JP2016163026A - High-temperature superconducting coil - Google Patents

High-temperature superconducting coil Download PDF

Info

Publication number
JP2016163026A
JP2016163026A JP2015043799A JP2015043799A JP2016163026A JP 2016163026 A JP2016163026 A JP 2016163026A JP 2015043799 A JP2015043799 A JP 2015043799A JP 2015043799 A JP2015043799 A JP 2015043799A JP 2016163026 A JP2016163026 A JP 2016163026A
Authority
JP
Japan
Prior art keywords
wire
superconducting
temperature superconducting
thin film
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015043799A
Other languages
Japanese (ja)
Other versions
JP6548916B2 (en
Inventor
寛史 宮崎
Hiroshi Miyazaki
寛史 宮崎
泰造 戸坂
Taizo Tosaka
泰造 戸坂
貞憲 岩井
Sadanori Iwai
貞憲 岩井
賢司 田崎
Kenji Tazaki
賢司 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015043799A priority Critical patent/JP6548916B2/en
Publication of JP2016163026A publication Critical patent/JP2016163026A/en
Application granted granted Critical
Publication of JP6548916B2 publication Critical patent/JP6548916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature superconducting coil capable of improving anti-deterioration performance of a thin film tape wire by means of a metal plate provided to the outermost periphery of a pancake coil.SOLUTION: A superconducting coil 10 includes: a pancake coil 11 which is constituted of a laminate of a wound thin film superconducting tape wire including at least superconducting layer; a flexible conductive reinforcement wire 13 which is stuck on the outer surface 12 at the outermost periphery of the pancake coil 11; and a metal plate 14 which is stuck being bridged across two neighboring reinforcement wires 13 in the plural pancake coils 11 piled up in a winding axial direction A.SELECTED DRAWING: Figure 3

Description

本発明の実施形態は、積層された薄層から構成されてテープ状に成形された高温超電導線材を用いた高温超電導コイルに関する。   Embodiments of the present invention relate to a high-temperature superconducting coil using a high-temperature superconducting wire composed of laminated thin layers and formed into a tape shape.

近年、レアアース(RE:Rear Earth)を含む(RE)Ba2Cu37を用いたREBCO線材を代表とする高温超電導線材を用いた高温超電導コイルの研究が盛んにされている。 In recent years, research on high-temperature superconducting coils using a high-temperature superconducting wire typified by REBCO wire using (RE) Ba 2 Cu 3 O 7 including rare earth (RE) has been actively conducted.

特に、厚さ百μm程度の基板上に、複数の種類の層を形成して作製される高温超電導線材(以下、「薄膜テープ線」という)は、高磁場下での電流容量が大きいという特性がある。
よって、高磁場を発生させるために必要な高い電流密度および高い許容応力を有する高温超電導コイルの実現が期待されている。
実用される高温超電導コイルの形成方法は、薄膜テープ線の巻回方法の違いによっていくつかに大別することができる。
In particular, a high temperature superconducting wire (hereinafter referred to as “thin film tape wire”) produced by forming a plurality of types of layers on a substrate having a thickness of about 100 μm has a large current capacity under a high magnetic field. There is.
Therefore, realization of a high-temperature superconducting coil having a high current density and a high allowable stress necessary for generating a high magnetic field is expected.
The methods for forming high-temperature superconducting coils that are put into practical use can be broadly classified into several groups depending on the method of winding the thin film tape wire.

これらの形成方法で代表的なものに、薄膜テープ線を同心円状に巻回したパンケーキコイルを巻回軸方向に複数積み重ねて1つの高温超電導コイルにする方法がある。
隣接するパンケーキコイルは、その最内周または最外周のいずれかにおいて、段違いに金属板が架設されて、電気的に接続される。
この金属板によって積み重ねられた全てのパンケーキコイルは、超電導電流が通流する1つの経路を形成する。
A typical example of these forming methods is a method of stacking a plurality of pancake coils in which thin film tape wires are concentrically wound in the winding axis direction to form one high-temperature superconducting coil.
Adjacent pancake coils are electrically connected with either one of the innermost circumference or the outermost circumference with a metal plate installed in a stepwise manner.
All pancake coils stacked by this metal plate form one path through which the superconducting current flows.

