JPH09167705A - Current-carrying lead for oxide superconductive coil - Google Patents

Current-carrying lead for oxide superconductive coil

Info

Publication number
JPH09167705A
JPH09167705A JP32565395A JP32565395A JPH09167705A JP H09167705 A JPH09167705 A JP H09167705A JP 32565395 A JP32565395 A JP 32565395A JP 32565395 A JP32565395 A JP 32565395A JP H09167705 A JPH09167705 A JP H09167705A
Authority
JP
Japan
Prior art keywords
current
leads
carrying
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32565395A
Other languages
Japanese (ja)
Inventor
Isami Katou
功己 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP32565395A priority Critical patent/JPH09167705A/en
Publication of JPH09167705A publication Critical patent/JPH09167705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide current-currying leads of an oxide superconductive coil, which are superior in strength and electric conductivity by constituting additive which an oxide generated by internal oxidation dispersively strengthens with gold alloy added to silver. SOLUTION: The oxide superconductive coil 101 is generated by winding a band-shaped superconductive wire 102 in a spiral form, and battledore-like current-carrying leads 103a and 103b are connected to both ends so that they are erected. Gold alloy is used for the conductive leads 103a and 103b. The composition is Ag-0.026at% Mg-0.01at% Ni, for example and it is connected and fixed to the oxide superconductive coil 101 by using silver solder. The oxide superconductive coil 101 to which the current carrying leads 103a and 103b are connected executes a partial melting/slow cooling/heating processing at the maximum temperature of 885 deg.C. In the process, the current-carrying leads 103a and 103b are distributively strengthened by means of the internal oxidation of additive with the heat processing, and strength improves. Thus, the current-carrying leads superior in strength and electric conductivity can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導コイ
ルに電流を供給するに際し、電源と超電導コイル間を接
続する通電リードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-carrying lead that connects a power source and a superconducting coil when supplying a current to an oxide superconducting coil.

【0002】[0002]

【従来の技術】超電導磁石にあっては、例えば、そのコ
イルに酸化物超電導コイル等が用いられ、冷却雰囲気中
に設置して用いられる。この酸化物超電導コイルと常温
雰囲気に設置された電源とは、酸化物超電導コイルに立
設して設けられた通電リード(極低温雰囲気に設置され
る)を介して行われる。
2. Description of the Related Art In a superconducting magnet, for example, an oxide superconducting coil or the like is used as its coil and is installed in a cooling atmosphere. The oxide superconducting coil and a power source installed in a room temperature atmosphere are operated via a current-carrying lead (installed in a cryogenic atmosphere) provided upright on the oxide superconducting coil.

【0003】図6は従来の酸化物超電導コイルの通電リ
ードの構成を示す斜視図である。酸化物超電導コイル2
01は、酸化物を構成要素とする帯状の超電導線材を渦
巻き状に巻回して構成され、その上部にはコイルに電流
を供給するための通電リード202a,202bのほ
か、測定用電圧端子203a,203b,203c,2
03dが立設されている。中心のパイプ204には冷媒
が通される。通電リード202の材料には純銀が用いら
れ、必要な導電性を確保している。
FIG. 6 is a perspective view showing the structure of a current-carrying lead of a conventional oxide superconducting coil. Oxide superconducting coil 2
01 is formed by spirally winding a band-shaped superconducting wire rod having an oxide as a constituent element, and on top of it, current-carrying leads 202a and 202b for supplying a current to the coil, a measurement voltage terminal 203a, 203b, 203c, 2
03d is erected. A refrigerant is passed through the central pipe 204. Pure silver is used as the material of the current-carrying leads 202 to ensure the necessary conductivity.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記したよう
に、通電リードに物理的に軟らかい純銀を用いると、強
度が十分でないため、電磁力によって変形が生じたり、
破断を招くことがある。また、純銀以外の強度のある金
属を用いた場合、強度は確保されても、電気伝導性が悪
くなり、抵抗率の増大によって通電時の発熱が増大す
る。このため、通電リードとしては用いることができな
い。
However, as described above, when physically soft pure silver is used for the current-carrying lead, since the strength is not sufficient, deformation may occur due to electromagnetic force,
May cause breakage. Further, when a metal having a strength other than pure silver is used, even if the strength is secured, the electrical conductivity is deteriorated, and the increase in resistivity increases heat generation during energization. Therefore, it cannot be used as a conducting lead.

