the surface of the second base on which the recess is formed. It is configured.
The superconducting wire according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the joining member is arranged so as to further cover the side surface of the superconducting layer.

本発明の請求項4に係る超電導線材の製造方法は、長尺状の第一基材の一方の面に、中間層、超電導層、保護層の順に重ねて配してなる第一基体と、該保護層に重なり、安定化材から構成された長尺状の第二基材からなる第二基体と、を少なくとも備える製造方法であって、前記第一基材の一方の面に、中間層、超電導層、保護層を順に重ねて設け、前記第一基体を形成する工程Aと、前記第二基材の長手方向に凹部を設け、前記第二基体を形成する工程Bと、前記第二基体に設けた前記凹部の内底面と前記第一基体を構成する前記保護層の表面との間に接合部材を挟み重ねて配置する工程Cと、加熱及び加圧処理を施し、両者を接合する工程Dと、を少なくとも有することを特徴とする。   A method for producing a superconducting wire according to claim 4 of the present invention includes a first substrate formed by stacking an intermediate layer, a superconducting layer, and a protective layer in this order on one surface of a long first substrate; A manufacturing method comprising at least a second base made of a long second base material made of a stabilizing material and overlapping the protective layer, wherein the intermediate layer is formed on one surface of the first base material. , A superconducting layer and a protective layer are sequentially stacked to form the first substrate, a step A is formed in the longitudinal direction of the second substrate, and a step B is formed to form the second substrate. A step C in which a bonding member is sandwiched and disposed between the inner bottom surface of the concave portion provided on the base and the surface of the protective layer constituting the first base, and heating and pressure treatment are performed, and both are bonded. And at least step D.

本発明の請求項5に係る超電導線材の製造方法は、請求項4において、前記工程Dの前に、予備加熱を行う工程Eを有することを特徴とする。
本発明の請求項6に係る超電導線材の製造方法は、請求項4または5において、前記工程Cを行う際に、前記第一基材の他方の面が、前記第二基体の前記凹部が形成された面に対して、同じ高さか、あるいは低くなるように配置することを特徴とする。
本発明の請求項7に係る超電導線材の製造方法は、請求項4乃至6のいずれか1項において、前記工程Dを行う際に、前記接合部材が、少なくとも前記凹部内底面とともに、前記超電導層の側面部も覆うように加熱及び加圧処理を施すことを特徴とする。
The method for producing a superconducting wire according to claim 5 of the present invention is characterized in that, in claim 4, before the step D, the method includes a step E of performing preheating.
The method of manufacturing a superconducting wire according to claim 6 of the present invention is the method according to claim 4 or 5, wherein when the step C is performed, the other surface of the first base material forms the concave portion of the second base material. It is characterized in that it is arranged so as to be the same height or lower than the formed surface.
A superconducting wire manufacturing method according to a seventh aspect of the present invention is the superconducting wire according to any one of the fourth to sixth aspects, wherein when the step D is performed, the joining member is at least together with the inner bottom surface of the recess. Heating and pressurizing treatment is performed so as to cover the side portion of the.

本発明に係る超電導線材(請求項1)は、超電導層の側面が全て第二基体に配された凹部内に収まるように配置されていることにより、超電導層の側面全域が凹部をなす安定化材で囲まれた、あるいは外部から見えない状態となり、ひいては超電導層の側面全域が外部から遮蔽された構成を実現できる。このような構成は、超電導層への水分の侵入を抑え、超電導層への化学的なダメージを防ぐことができるとともに、超電導層に対する外部からの機械的な影響を抑制する効果ももたらす。これにより、臨界電流密度の低下の抑制が図れるため、本発明は、良好な超電導特性を有する超電導線材の提供に寄与する。   The superconducting wire according to the present invention (Claim 1) is arranged such that the entire side surface of the superconducting layer forms a recess by being disposed so that all the side surfaces of the superconducting layer are accommodated in the recess disposed on the second substrate. It is possible to realize a configuration that is surrounded by a material or invisible from the outside, and that the entire side surface of the superconducting layer is shielded from the outside. Such a configuration can prevent moisture from entering the superconducting layer, prevent chemical damage to the superconducting layer, and also has an effect of suppressing external mechanical influence on the superconducting layer. Thereby, since the reduction of the critical current density can be suppressed, the present invention contributes to provision of a superconducting wire having good superconducting characteristics.