薄膜テープ線は、また、テープ長手方向に高い外力をかけても超電導特性が失われないという特徴もある。
一方、この薄膜テープ線は、上述した複数の層の積層方向にかかる外力に対しては脆弱であり、微小な外力で容易に超電導特性を劣化させてしまう。
例えば、薄膜テープ線に局部的に曲げ応力がかかった場合、容易に層の剥離や層の破断が発生して、超電導特性が低下する。
従来から、薄膜テープ線の始端に接続する電極を巻枠に固定するなどして、薄膜テープ線が不要に歪むことを防止する工夫がなされている(例えば、特許文献1参照)。
The thin film tape wire is also characterized in that the superconducting properties are not lost even when a high external force is applied in the longitudinal direction of the tape.
On the other hand, this thin film tape wire is fragile to the external force applied in the stacking direction of the plurality of layers described above, and easily deteriorates the superconducting characteristics with a small external force.
For example, when a bending stress is locally applied to the thin film tape wire, peeling of the layer or breaking of the layer easily occurs, and the superconducting characteristics are deteriorated.
Conventionally, a device has been devised to prevent the thin film tape wire from being unnecessarily distorted by fixing an electrode connected to the starting end of the thin film tape wire to the reel (for example, see Patent Document 1).

特開2010−98267号公報JP 2010-98267 A

しかしながら、薄膜テープ線に金属板を架設する場合、金属板の周縁周辺の薄膜テープ線が劣化するという課題があった。
薄膜テープ線にかかる応力は、金属板が接合されている部分と接合されていない部分との境界である金属板の周縁で不連続になる。
この場合、薄膜テープ線のうちこの周縁の近傍が微小に変形するなどして、応力が周縁周辺に集中する。
However, when a metal plate is installed on the thin film tape wire, there is a problem that the thin film tape wire around the periphery of the metal plate deteriorates.
The stress applied to the thin film tape line becomes discontinuous at the periphery of the metal plate which is the boundary between the portion where the metal plate is joined and the portion where the metal plate is not joined.
In this case, the stress is concentrated around the periphery because the vicinity of the periphery of the thin film tape line is slightly deformed.

上述したように、薄膜テープ線は、層の積層方向の応力に脆弱であるので、この応力によって薄膜テープ線の層の剥離や破断が発生するおそれがある。
つまり、薄膜テープ線に金属板が架設されることで、金属板をはんだ付けする際の熱応力または冷却時の応力集中等により、金属板の周縁周辺の薄膜テープ線が劣化する可能性がある。
このような劣化は、特に積層体の最上層または最下層に貼り合される安定化層が薄く形成されている場合に顕著となる。
As described above, since the thin film tape wire is vulnerable to the stress in the layer stacking direction, the stress may cause the thin film tape wire to peel off or break.
In other words, when a metal plate is installed on the thin film tape wire, the thin film tape wire around the periphery of the metal plate may be deteriorated due to thermal stress when soldering the metal plate or stress concentration during cooling. .
Such deterioration becomes remarkable particularly when the stabilization layer bonded to the uppermost layer or the lowermost layer of the laminate is formed thin.

本発明はこのような事情を考慮してなされたもので、パンケーキコイルの最外周における金属板の架設による薄膜テープ線の耐劣化性能を向上した高温超電導コイルを提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a high-temperature superconducting coil having improved deterioration resistance performance of a thin film tape wire by installing a metal plate on the outermost periphery of the pancake coil.

本実施形態にかかる高温超電導コイルは、少なくとも高温超電導層を含む積層体で構成される薄膜超電導テープ線が巻回されてなるパンケーキコイルと、前記パンケーキコイルの最外周の外表面に貼り合される可撓性を有する導体の補強線材と、巻回軸方向に積み重ねられた複数の前記パンケーキコイルのうち隣接する2つにそれぞれ貼り合された前記補強線材に架設される金属板と、を備えるものである。   The high-temperature superconducting coil according to the present embodiment is bonded to a pancake coil formed by winding a thin film superconducting tape wire composed of a laminate including at least a high-temperature superconducting layer, and an outermost surface of the pancake coil. A flexible conductor reinforcing wire, and a metal plate laid on the reinforcing wire bonded to two adjacent pancake coils stacked in the winding axis direction, and Is provided.

本発明により、パンケーキコイルの最外周における金属板の架設による薄膜テープ線の耐劣化性能を向上した高温超電導コイルが提供される。   According to the present invention, there is provided a high temperature superconducting coil having improved deterioration resistance performance of a thin film tape wire by installing a metal plate on the outermost periphery of the pancake coil.