【0005】そこで、本発明は、強度及び電気電導性に
優れる酸化物超電導コイルの通電リードを提供すること
を目的としている。
Therefore, an object of the present invention is to provide a current-carrying lead of an oxide superconducting coil which is excellent in strength and electric conductivity.

【0006】[0006]

【課題を解決するため手段】上記の目的を達成するため
に本発明は、酸化物超電導線材を同心状に巻回して形成
した酸化物超電導コイルに、電流供給を行うために前記
酸化物超電導コイルに接続される通電リードにおいて、
内部酸化によって生じた酸化物が分散強化する添加物を
銀に添加した銀合金によって構成されている。
In order to achieve the above-mentioned object, the present invention provides an oxide superconducting coil for supplying current to an oxide superconducting coil formed by concentrically winding an oxide superconducting wire. In the energization lead connected to
It is composed of a silver alloy in which an additive that disperses and strengthens the oxide generated by internal oxidation is added to silver.

【0007】この構成によれば、銀合金を用いた通電リ
ードは、電気伝導性を損なうことなく、純銀の欠点であ
った強度不足を改善することができる。この銀合金の組
成は、Ag−Mg−Ni、Ag−Mg、Ag−Ni、A
g−Mg−Zrのいずれかにすることができる。この構
成によれば、電気伝導性を確保しながら、機械的強度を
向上でき、通電リードに適した銀合金を得ることができ
る。
According to this structure, the current-carrying lead using the silver alloy can improve the lack of strength, which is a drawback of pure silver, without impairing the electrical conductivity. The composition of this silver alloy is Ag-Mg-Ni, Ag-Mg, Ag-Ni, A
It can be either g-Mg-Zr. According to this structure, the mechanical strength can be improved while ensuring the electrical conductivity, and the silver alloy suitable for the current-carrying lead can be obtained.

【0008】この場合、銀合金は、Ag以外の添加物が
0.01〜1.5at%にすることが望ましい。この構
成によれば、添加物の添加量を0.01〜1.5at%
の範囲に選定したときに機械的強度は数倍に向上させる
ことができる。
In this case, it is desirable that the silver alloy contains 0.01 to 1.5 at% of additives other than Ag. According to this configuration, the additive amount is 0.01 to 1.5 at%.
The mechanical strength can be improved several times when selected in the range.

【0009】[0009]

【発明の実施の形態】図1は本発明による酸化物超電導
コイルの通電リードの一実施の形態を示す斜視図であ
る。図1に示すように、酸化物超電導コイル101は、
帯状の超電導線材102を渦巻き状に巻回して作られ、
その両端には羽子板状の通電リード103a,103b
が立設するように接続されている。
1 is a perspective view showing an embodiment of a current-carrying lead of an oxide superconducting coil according to the present invention. As shown in FIG. 1, the oxide superconducting coil 101 is
Made by winding a band-shaped superconducting wire 102 in a spiral shape,
At both ends thereof, a battledore-shaped energizing leads 103a and 103b are provided.
Are connected to stand upright.

【0010】超電導線材102には、Bi(ビスマ
ス):Sr(ストロンチウム):Ca(カルシウム):
Cu(銅)=2:2:1:2の組成比による超電導体粉
末を溶液に溶かし、これを金属テープに塗布したものを
用いている。これを内径15mm、外径50mm、総巻
数70、線材総延長7mのシングルパンケーキコイルに
して酸化物超電導コイル101が製作される。
The superconducting wire 102 contains Bi (bismuth): Sr (strontium): Ca (calcium):
The superconductor powder having a composition ratio of Cu (copper) = 2: 2: 1: 2 is dissolved in a solution, and the solution is applied to a metal tape. The oxide superconducting coil 101 is manufactured by using this as a single pancake coil having an inner diameter of 15 mm, an outer diameter of 50 mm, a total number of turns of 70, and a total length of wire rod of 7 m.