本発明に係る超電導線材の製造方法(請求項4)は、超電導層を含む積層体である第一基体と、安定化材からなり凹部が配された第二基体とを別々に形成し、両者を接合するという工程を用いることにより、まず両者を別体として個別に最適な条件で作製した後、適切な条件で一体化させることができる。ゆえに本発明によれば、簡便な方法で、かつ安定して超電導線材を形成することが可能な製造方法が得られる。   The method for manufacturing a superconducting wire according to the present invention (Claim 4) separately forms a first substrate that is a laminate including a superconducting layer and a second substrate made of a stabilizing material and provided with a recess, By using the process of joining the two, first, the two are separately manufactured under optimum conditions, and then can be integrated under appropriate conditions. Therefore, according to the present invention, a production method capable of forming a superconducting wire stably with a simple method is obtained.

本発明に係る一実施形態の超電導線材の一例を示す斜視図。The perspective view which shows an example of the superconducting wire of one Embodiment which concerns on this invention. 本発明に係る一実施形態の超電導線材の製造装置の一例を示す模式図。The schematic diagram which shows an example of the manufacturing apparatus of the superconducting wire of one Embodiment which concerns on this invention. 従来の酸化物超電導テープの一実施形態を示す斜視図。The perspective view which shows one Embodiment of the conventional oxide superconducting tape.

以下、図面を参照して本発明の実施形態を説明する。
図1(a)は、本発明の超電導線材100の一実施形態を示す斜視図であり、(b)は(a)の一部を抜き出して示した斜視図である。
本実施形態に係る超電導線材100は、長尺状の第一基材1の一方の面に、中間層2、超電導層3、保護層4の順に重ねて配してなる第一基体10と、該保護層4に重なり、安定化材から構成された長尺状の第二基材5からなる第二基体20とからなる。さらに前記第二基体20にはその長手方向に連続する凹部が配されており、該凹部の内底面と前記保護層4とが導電性の接合部材6を介して接合され、かつ、前記超電導層3の側面が全て該凹部内に収まるように配されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a perspective view showing an embodiment of the superconducting wire 100 of the present invention, and FIG. 1B is a perspective view showing a part of FIG.
A superconducting wire 100 according to the present embodiment includes a first base body 10 formed by stacking an intermediate layer 2, a superconducting layer 3, and a protective layer 4 in this order on one surface of a long first base material 1, and The second base 20 is formed of a long second base material 5 made of a stabilizer and overlapping the protective layer 4. Further, the second base body 20 is provided with a concave portion that is continuous in the longitudinal direction, and the inner bottom surface of the concave portion and the protective layer 4 are joined via a conductive joining member 6, and the superconducting layer The three side surfaces are all disposed in the recess.

第一基材1は、一般に超電導線材100の基材として十分な機械的強度と柔軟性、耐熱性、耐酸化性を有する金属材料からなるテープ状基材、例えばハステロイなどが用いられる。それ以外にも、ステンレス鋼、銅などに代表される各種金属材料から、あるいは、各種のガラスまたはセラミックスなどから構成されるもののいずれを用いても良い。第一基材1の長さ、幅、厚さは、製造する超電導線材100の用途などに応じて適宜設定することができるが、本実施例では幅2〜10mm、より好ましくは5〜10mmのものを用いるものとする。
中間層2としては、後に中間層2の上に形成される超電導層の結晶に近い結晶構造(例えば、立方晶系の結晶構造)を有し、超電導層の熱膨張率に近い熱膨張率を有する薄膜が好ましい。よって、中間層2を構成する材料は、MgOやSrTiO、GdZr、CeO、YSZなどのセラミックス系の材料が好ましい。
As the first base material 1, a tape-like base material made of a metal material having sufficient mechanical strength and flexibility, heat resistance, and oxidation resistance as a base material for the superconducting wire 100 is generally used. In addition, any of various metal materials typified by stainless steel, copper, etc., or those composed of various types of glass or ceramics may be used. The length, width, and thickness of the first base material 1 can be appropriately set according to the use of the superconducting wire 100 to be manufactured, but in this embodiment, the width is 2 to 10 mm, more preferably 5 to 10 mm. Things shall be used.
The intermediate layer 2 has a crystal structure close to the crystal of the superconducting layer formed on the intermediate layer 2 later (for example, a cubic crystal structure), and has a thermal expansion coefficient close to that of the superconducting layer. The thin film which has is preferable. Therefore, the material constituting the intermediate layer 2 is preferably a ceramic material such as MgO, SrTiO 3 , Gd 2 Zr 2 O 7 , CeO 2 , YSZ.