一般的な薄膜テープ線の構成斜視図。The composition perspective view of a general thin film tape line. 第1実施形態にかかる高温超電導コイルの断面斜視図。The cross-sectional perspective view of the high temperature superconducting coil concerning 1st Embodiment. 第1実施形態にかかる高温超電導コイルに用いられる積み重ねられたパンケーキコイルの斜視図。The perspective view of the stacked pancake coil used for the high temperature superconducting coil concerning 1st Embodiment. (A)は巻回軸方向からみた補強線材の好適な例を示す側面図、(B)は巻回軸方向からみた補強線材の変形例を示す側面図。(A) is a side view which shows the suitable example of the reinforcing wire seen from the winding axis direction, (B) is a side view which shows the modification of the reinforcing wire seen from the winding axis direction. (A)は径方向からみた補強線材の形状の例を示す正面図、(B)は径方向からみた補強線材の形状の変形例を示す正面図、(C)は径方向からみた補強線材の形状の変形例を示す正面図、(D)は径方向からみた補強線材の形状の変形例を示す正面図。(A) is a front view showing an example of the shape of the reinforcing wire seen from the radial direction, (B) is a front view showing a modification of the shape of the reinforcing wire seen from the radial direction, and (C) is a diagram of the reinforcing wire seen from the radial direction. The front view which shows the modification of a shape, (D) is a front view which shows the modification of the shape of the reinforcing wire seen from radial direction. 第1実施形態にかかる高温超電導コイルに用いられる積み重ねられたパンケーキコイルの変形例の斜視図。The perspective view of the modification of the stacked pancake coil used for the high temperature superconducting coil concerning 1st Embodiment. 第2実施形態にかかる高温超電導コイルの金属板の架設箇所を巻回軸方向からみた拡大断面図。The expanded sectional view which looked at the construction location of the metal plate of the high temperature superconducting coil concerning 2nd Embodiment from the winding axis direction. 第2実施形態において補強線材として用いられるビスマス系超電導線材の断面斜視図。The cross-sectional perspective view of the bismuth-type superconducting wire used as a reinforcing wire in 2nd Embodiment. 第3実施形態にかかる高温超電導コイルの金属板の架設箇所を巻回軸方向からみた拡大断面図。The expanded sectional view which looked at the installation location of the metal plate of the high temperature superconducting coil concerning 3rd Embodiment from the winding axis direction. 第3実施形態にかかる高温超電導コイルで用いられる薄膜テープ線の変形例の断面斜視図。The cross-sectional perspective view of the modification of the thin film tape wire used with the high temperature superconducting coil concerning 3rd Embodiment. 第4実施形態にかかる高温超電導コイルを構成するパンケーキコイルの上面断面図。The upper surface sectional view of the pancake coil which constitutes the high temperature superconducting coil concerning a 4th embodiment.

以下、本発明の実施形態を添付図面に基づいて説明する。
まず、層構造をとるテープ形状の高温超電導線材20(以下、「薄膜テープ線20」という)の構成を、図1を用いて説明する。
図1は、一般的な薄膜テープ線20の構成斜視図である。
薄膜テープ線20は、例えばRE酸化物からなる高温超電導層25(以下、「超電導層25」という)を含むREBCO線材などの線材である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
First, the structure of a tape-shaped high-temperature superconducting wire 20 having a layer structure (hereinafter referred to as “thin film tape wire 20”) will be described with reference to FIG.
FIG. 1 is a structural perspective view of a general thin film tape wire 20.
The thin film tape wire 20 is a wire material such as a REBCO wire material including a high-temperature superconducting layer 25 made of RE oxide (hereinafter referred to as “superconducting layer 25”).