【0011】また、通電リード103a,103bには
銀合金が用いられる。その組成は、例えばAg(銀)−
0.026at%Mg(マグネシウム)−0.01at
%Ni(ニッケル)であり、銀ろうを用いて酸化物超電
導コイル101に接続ならびに固定される。通電リード
103a,103bを接続した酸化物超電導コイル10
1は、最高温度885℃で部分溶融徐冷熱処理される。
この過程で、通電リード103a,103bは熱処理に
よって添加物の内部酸化により分散強化され、強度が向
上する。
A silver alloy is used for the current-carrying leads 103a and 103b. The composition is, for example, Ag (silver)-
0.026 at% Mg (magnesium) -0.01 at
% Ni (nickel), which is connected and fixed to the oxide superconducting coil 101 using silver solder. Oxide superconducting coil 10 in which current-carrying leads 103a and 103b are connected
No. 1 is partially melted and gradually cooled at a maximum temperature of 885 ° C.
In this process, the current-carrying leads 103a and 103b are heat-treated to be dispersed and strengthened by internal oxidation of the additive, and the strength is improved.

【0012】なお、通電リード103a,103bに用
いる銀合金の組成は、Ag−Mg−Niのほか、Ag−
Mg、Ag−Ni、Ag−Mg−Zr(Zr:ジルコニ
ウム)の組み合わせも用いることができる。ここで、通
電リード103a,103bの最適条件について検討す
る。純銀が変形する応力は40MPaであるため、合金
化しないと必要な強度を得ることはできない。そこで、
以下のような検討が必要になる。
The composition of the silver alloy used for the current-carrying leads 103a and 103b is Ag-Mg-Ni and Ag-Mg-Ni.
A combination of Mg, Ag-Ni, and Ag-Mg-Zr (Zr: zirconium) can also be used. Here, the optimum conditions of the conducting leads 103a and 103b will be examined. Since the stress for deforming pure silver is 40 MPa, the required strength cannot be obtained without alloying. Therefore,
The following examinations are necessary.

【0013】図2はAg−Mg−Ni合金の機械的強度
による添加濃度依存性を示す特性図である。縦軸は基材
が変形する応力(降伏応力)、横軸は添加物の添加量を
示している。ここに示す特性は、銀合金基材をテープ状
にし、これに歪みゲージを装着して引っ張り試験を行っ
た結果を示している。添加物の添加量に応じて機械的強
度は向上するが、1.5at%の添加を越えると、大き
な向上はなくなる。
FIG. 2 is a characteristic diagram showing the dependence of the mechanical strength of an Ag-Mg-Ni alloy on the added concentration. The vertical axis represents the stress by which the base material is deformed (yield stress), and the horizontal axis represents the addition amount of the additive. The characteristics shown here indicate the results of a tensile test in which a silver alloy base material was formed into a tape, and a strain gauge was attached to the tape. The mechanical strength is improved depending on the amount of the additive added, but when the addition amount exceeds 1.5 at%, the mechanical strength is not significantly improved.

【0014】図3は極低温部(77K)の電気伝導性を
示す特性図である。図から明らかなように、添加物の添
加量を増やすにつれて電気伝導性は低下するが、1.5
at%までの添加では十分な実用レベルであると言え
る。これらのことから、機械的強度が80MPaを越え
る0.01at%から機械的強度のあまり上がらなくな
る1.5at%の添加量が最適であると言える。
FIG. 3 is a characteristic diagram showing the electrical conductivity of the cryogenic portion (77K). As is clear from the figure, the electrical conductivity decreases as the amount of the additive added increases, but 1.5
It can be said that the addition of up to at% is a sufficient practical level. From these, it can be said that the optimum addition amount is from 0.01 at% where the mechanical strength exceeds 80 MPa to 1.5 at% at which the mechanical strength does not increase so much.

【0015】図4は本発明の他の実施の形態を示す斜視
図である。図1に示した構成の複数の酸化物超電導コイ
ル101a,101b,101c,101dが垂直方向
に同軸状に配設され、コイル相互間はコイル間通電リー
ド104によって接続され、最下段の通電リード105
(電源側)は通電リード103の長さを延長した形状に
なっている。この構成においても図1の場合と同一の効
果が得られる。
FIG. 4 is a perspective view showing another embodiment of the present invention. A plurality of oxide superconducting coils 101a, 101b, 101c, 101d having the configuration shown in FIG. 1 are arranged coaxially in the vertical direction, and the coils are connected by inter-coil conducting leads 104, and the lowest conducting leads 105 are provided.
The (power supply side) has a shape in which the length of the energization lead 103 is extended. With this configuration, the same effect as in the case of FIG. 1 can be obtained.