超電導層3を構成する材料は、ReBaCuO系(ReはGd、Y、Ho、Snなどの希土類元素)なる組成などに代表される臨界温度の高い酸化物超電導体が好適に用いられる。
保護層4は、用途に応じて、Ag、Pt、Auなどの貴金属あるいはそれらの合金からなり、第二基材5は、CuやAlなどのように貴金属よりも安価な良導電性金属材料や、NiCr、NiCuなどの高抵抗体が用いられる。また接合部材6としては、例えば半田が用いられるが、本発明はこれに限定されるものではなく、他にも導電性を有する材料であれば良い。
As a material constituting the superconducting layer 3, an oxide superconductor having a high critical temperature represented by a composition such as a ReBaCuO-based composition (Re is a rare earth element such as Gd, Y, Ho, or Sn) is preferably used.
The protective layer 4 is made of a noble metal such as Ag, Pt, or Au or an alloy thereof according to the application, and the second base material 5 is a highly conductive metal material that is less expensive than a noble metal such as Cu or Al. A high resistance material such as NiCr or NiCu is used. For example, solder is used as the joining member 6, but the present invention is not limited to this, and any other conductive material may be used.

本発明の超電導線材100の構造によれば、超電導層3の側面が全て第二基体20に設けられた凹部内に収まるように配置される、すなわち、超電導層3の側面全域が凹部をなす安定化材で覆われることにより、超電導層3が外部から遮蔽された構成が実現できる。このような構成にすることで、超電導層3への水分の侵入を抑え、超電導層3への化学的なダメージを防ぐことができる。これにより、臨界電流密度の低下の抑制が図れ、良好な超電導特性を有する超電導線材が得られる。   According to the structure of the superconducting wire 100 of the present invention, the superconducting layer 3 is disposed so that all the side surfaces of the superconducting layer 3 are accommodated in the recesses provided in the second substrate 20. By covering with the chemical, a configuration in which the superconducting layer 3 is shielded from the outside can be realized. By adopting such a configuration, it is possible to suppress moisture from entering the superconducting layer 3 and prevent chemical damage to the superconducting layer 3. As a result, the reduction of the critical current density can be suppressed, and a superconducting wire having good superconducting characteristics can be obtained.

さらに本発明の超電導線材100において、前記第一基材1の他方の面は、前記第二基体20の前記凹部が形成された面に対して、同じ高さか、あるいは低く配されることが好ましい。このように超電導層3を含む第一基体10の側面全てが前記凹部内に収まる構成とすると、超電導層3への水分の侵入抑制効果をさらに向上させ、化学的なダメージを受け難い構造となるとともに、第一基体10と第二基体20とを接合するために厚み方向に加圧された場合にも、超電導層3が外圧による機械的なダメージを受け難い構造となる。これにより、さらに臨界電流密度の低下が抑制可能となり、良好な超電導特性を有する超電導線材が得られる。
この際、接合部材6は、少なくとも前記凹部内底面とともに、前記超電導層3の側面部まで、より好ましくは第一基体10の側面全てを覆うように配されていることがさらに好ましい。このような構成とすることで、超電導層3の側面全てが接合部材6で覆われて外部への露呈を防ぐため、超電導層3への水分の侵入抑制効果をさらに高めることができる。
Furthermore, in the superconducting wire 100 of the present invention, it is preferable that the other surface of the first substrate 1 is arranged at the same height or lower than the surface of the second substrate 20 on which the concave portion is formed. . Thus, when all the side surfaces of the first substrate 10 including the superconducting layer 3 are accommodated in the recesses, the effect of suppressing the intrusion of moisture into the superconducting layer 3 is further improved, and a structure that is not susceptible to chemical damage is obtained. At the same time, even when pressure is applied in the thickness direction to join the first substrate 10 and the second substrate 20, the superconducting layer 3 has a structure that is not easily damaged by external pressure. As a result, the decrease in critical current density can be further suppressed, and a superconducting wire having good superconducting characteristics can be obtained.
At this time, it is further preferable that the joining member 6 is arranged so as to cover at least the side surface of the superconducting layer 3, more preferably all the side surfaces of the first substrate 10 together with the bottom surface in the recess. By setting it as such a structure, since all the side surfaces of the superconducting layer 3 are covered with the joining member 6, and the exposure to the outside is prevented, the effect of suppressing the penetration of moisture into the superconducting layer 3 can be further enhanced.