薄膜テープ線20は、例えば、ニッケル基合金、ステンレスまたは銅などの高強度の金属材質である基板22と、基板22の上に形成されて基板22と超電導層25の熱収縮の際に起因する熱歪みを防止する中間層24と、中間層24を基板22の表面に配向させるマグネシウムなどからなる配向層23と、中間層24の上に形成される酸化物でできた超電導層25と、銀、金または白金などで組成され、超電導層25に含まれる酸素が超電導層25から拡散することを防止して超電導層25を保護する保護層26と、銅またはアルミニウムなどの良電導性金属であり超電導層25への過剰超電導電流の迂回経路となってクエンチ現象を防止する安定化層21と、から構成される。
ただし、薄膜テープ線20を構成する各層の種類および数はこれに限定されるものではなく、必要に応じて多くても少なくてもよい。
The thin film tape wire 20 is caused by, for example, a substrate 22 made of a high-strength metal material such as a nickel base alloy, stainless steel, or copper, and a thermal contraction of the substrate 22 and the superconducting layer 25 formed on the substrate 22. An intermediate layer 24 for preventing thermal distortion, an alignment layer 23 made of magnesium or the like for aligning the intermediate layer 24 on the surface of the substrate 22, a superconducting layer 25 made of an oxide formed on the intermediate layer 24, silver And a protective layer 26 that protects the superconducting layer 25 by preventing oxygen contained in the superconducting layer 25 from diffusing from the superconducting layer 25, and a highly conductive metal such as copper or aluminum. And a stabilizing layer 21 that serves as a detour path for excess superconducting current to the superconducting layer 25 and prevents the quenching phenomenon.
However, the kind and number of each layer which comprise the thin film tape wire | line 20 are not limited to this, You may increase or decrease as needed.

(第1実施形態)
図2は、第1実施形態にかかる高温超電導コイル10(以下、単に「超電導コイル10」という)の断面斜視図である。
図3は、第1実施形態にかかる超電導コイル10に用いられる積み重ねられたパンケーキコイル11の斜視図である。
なお、図2では、図3に示される巻枠19は省略している。
(First embodiment)
FIG. 2 is a cross-sectional perspective view of the high-temperature superconducting coil 10 (hereinafter simply referred to as “superconducting coil 10”) according to the first embodiment.
FIG. 3 is a perspective view of the stacked pancake coils 11 used in the superconducting coil 10 according to the first embodiment.
In FIG. 2, the reel 19 shown in FIG. 3 is omitted.

第1実施形態にかかる超電導コイル10は、図1〜図3に示されるように、少なくとも超電導層25を含む積層体40で構成される薄膜超電導テープ線20(薄膜テープ線20)が巻回されてなるパンケーキコイル11と、パンケーキコイル11の最外周の外表面12に貼り合される可撓性を有する導体の補強線材13と、巻回軸方向Aに積み重ねられた複数のパンケーキコイル11のうち隣接する2つにそれぞれ貼り合された補強線材13に架設される金属板14と、を備える。   As shown in FIGS. 1 to 3, the superconducting coil 10 according to the first embodiment is wound with a thin film superconducting tape wire 20 (thin film tape wire 20) composed of a laminate 40 including at least the superconducting layer 25. A pancake coil 11, a flexible conductor reinforcing wire 13 bonded to the outermost outer surface 12 of the pancake coil 11, and a plurality of pancake coils stacked in the winding axis direction A 11, and a metal plate 14 installed on the reinforcing wire 13 bonded to two adjacent ones.

パンケーキコイル11は、巻回軸方向Aに絶縁体(図示せず)などで絶縁されて複数積み重ねられる。
積み重ねられたパンケーキコイル11は、通常、巻回軸方向Aの両端からフランジ16で固定される。
フランジ16に接触するパンケーキコイル11には口出し電極17が接続されて、パンケーキコイル11を通流する超電導電流Iを流入または流出させる。
A plurality of pancake coils 11 are insulated in the winding axis direction A by an insulator (not shown) or the like and stacked.
The stacked pancake coils 11 are usually fixed by flanges 16 from both ends in the winding axis direction A.
A lead electrode 17 is connected to the pancake coil 11 in contact with the flange 16, and the superconducting current I flowing through the pancake coil 11 flows in or out.

隣接するパンケーキコイル11は、その最内周または最外周のいずれかにおいて、段違いに金属板14が架設されて、電気的に接続される。
金属板14は、例えばインジウム、銅、銀または金やこれらの合金で好適に構成される金属である。
この金属板14によって、積み重ねられた全てのパンケーキコイル11は、超電導電流Iが通流する1つの経路を形成する。
Adjacent pancake coils 11 are electrically connected with either one of the innermost circumference or the outermost circumference with a metal plate 14 installed in a stepwise manner.
The metal plate 14 is a metal suitably composed of, for example, indium, copper, silver, gold, or an alloy thereof.
With this metal plate 14, all the stacked pancake coils 11 form one path through which the superconducting current I flows.