【0016】[0016]

【実施例】本発明者らは、図1の構成における通電リー
ド101a,101bについて、その実験を行った。こ
こでは、通電リードの大きさを幅15mm、厚さ0.3
mm、長さ70mmにし、これを4.2K、12T中で
通電した。この結果、リードの発熱量は、純銀の1.2
〜1.3倍程度であり、機械的強度が2〜3倍に向上
し、測定後のリードの変形、破断は見られなかった。
EXAMPLES The present inventors conducted experiments on the current-carrying leads 101a and 101b in the configuration of FIG. Here, the size of the energizing lead is 15 mm in width and 0.3 in thickness.
mm, length 70 mm, and this was energized in 4.2K, 12T. As a result, the calorific value of the lead is 1.2 for pure silver.
.About.1.3 times, the mechanical strength was improved to 2 to 3 times, and the lead was not deformed or broken after the measurement.

【0017】また、本発明者らは、Ag−0.05at
%Mgの材料についても、上記と同様の手法及び条件に
より検討を行ったが、この場合も通電リードに変形や破
断は見られなかった。更に、本発明者らは、Ag−0.
022at%Mg−0.015at%Zrについても、
上記と同様の手法及び条件により検討を行ったが、この
場合も通電リードに変形や破断は見られなかった。
Further, the present inventors have found that Ag-0.05 at.
% Mg material was also examined by the same method and conditions as above, but in this case as well, no deformation or breakage was observed in the current-carrying lead. Furthermore, the present inventors have found that Ag-0.
Also for 022 at% Mg-0.015 at% Zr,
The same method and conditions as described above were examined, but in this case as well, no deformation or breakage was observed in the current-carrying lead.

【0018】更に、本発明者らは、Ag−0.05at
%Niの材料についても、上記と同様の手法及び条件に
より検討を行ったが、この場合も通電リードに変形や破
断は見られなかった。なお、本発明は図1及び図4に示
した通電リードのほか、図5に示すようなサンプルホル
ダに適用することもできる。このサンプルホルダは、平
行に配設された2本の電流リード106a,106b、
この電流リード106a,106bの上部を固定するほ
か、軸体107aを備えた円板状のフランジ107、軸
体107aに支持されながら電流リード106a,10
6bの途中を固定するサポータ108a,108bの各
々を備えて構成される。
Furthermore, the present inventors have found that Ag-0.05 at.
% Ni material was also examined by the same method and conditions as above, but in this case as well, no deformation or breakage was observed in the current-carrying lead. The present invention can be applied not only to the current-carrying leads shown in FIGS. 1 and 4 but also to the sample holder shown in FIG. This sample holder has two current leads 106a, 106b arranged in parallel,
In addition to fixing the upper portions of the current leads 106a and 106b, the current leads 106a and 10b are supported by the disc-shaped flange 107 having the shaft body 107a and the shaft body 107a.
Each of the supporters 108a and 108b for fixing 6b in the middle is provided.

【0019】このような構成にあって、電流リード10
6a,106bに対して本発明による銀合金を用いるこ
とができる。なお、これより得られる効果は、前記した
通りである。
In such a structure, the current lead 10
The silver alloy according to the present invention can be used for 6a and 106b. The effect obtained from this is as described above.

【0020】[0020]

【発明の効果】以上より明らかな如く、本発明によれ
ば、通電リードの材料に銀合金を用いるようにしたの
で、電気伝導性を損なうことなく、純銀の欠点であった
強度不足を改善することができる。
As is apparent from the above, according to the present invention, since the silver alloy is used as the material of the current-carrying lead, the lack of strength, which is the defect of pure silver, is improved without impairing the electrical conductivity. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による酸化物超電導コイルの通電リード
の一実施の形態を示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a current-carrying lead of an oxide superconducting coil according to the present invention.

【図2】本発明に用いられる銀合金Ag−Mg−Niの
機械的強度による添加濃度依存性を示す特性図である。
FIG. 2 is a characteristic diagram showing the addition concentration dependence of the mechanical strength of the silver alloy Ag—Mg—Ni used in the present invention.

【図3】極低温部(77K)の電気伝導性を示し特性図
である。
FIG. 3 is a characteristic diagram showing electric conductivity of a cryogenic portion (77K).

【図4】本発明の他の実施の形態を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the present invention.