本実施形態に係る超電導線材の製造方法は、長尺状の第一基材1の一方の面に、中間層2、超電導層3、保護層4を順に重ねて設け、第一基体10を形成する工程Aと、安定化材から構成された長尺状の第二基材5の長手方向に凹部を設け、前記第二基体20を形成する工程Bと、前記第二基体20に設けた前記凹部の内底面と前記第一基体10を構成する前記保護層4の表面との間に接合部材6を挟み重ねて配置する工程Cと、加熱及び加圧処理を施し、両者を接合する工程Dと、を少なくとも有することを特徴とする。   In the method for manufacturing a superconducting wire according to the present embodiment, an intermediate layer 2, a superconducting layer 3, and a protective layer 4 are sequentially stacked on one surface of a long first base material 1 to form a first substrate 10. A step A, a step B in which the concave portion is provided in the longitudinal direction of the long second base material 5 made of the stabilizing material, and the second base body 20 is formed; A step C in which the bonding member 6 is placed between the inner bottom surface of the recess and the surface of the protective layer 4 constituting the first base 10, and a step D in which heating and pressurizing treatments are performed and both are bonded. And at least.

以下、本発明の超電導線材100を製造する方法の一実施例について説明する。
長尺状の第一基材1の一方の面に、拡散バリアとしての中間層2を成膜法により形成する。この中間層2の形成方法としては、スパッタ法、真空蒸着法、レーザ蒸着法、化学気相成長法(CVD)などのいずれの成膜法を用いても良いが、中間層は面内配向を有する結晶性の良い膜を得るため、長尺状の基材上に均質な膜を連続的に長時間成膜することが可能なIBAD法で作製する。
Hereinafter, an embodiment of a method for producing the superconducting wire 100 of the present invention will be described.
An intermediate layer 2 as a diffusion barrier is formed on one surface of the long first substrate 1 by a film forming method. As a method for forming the intermediate layer 2, any film forming method such as sputtering, vacuum vapor deposition, laser vapor deposition, or chemical vapor deposition (CVD) may be used. In order to obtain a film having good crystallinity, it is manufactured by an IBAD method capable of continuously forming a uniform film on a long base material for a long time.

次に、中間層2上に超電導層3を形成する。この場合も前記と同様に種々の成膜法を用いることができるが、同じく均質な膜を連続的に長時間成膜することが可能なレーザ蒸着法を用いることが好ましい。この際の母材としては、例えばYBaCu7−xなる組成の酸化物あるいは酸化物超電導体ターゲットを使用し、基材を700〜1000℃程度の所望の温度に加熱して、酸素を含む減圧雰囲気中で成膜処理を行えば良い。さらに超電導層3の上に、下地安定化層としての役割も担う保護層4を数μm〜数10μm程度の厚さになるよう成膜法により形成し、第一基体10を形成する工程Aが完了する。この場合も前記と同様に種々の成膜法を用いることができる。 Next, the superconducting layer 3 is formed on the intermediate layer 2. In this case as well, various film forming methods can be used in the same manner as described above. However, it is preferable to use a laser vapor deposition method capable of forming a uniform film continuously for a long time. As a base material at this time, for example, an oxide or oxide superconductor target having a composition of Y 1 Ba 2 Cu 3 O 7-x is used, and the substrate is heated to a desired temperature of about 700 to 1000 ° C. The film formation process may be performed in a reduced pressure atmosphere containing oxygen. Furthermore, a process A for forming the first substrate 10 by forming the protective layer 4 also serving as a base stabilizing layer on the superconducting layer 3 by a film forming method so as to have a thickness of about several μm to several tens of μm. Complete. In this case as well, various film forming methods can be used as described above.

次に、Cuなどの安定化材からなる第二基材5の長手方向に凹部を設け、前記第二基体20を形成する工程Bを行う。この凹部は、例えば、押出成形や機械的な研削により形成することができる。なお、これらの凹部を形成する方法はこれに限定されるものではなく、酸やアルカリ等の溶液を用いたウェットエッチング、サンドブラスト、レーザ等の物理的加工も可能である。   Next, the process B which provides a recessed part in the longitudinal direction of the 2nd base material 5 which consists of stabilizers, such as Cu, and forms said 2nd base | substrate 20 is performed. This recess can be formed by, for example, extrusion molding or mechanical grinding. Note that the method of forming these recesses is not limited to this, and physical processing such as wet etching using a solution of acid or alkali, sandblasting, laser, or the like is also possible.