つまり、例えば、パンケーキコイル11の最内周に接続された口出し電極17から流入した超電導電流Iは、このパンケーキコイル11を内周から外周に向けて周回しながら通流する。
このパンケーキコイル11の最外周に到達した超電導電流Iは、金属板14によって隣接するパンケーキコイル11の最外周に流入する。
パンケーキコイル11に流入した超電導電流Iは、外周から内周に向けて周回しながら通流する。
パンケーキコイル11の最内周に到達した超電導電流Iは、最内周の内側面18に設けられた金属板14からさらに隣接するパンケーキコイル11に流入する。
That is, for example, the superconducting current I flowing from the lead electrode 17 connected to the innermost periphery of the pancake coil 11 flows while circulating the pancake coil 11 from the inner periphery toward the outer periphery.
The superconducting current I that has reached the outermost periphery of the pancake coil 11 flows into the outermost periphery of the adjacent pancake coil 11 by the metal plate 14.
The superconducting current I flowing into the pancake coil 11 flows while circulating from the outer periphery toward the inner periphery.
The superconducting current I that has reached the innermost periphery of the pancake coil 11 flows into the adjacent pancake coil 11 from the metal plate 14 provided on the inner surface 18 of the innermost periphery.

この金属板14は、薄膜テープ線20の外表面12に直接接合されるのではなく、外表面12のそれぞれに半田などで貼り合わせられた補強線材13に接合される。
補強線材13は、例えば、金属板14と同様に、インジウム、銅、銀、金またはこれらの合金などで好適に構成される線材である。
補強線材13は薄く可撓性を有するので、薄膜テープ線20の変形とともに変形する層が追加されることになる。
つまり、補強線材13は、通常外表面12になる安定化層21のうち、金属板14の架設される部分を実質的に厚くして補強する効果を有する。
The metal plate 14 is not directly bonded to the outer surface 12 of the thin film tape wire 20 but is bonded to the reinforcing wire 13 bonded to the outer surface 12 with solder or the like.
The reinforcing wire 13 is a wire suitably formed of, for example, indium, copper, silver, gold, or an alloy thereof like the metal plate 14.
Since the reinforcing wire 13 is thin and flexible, a layer that is deformed with the deformation of the thin film tape wire 20 is added.
That is, the reinforcing wire 13 has an effect of reinforcing the portion of the stabilization layer 21 that is normally the outer surface 12 by thickening the portion where the metal plate 14 is laid.

この補強線材13の線材幅は、薄膜テープ線20の線材幅と同一または僅かに狭く調整し、薄膜テープ線20からはみ出させないのが望ましい。
薄膜テープ線20からはみ出した部分による薄膜テープ線20への局所的な応力の発生、および隣接するパンケーキコイル11への短絡を防止するためである。
なお、薄膜テープ線20の線材幅とは、薄膜テープ線20をパンケーキコイル11にしたときの巻回軸方向Aの長さを指す。
同様に、補強線材13の線材幅とは、補強線材13をパンケーキコイル11の最外周に沿って貼り合わせたときの巻回軸方向Aの長さを指す。
The wire width of the reinforcing wire 13 is preferably adjusted to be the same as or slightly narrower than the wire width of the thin film tape wire 20 so as not to protrude from the thin film tape wire 20.
This is to prevent local stress from being generated on the thin film tape wire 20 due to the portion protruding from the thin film tape wire 20 and short circuit to the adjacent pancake coil 11.
The wire width of the thin film tape wire 20 refers to the length in the winding axis direction A when the thin film tape wire 20 is used as the pancake coil 11.
Similarly, the wire width of the reinforcing wire 13 refers to the length in the winding axis direction A when the reinforcing wire 13 is bonded along the outermost periphery of the pancake coil 11.

一方、補強線材13の周方向Bの長さは、金属板14の周方向Bの長さよりも長く調整される。
補強線材13の周方向Bの長さを長くすることで、金属板14を直接薄膜テープ線20に接合するよりも、広い接触面積で貼り合される。
接触面積を広くすることで、接続抵抗を小さくするとともに、後述するように接続部分における薄膜テープ線20にかかる応力を分散させる。
補強線材13は、外表面12を一周被覆してもよい。
On the other hand, the length of the reinforcing wire 13 in the circumferential direction B is adjusted to be longer than the length of the metal plate 14 in the circumferential direction B.
By extending the length of the reinforcing wire 13 in the circumferential direction B, the metal plate 14 is bonded with a wider contact area than directly joining the thin film tape wire 20.
By increasing the contact area, the connection resistance is reduced, and the stress applied to the thin film tape wire 20 at the connection portion is dispersed as will be described later.
The reinforcing wire 13 may cover the outer surface 12 once.