【図5】本発明の適用例を示すサンプルホルダの構成を
示す斜視図である。
FIG. 5 is a perspective view showing a configuration of a sample holder showing an application example of the present invention.

【図6】従来の酸化物超電導コイルの通電リードの構成
を示す斜視図である。
FIG. 6 is a perspective view showing a configuration of a current-carrying lead of a conventional oxide superconducting coil.

【符号の説明】[Explanation of symbols]

101 酸化物超電導コイル 102 超電導線材 103a,103b,105 通電リード 104 コイル間通電リード 101 oxide superconducting coil 102 superconducting wire 103a, 103b, 105 energizing lead 104 energizing lead between coils

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化物超電導線材を同心状に巻回して形成
した酸化物超電導コイルに、電流供給を行うために前記
酸化物超電導コイルに接続される通電リードにおいて、 内部酸化によって生じた酸化物が分散強化する添加物を
銀に添加した銀合金によって構成されたことを特徴とす
る酸化物超電導コイルの通電リード。
1. An oxide produced by internal oxidation in a current-carrying lead connected to an oxide superconducting coil for supplying current to the oxide superconducting coil formed by concentrically winding an oxide superconducting wire. A current-carrying lead of an oxide superconducting coil, characterized in that the current-carrying lead is composed of a silver alloy in which a dispersion-strengthening additive is added to silver.
【請求項2】前記銀合金は、Ag−Mg−Ni、Ag−
Mg、Ag−Ni、Ag−Mg−Zrのいずれかである
ことを特徴とする請求項1記載の酸化物超電導コイルの
通電リード。
2. The silver alloy is Ag-Mg-Ni, Ag-
The current-carrying lead for an oxide superconducting coil according to claim 1, which is one of Mg, Ag-Ni, and Ag-Mg-Zr.
【請求項3】前記銀合金は、Ag以外の添加物が0.0
1〜1.5at%であることを特徴とする請求項2記載
の酸化物超電導コイルの通電リード。
3. The silver alloy contains 0.0% or more of additives other than Ag.
The current-carrying lead of the oxide superconducting coil according to claim 2, characterized in that it is 1 to 1.5 at%.
JP32565395A 1995-12-14 1995-12-14 Current-carrying lead for oxide superconductive coil Pending JPH09167705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32565395A JPH09167705A (en) 1995-12-14 1995-12-14 Current-carrying lead for oxide superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32565395A JPH09167705A (en) 1995-12-14 1995-12-14 Current-carrying lead for oxide superconductive coil

Publications (1)

Publication Number Publication Date
JPH09167705A true JPH09167705A (en) 1997-06-24

Family

ID=18179226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32565395A Pending JPH09167705A (en) 1995-12-14 1995-12-14 Current-carrying lead for oxide superconductive coil

Country Status (1)

Country Link
JP (1) JPH09167705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140930A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140930A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP4697128B2 (en) * 2006-11-30 2011-06-08 住友電気工業株式会社 Superconducting coil

Similar Documents

Publication Publication Date Title
KR102205386B1 (en) Diffusion barrier for metallic superconducting wires
US20100245005A1 (en) Superconducting wire rod, persistent current switch, and superconducting magnet
JPH0377609B2 (en)
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JPH09167705A (en) Current-carrying lead for oxide superconductive coil
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JP2001102105A (en) Superconductive connection method of superconductive wires and superconductive connection structure
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
EP0437614A1 (en) Superconductive wire
US4215465A (en) Method of making V3 Ga superconductors
JPH0251807A (en) Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
JP2001283660A (en) Connection structure for superconducting wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
US20220051833A1 (en) Diffusion barriers for metallic superconducting wires
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
Nb3Sn MS Walker, JM Cutro, RE Wilcox, BA Zeitlin, A. Petrovich, and GM Ozeryansky Intermagnetics General Corporation, Guilderland, New York
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JPH09232131A (en) Winding spacer for oxide superconductor wire
JPS63164115A (en) Nb3sn compound superconductive wire
JPS63164116A (en) Nb3sn compound superconductive wire
JP2517867B2 (en) V3 Si superconducting ultra-fine multi-core wire manufacturing method
JPH06203654A (en) Superconducting wire and its manufacture
JP2003115225A (en) Oxide superconductive coil and its manufacturing method
Walker et al. Performance of Multifilament Nb3Sn Conductors for High-Field Applications Prepared by Competing Processes