その後、メッキ法により、例えば半田などの導電性の金属材料からなる接合部材6を前記凹部内に均一に形成し、該凹部の内底面と前記第一基体10を構成する前記保護層4の表面とを対向して配置する工程Cを行う。なお、工程Cはメッキ法に限定されるものではなく、例えば蒸着法やスパッタ法、CVD法などを用い、凹部内底面に均一に、あるいは該凹部内(内底面及び側面)に均一に、導電性の金属材料からなる接合部材6を形成しても良い。   Thereafter, a joining member 6 made of a conductive metal material such as solder is uniformly formed in the recess by plating, and the inner bottom surface of the recess and the surface of the protective layer 4 constituting the first base body 10 are formed. Step C is arranged so as to face each other. In addition, the process C is not limited to the plating method. For example, the deposition method, the sputtering method, the CVD method, or the like is used. The process C is uniformly applied to the bottom surface of the recess or uniformly in the recess (inner bottom surface and side surface). The joining member 6 made of a conductive metal material may be formed.

さらに、加熱処理及び加圧処理を施しながら前記第一基体10と前記第二基体20を接合する工程Dを行うことにより、充分な接合強度を有し超電導特性に優れた超電導線材100を得ることができる。この際、例えば図2に示すような構造の製造装置を用いて、個別の搬出ロールA,Bに巻回されてなる第一基体10および第二基体20を、それぞれ矢印αと矢印βの方向へ送り出し、誘導ロールC1、C2により両者を重ねた状態としつつ矢印γの方向へ進行させて、後段に位置する金属ロールで加圧しながら両者を接合した後、矢印δの方向へ導出し、次いで巻取ロールEに巻回して収納することにより、所望の超電導線材100を作製する方法を用いることができる。   Furthermore, the superconducting wire 100 having sufficient bonding strength and excellent superconducting characteristics is obtained by performing the step D of bonding the first substrate 10 and the second substrate 20 while performing heat treatment and pressure treatment. Can do. At this time, for example, by using a manufacturing apparatus having a structure as shown in FIG. 2, the first substrate 10 and the second substrate 20 wound around the individual carry-out rolls A and B are moved in the directions of arrows α and β, respectively. And then proceeding in the direction of the arrow γ while both are overlapped by the guide rolls C1, C2, joined together while pressing with the metal roll located in the subsequent stage, and then led out in the direction of the arrow δ, A method of manufacturing a desired superconducting wire 100 can be used by winding and storing it on a winding roll E.

このように、超電導層3を含む積層体である第一基体10と、安定化材からなり凹部が配された第二基体20とを別々に形成し、両者を接合するという工程を用いることにより、まず両者を別体として個別に最適な条件で作製した後、適切な条件で一体化させることができる。よって、簡便な方法で安定して超電導線材を形成することが可能となる。
この接合の際には、少なくとも第二基体20に設けられた凹部の内底面と第一基体10との接触領域に、接合部材6a(6)を配置すれば良い。ただし、前記凹部内底面とともに超電導層3の側面部まで、さらには第一基体10の側面も全て覆うように接合部材6b(6)を設けることがより好ましい。これにより、第一基体10の側面が外部から一段と遮蔽された構成となるため、超電導層3への外部からの機械的あるいは化学的な影響を回避する効果を向上させることが可能となる。
Thus, by using the process of forming separately the 1st base 10 which is a layered product containing superconducting layer 3, and the 2nd base 20 which consisted of a stabilizing material and in which a crevice was arranged, and joined both together First, the two can be separately produced under optimum conditions and then integrated under appropriate conditions. Therefore, it is possible to stably form a superconducting wire by a simple method.
In this joining, the joining member 6 a (6) may be disposed at least in the contact area between the inner bottom surface of the recess provided in the second substrate 20 and the first substrate 10. However, it is more preferable to provide the bonding member 6b (6) so as to cover all the side surfaces of the first base 10 as well as the side surfaces of the superconducting layer 3 together with the bottom surfaces in the recesses. Thereby, since the side surface of the first substrate 10 is further shielded from the outside, it is possible to improve the effect of avoiding the mechanical or chemical influence from the outside on the superconducting layer 3.