ところで、前述したように、薄膜テープ線20に直接金属板14を設けた場合、金属板14の周辺にかかる外力は、金属板14の周縁に偏在した応力を発生させる。
このような応力の偏在は、補強線材13の端辺27でも同様に発生し得る。
しかし、超電導コイル10で用いられる補強線材13は、径方向Cの厚さが金属板14と比較して薄い。
By the way, as described above, when the metal plate 14 is directly provided on the thin film tape wire 20, the external force applied to the periphery of the metal plate 14 generates stress unevenly distributed on the periphery of the metal plate 14.
Such uneven distribution of stress can occur in the end side 27 of the reinforcing wire 13 as well.
However, the reinforcing wire 13 used in the superconducting coil 10 is thinner in the radial direction C than the metal plate 14.

補強線材13を薄くすることで、薄膜テープ線20の上に設けられた補強線材13による不連続な段差が小さくなり、薄膜テープ線20と補強線材13との接続形状が滑らかになる。
接続形状が滑らかになることで、端辺27の周辺への応力の集中を防止することができる。
By making the reinforcing wire 13 thinner, the discontinuous steps due to the reinforcing wire 13 provided on the thin film tape wire 20 are reduced, and the connection shape between the thin film tape wire 20 and the reinforcing wire 13 becomes smooth.
By smoothing the connection shape, stress concentration around the edge 27 can be prevented.

また、補強線材13は、可撓性を有するので、薄膜テープ線20の変形とともに変形し、金属板14を直接接合した場合ほどには補強線材13が薄膜テープ線20を拘束しない。
よって、補強線材13の端辺27による薄膜テープ線20の劣化は、金属板14を直接接合させたときよりも大幅に軽減される。
Further, since the reinforcing wire 13 has flexibility, it deforms with the deformation of the thin film tape wire 20 and the reinforcing wire 13 does not restrain the thin film tape wire 20 as much as when the metal plate 14 is directly joined.
Therefore, the deterioration of the thin film tape wire 20 due to the end side 27 of the reinforcing wire 13 is significantly reduced as compared with the case where the metal plate 14 is directly joined.

次に、図4〜図5を用いて、補強線材13の好適な例について説明する。
図4(A)は、巻回軸方向Aからみた補強線材13の好適な例を示す側面図である。
図4(A)に示されるように、補強線材13の端辺27に、パンケーキコイル11の径方向Cに対してテーパ28を設けることで、さらに連続的で滑らかな接続形状にすることができる。
また、図4(B)は、巻回軸方向Aからみた補強線材13の変形例を示す側面図である。
図4(B)に示されるように、外表面12と接触する補強線材13が、最大表面積を有する複数の補強線材13を積層してテーパ28として形成してもよい。
Next, a suitable example of the reinforcing wire 13 will be described with reference to FIGS.
FIG. 4A is a side view showing a preferred example of the reinforcing wire 13 viewed from the winding axis direction A. FIG.
As shown in FIG. 4A, by providing a taper 28 on the end side 27 of the reinforcing wire 13 with respect to the radial direction C of the pancake coil 11, a more continuous and smooth connection shape can be obtained. it can.
FIG. 4B is a side view showing a modification of the reinforcing wire 13 viewed from the winding axis direction A. FIG.
As shown in FIG. 4B, the reinforcing wire 13 in contact with the outer surface 12 may be formed as a taper 28 by laminating a plurality of reinforcing wires 13 having the maximum surface area.

また、図5(A)〜図5(D)は、いずれも径方向Cからみた補強線材13の形状の例を示す正面図である。
補強線材13の端辺27は、できるだけ長くして端辺27の周辺にかかる応力を分散させるのが望ましい。
そこで、図5(A)に示されるように、端辺27に、巻回軸方向Aからの角度θが有限となるような勾配をつけて端辺27の長さを長くするのが望ましい。
5A to 5D are front views showing examples of the shape of the reinforcing wire 13 viewed from the radial direction C. FIG.
It is desirable that the end side 27 of the reinforcing wire 13 be as long as possible to disperse the stress applied to the periphery of the end side 27.
Therefore, as shown in FIG. 5A, it is desirable to increase the length of the end side 27 by providing the end side 27 with a gradient that makes the angle θ from the winding axis direction A finite.

また、図5(B)のように、端辺27の中央部を突出させて周方向Bに最長となるようにすることでも、端辺27の長さを長くすることができる。
さらに、図5(C)のように、端辺27は曲率を有していてもよい。
なお、図5(D)に示されるように、巻回軸方向Aに対して角度θをもたずに切断されても当然よい。
Further, as shown in FIG. 5B, the length of the end side 27 can be increased by projecting the central portion of the end side 27 so as to be the longest in the circumferential direction B.
Further, as shown in FIG. 5C, the end side 27 may have a curvature.
In addition, as shown in FIG. 5D, it may naturally be cut without an angle θ with respect to the winding axis direction A.

また、図6は、第1実施形態にかかる超電導コイル10に用いられる積み重ねられたパンケーキコイル11の変形例の斜視図である。
補強線材13のうち、端辺27の形状の工夫や接合面積の考慮による保護が特に必要になるのは、超電導電流Iの通流経路になる部分である。
FIG. 6 is a perspective view of a modified example of the stacked pancake coils 11 used in the superconducting coil 10 according to the first embodiment.
Of the reinforcing wire 13, the part that becomes the flow path of the superconducting current I is particularly required to be protected by considering the shape of the end 27 and considering the bonding area.

例えば図6のように、図中上段の第1パンケーキコイル11a(11)に設けられた第1補強線材13a(13)を超電導電流Iの進行方向に対して、金属板14の前側部分および後側部分をそれぞれ第1区間Eおよび第2区間Fに区分けして考える。
同様に、第1パンケーキコイル11aと金属板14で接続された第2パンケーキコイル11b(11)に設けられた第2補強線材13b(13)を金属板14の前側部分および後側部分をそれぞれ第3区間Gおよび第4区間Hに区分けする。
For example, as shown in FIG. 6, the first reinforcing wire 13 a (13) provided in the first pancake coil 11 a (11) in the upper stage in the drawing is moved in front of the metal plate 14 with respect to the traveling direction of the superconducting current I and Consider the rear part divided into a first section E and a second section F, respectively.
Similarly, the second reinforcing wire 13b (13) provided in the second pancake coil 11b (11) connected to the first pancake coil 11a and the metal plate 14 is attached to the front and rear portions of the metal plate 14. Each is divided into a third section G and a fourth section H.

超電導電流Iは、第1区間Eに流入した後、金属板14を介して大半が第4区間Hに流出する。
よって、第2区間Fおよび第3区間Gにはほとんど超電導電流Iが流れない。
つまり、第2区間Fおよび第3区間Gの端辺27においては、超電導層25などが多少破断しても、超電導コイル10の超電導特性に及ぼす影響は小さい。
After the superconducting current I flows into the first section E, most of it flows out to the fourth section H via the metal plate 14.
Therefore, the superconducting current I hardly flows in the second section F and the third section G.
In other words, in the end sides 27 of the second section F and the third section G, even if the superconducting layer 25 or the like is somewhat broken, the influence on the superconducting characteristics of the superconducting coil 10 is small.

一方、第1区間Eおよび第4区間Hは、超電導電流Iの経路となるので、これらの端辺27の周辺に応力が集中することによる積層体40の剥離や破断は防止される必要がある。
そこで、コイル設計による形状的な要請を考慮しながら、例えば図6のように、必要に応じてこれらの区間の大きさおよびその形状を決定してもよい。
On the other hand, since the first section E and the fourth section H serve as a path for the superconducting current I, it is necessary to prevent the laminate 40 from being peeled off or broken due to the stress concentration around the edges 27. .
Therefore, the size and shape of these sections may be determined as necessary, for example, as shown in FIG.

以上のように、第1実施形態にかかる超電導コイル10によれば、パンケーキコイル11の最外周における金属板14の架設による薄膜テープ線20の耐劣化性能を向上させ、また劣化を防止することができる。   As described above, according to the superconducting coil 10 according to the first embodiment, the deterioration resistance performance of the thin film tape wire 20 by the construction of the metal plate 14 on the outermost periphery of the pancake coil 11 is improved, and the deterioration is prevented. Can do.