さらに本発明の超電導線材の製造方法において、前記工程Dの前に、予備加熱を行う工程Eを行うことがより好ましい。この熱処理により、超電導積層体である第一基体10または安定化材からなる第二基体20の歪みを緩和できるため、各部材による歪みの影響を受け難く安定した特性の超電導線材100を提供することが可能となる。   Furthermore, in the method of manufacturing a superconducting wire of the present invention, it is more preferable to perform the step E of performing preheating before the step D. By this heat treatment, distortion of the first substrate 10 or the second substrate 20 made of a stabilizing material, which is a superconducting laminate, can be alleviated, and thus the superconducting wire 100 having stable characteristics that is hardly affected by the distortion of each member is provided. Is possible.

また工程Cにおいて、前記第一基体10を構成する前記第一基材1の表面が、前記第二基体20の前記凹部が形成された面に対して、同じ高さか、あるいは低くなるように配置することがさらに好ましい。これにより、加圧処理の際に超電導層3に直接大きい圧力が加わることなく第一基体10と第二基体20とを接合できる。また、コイル状に加工する場合も同様に超電導層3にかかる圧力を軽減できるため、超電導層3がダメージを受け難く、良好な超電導特性の超電導線材を簡便に形成することができる。ゆえに、この配置は、量産時の歩留まりの向上に著しく寄与する。   Further, in step C, the surface of the first base material 1 constituting the first base 10 is arranged so as to be the same height or lower than the surface of the second base 20 on which the concave portion is formed. More preferably. Thereby, the 1st base | substrate 10 and the 2nd base | substrate 20 can be joined, without applying a big pressure directly to the superconducting layer 3 in the case of a pressurization process. Also, when processing into a coil shape, the pressure applied to the superconducting layer 3 can be similarly reduced. Therefore, the superconducting layer 3 is not easily damaged, and a superconducting wire having good superconducting characteristics can be easily formed. Therefore, this arrangement significantly contributes to an improvement in yield during mass production.

なお、上述した、金属基板上にIBAD法で中間層を形成した後、超電導体を設ける手法に代えて、例えば、金属基板の結晶方位を圧延により揃えて、その結晶方位が揃った面上にIBAD法以外の成膜法で中間層を形成した後、超電導体を設ける手法を採用してもよい。後者の手法とした場合でも、本発明に係る作用・効果は得られる。   In addition, after forming the intermediate layer on the metal substrate by the IBAD method, instead of the method of providing the superconductor, for example, the crystal orientation of the metal substrate is aligned by rolling, and the crystal orientation is aligned on the surface. A method of providing a superconductor after forming the intermediate layer by a film forming method other than the IBAD method may be employed. Even when the latter method is adopted, the operation and effect according to the present invention can be obtained.

本発明は、超電導積層体が、安定化材からなる長尺状の基体に形成された凹部内に収まるように配され、超電導層の側面が安定化材または接合部材により覆われた構成とすることにより、超電導層への水分の侵入を抑えるとともに外部からの機械的あるいは化学的なダメージを受け難く、臨界電流密度の低下の抑制を図れる超電導線材及びその製造に利用することが可能であり、例えば、従来銅などの金属製導体で製造されていたコイルなどのうち、超電導線材に置き換えが予測される超電導モータ、超電導マグネットをはじめとする様々なデバイス等への応用が期待できる。   In the present invention, the superconducting laminate is arranged so as to be accommodated in a recess formed in a long base made of a stabilizing material, and the side surface of the superconducting layer is covered with a stabilizing material or a joining member. In this way, it is possible to use the superconducting wire which can suppress the intrusion of moisture into the superconducting layer and hardly receive mechanical or chemical damage from the outside, and can suppress the decrease in the critical current density, and the production thereof. For example, it can be expected to be applied to various devices such as superconducting motors and superconducting magnets that are expected to be replaced with superconducting wires among coils that have been conventionally made of a metal conductor such as copper.

1 第一基材、2 中間層、3 超電導層、4 保護層、 5 第二基材、6 接合部材、10 第一基体、20 第二基体。   DESCRIPTION OF SYMBOLS 1 1st base material, 2 intermediate | middle layer, 3 superconducting layer, 4 protective layer, 5 2nd base material, 6 joining member, 10 1st base | substrate, 20 2nd base | substrate.

Claims (7)

長尺状の第一基材の一方の面に、中間層、超電導層、保護層の順に重ねて配してなる第一基体と、該保護層に重なり、安定化材から構成された長尺状の第二基材からなる第二基体と、を少なくとも備える超電導線材であって、
前記第二基体の前記保護層と対向する面には、その長手方向に連続する凹部が配されており、該凹部の内底面が前記保護層と導電性の接合部材を介して接合され、かつ、前記超電導層は、その側面が全て該凹部内に収まるように配されたことを特徴とする超電導線材。
A long base made of a stabilizing material that overlaps the protective layer and a first base layer formed by overlapping an intermediate layer, a superconducting layer, and a protective layer in this order on one surface of the long first base material A superconducting wire comprising at least a second substrate composed of a second base material,
A concave portion that is continuous in the longitudinal direction is disposed on a surface of the second substrate that faces the protective layer, and an inner bottom surface of the concave portion is bonded to the protective layer via a conductive bonding member, and The superconducting wire is characterized in that the superconducting layer is arranged so that all of its side faces are accommodated in the recess.
前記第一基材の他方の面は、前記第二基体の前記凹部が形成された面に対して、同じ高さか、あるいは低く構成されていることを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide according to claim 1, wherein the other surface of the first base material is configured to have the same height as or lower than the surface of the second substrate on which the concave portion is formed. Superconducting wire. 前記接合部材が、さらに、前記超電導層の側面も覆うように配されていることを特徴とする請求項1または2に記載の超電導線材。   The superconducting wire according to claim 1, wherein the joining member is further disposed so as to cover a side surface of the superconducting layer. 長尺状の第一基材の一方の面に、中間層、超電導層、保護層の順に重ねて配してなる第一基体と、該保護層に重なり、安定化材から構成された長尺状の第二基材からなる第二基体と、を少なくとも備える超電導線材の製造方法であって、
前記第一基材の一方の面に、中間層、超電導層、保護層を順に重ねて設け、前記第一基体を形成する工程Aと、
前記第二基材の長手方向に凹部を設け、前記第二基体を形成する工程Bと、
前記第二基体に設けた前記凹部の内底面と前記第一基体を構成する前記保護層の表面との間に接合部材を挟み重ねて配置する工程Cと、
加熱及び加圧処理を施し、両者を接合する工程Dと、
を少なくとも有することを特徴とする超電導線材の製造方法。
A long base made of a stabilizing material that overlaps the protective layer and a first base layer formed by overlapping an intermediate layer, a superconducting layer, and a protective layer in this order on one surface of the long first base material A superconducting wire manufacturing method comprising at least a second substrate made of a second base material,
On one surface of the first base material, an intermediate layer, a superconducting layer, and a protective layer are sequentially stacked to provide the first base, and
Providing a recess in the longitudinal direction of the second substrate to form the second substrate; and
A step C in which a bonding member is disposed between the inner bottom surface of the recess provided in the second substrate and the surface of the protective layer constituting the first substrate;
Process D which performs heating and pressurizing treatment and joins both,
A process for producing a superconducting wire characterized by comprising:
前記工程Dの前に、予備加熱を行う工程Eを有することを特徴とする請求項4に記載の超電導線材の製造方法。   The method for producing a superconducting wire according to claim 4, further comprising a step E of performing preheating before the step D. 前記工程Cにおいて、前記第一基材の他方の面が、前記第二基体の前記凹部が形成された面に対して、同じ高さか、あるいは低くなるように配置することを特徴とする請求項4または5に記載の超電導線材の製造方法。   In the step C, the other surface of the first base material is disposed so as to be the same height as or lower than the surface of the second substrate on which the concave portion is formed. A method for producing a superconducting wire according to 4 or 5. 前記工程Dにおいて、前記接合部材が、少なくとも前記凹部内底面とともに、前記超電導層の側面部も覆うように加熱及び加圧処理を施すことを特徴とする請求項4乃至6のいずれか1項に記載の超電導線材の製造方法。   7. The process D according to claim 4, wherein in the step D, the joining member is subjected to a heating and pressurizing process so as to cover at least the side surface of the superconducting layer together with the bottom surface in the recess. A manufacturing method of the superconducting wire described.
JP2009148688A 2009-06-23 2009-06-23 Superconductive wire rod and its manufacturing method Pending JP2011008949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148688A JP2011008949A (en) 2009-06-23 2009-06-23 Superconductive wire rod and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148688A JP2011008949A (en) 2009-06-23 2009-06-23 Superconductive wire rod and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2011008949A true JP2011008949A (en) 2011-01-13

Family

ID=43565383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148688A Pending JP2011008949A (en) 2009-06-23 2009-06-23 Superconductive wire rod and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2011008949A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105145A1 (en) * 2011-01-31 2012-08-09 株式会社フジクラ Oxide superconducting wire rod and method for manufacturing same
JP2012169237A (en) * 2011-01-25 2012-09-06 Fujikura Ltd Oxide superconductive wire, and method of manufacturing the same
WO2013077387A1 (en) * 2011-11-21 2013-05-30 株式会社フジクラ Oxide superconducting wire material and a method for manufacturing oxide superconducting wire material
WO2013129568A1 (en) * 2012-02-29 2013-09-06 株式会社フジクラ Superconducting wire and superconducting coil
KR20160012428A (en) * 2014-07-24 2016-02-03 한국전기연구원 Laminated high temperature supperconductor wire structure that is joined with the housing and manufacturing method thereof
DE102016212355A1 (en) * 2016-07-06 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for manufacturing a composite cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503794A (en) * 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション Architecture for high temperature superconductor wires
JP2009048987A (en) * 2007-03-22 2009-03-05 Fujikura Ltd Stabilizer composite oxide superconductive tape and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503794A (en) * 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション Architecture for high temperature superconductor wires
JP2009048987A (en) * 2007-03-22 2009-03-05 Fujikura Ltd Stabilizer composite oxide superconductive tape and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169237A (en) * 2011-01-25 2012-09-06 Fujikura Ltd Oxide superconductive wire, and method of manufacturing the same
WO2012105145A1 (en) * 2011-01-31 2012-08-09 株式会社フジクラ Oxide superconducting wire rod and method for manufacturing same
JP2012160331A (en) * 2011-01-31 2012-08-23 Fujikura Ltd Oxide superconductive wiring material, and method for manufacturing the same
WO2013077387A1 (en) * 2011-11-21 2013-05-30 株式会社フジクラ Oxide superconducting wire material and a method for manufacturing oxide superconducting wire material
CN103959401A (en) * 2011-11-21 2014-07-30 株式会社藤仓 Oxide superconducting wire material and a method for manufacturing oxide superconducting wire material
JP2015146318A (en) * 2011-11-21 2015-08-13 株式会社フジクラ Oxide superconducting wire, and method of manufacturing oxide superconducting wire
US9697930B2 (en) 2011-11-21 2017-07-04 Fujikura Ltd. Oxide superconductor wire and method of manufacturing oxide superconductor wire
WO2013129568A1 (en) * 2012-02-29 2013-09-06 株式会社フジクラ Superconducting wire and superconducting coil
US9564259B2 (en) 2012-02-29 2017-02-07 Fujikura, Ltd. Superconducting wire and superconducting coil
KR20160012428A (en) * 2014-07-24 2016-02-03 한국전기연구원 Laminated high temperature supperconductor wire structure that is joined with the housing and manufacturing method thereof
KR101637468B1 (en) 2014-07-24 2016-07-07 한국전기연구원 Laminated high temperature supperconductor wire structure that is joined with the housing and manufacturing method thereof
DE102016212355A1 (en) * 2016-07-06 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for manufacturing a composite cable

Similar Documents

Publication Publication Date Title
JP4697128B2 (en) Superconducting coil
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP2011008949A (en) Superconductive wire rod and its manufacturing method
US20100075857A1 (en) Superconducting tape and production method thereof
JP5421170B2 (en) Superconducting current lead
WO2018181561A1 (en) Connecting structure
JP2017050242A (en) Connection structure of oxide superconducting wire rod and method for producing the same
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
WO2018155707A1 (en) Connection structure for superconductor wires
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP2012256744A (en) Superconductive coil
JP2013030661A (en) Superconducting coil
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
KR102453489B1 (en) High-temperature superconducting wire with superconducting layer laminated and method for manufacturing the same
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP2013084382A (en) Oxide superconductive wire, and method of manufacturing the same
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP2014002833A (en) Oxide superconducting wire and method of manufacturing the same
JP6724125B2 (en) Oxide superconducting wire and method for producing the same
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP5687450B2 (en) Coated conductor
JP5723553B2 (en) Oxide superconducting wire manufacturing apparatus and oxide superconducting wire manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022