(第2実施形態)
図7は、第2実施形態にかかる超電導コイル10の金属板14の架設箇所を巻回軸方向Aからみた拡大断面図である。
(Second Embodiment)
FIG. 7 is an enlarged cross-sectional view of the installation location of the metal plate 14 of the superconducting coil 10 according to the second embodiment when viewed from the winding axis direction A.

第2実施形態にかかる超電導コイル10の補強線材13は、図7に示されるように、積層体40の積層方向にかかる剥離応力に対する超電導特性の低下比率が薄膜テープ線20と比較して低い超電導テープ線30が用いられる。   As shown in FIG. 7, the reinforcing wire 13 of the superconducting coil 10 according to the second embodiment is a superconducting material in which the reduction ratio of the superconducting characteristics with respect to the peeling stress in the stacking direction of the laminate 40 is lower than that of the thin film tape wire 20. Tape wire 30 is used.

図8は、第2実施形態において補強線材13として用いられるビスマス系超電導線材30A(30)の断面斜視図である。
なお、図8において、テープ状のビスマス系超電導線材30Aの一部をテープ長手方向に切断して切断断面を表示している。
超電導テープ線30は、例えば図8に示したビスマス系超電導線材30Aである。
FIG. 8 is a cross-sectional perspective view of a bismuth-based superconducting wire 30A (30) used as the reinforcing wire 13 in the second embodiment.
In FIG. 8, a part of the tape-like bismuth superconducting wire 30A is cut in the longitudinal direction of the tape to show a cut section.
The superconducting tape wire 30 is, for example, the bismuth-based superconducting wire 30A shown in FIG.

ビスマス系超電導線材30Aは、積層構造の薄膜テープ線20の構造とは大きく異なり、母材である銀マトリクス31に超電導フィラメント32が平行に複数埋め込まれた構造を有する。
一般に、超電導フィラメント32の材質として、Bi2Sr2Ca2Cu310などが用いられる。
The bismuth-based superconducting wire 30A is greatly different from the structure of the laminated thin film tape wire 20 and has a structure in which a plurality of superconducting filaments 32 are embedded in parallel in a silver matrix 31 as a base material.
In general, Bi 2 Sr 2 Ca 2 Cu 3 O 10 or the like is used as the material of the superconducting filament 32.

ビスマス系超電導線材30Aは、積層構造になっていないので、許容される剥離方向Cの応力が薄膜テープ線20と比較して大きい。
よって、薄膜テープ線20に合わせてテープ形状にした線材片にして補強線材13として用いることができる。
Since the bismuth-based superconducting wire 30 </ b> A does not have a laminated structure, the allowable stress in the peeling direction C is larger than that of the thin film tape wire 20.
Therefore, it can be used as the reinforcing wire 13 in the form of a tape-shaped wire rod in accordance with the thin film tape wire 20.

ビスマス系超電導線材30Aは超電導線材であるので、極低温において、第1実施形態で例示した常電導体と比較して低い抵抗で電流を流すことができる。
つまり、薄膜テープ線20がビスマス系超電導線材30Aを貼り合わせた部分において劣化した場合でも、超電導電流Iはビスマス系超電導線材30Aに迂回することができる。
さらに、ビスマス系超電導線材30Aは、薄膜テープ線20と異なり基板22(図1)のような高抵抗な層を含まない。
つまり、極低温において、薄膜テープ線20と比較しても低い電気抵抗で、超電導フィラメント32に垂直な方向に超電導電流Iを横断させることができる。
Since the bismuth-based superconducting wire 30A is a superconducting wire, a current can flow at a low resistance at a very low temperature compared to the normal conductor exemplified in the first embodiment.
That is, even when the thin film tape wire 20 deteriorates at the portion where the bismuth-based superconducting wire 30A is bonded, the superconducting current I can be bypassed to the bismuth-based superconducting wire 30A.
Furthermore, unlike the thin film tape wire 20, the bismuth-based superconducting wire 30A does not include a high resistance layer such as the substrate 22 (FIG. 1).
That is, the superconducting current I can be traversed in the direction perpendicular to the superconducting filament 32 at a very low temperature with a lower electrical resistance than the thin film tape wire 20.

なお、補強線材13としてビスマス系超電導線材30Aを用いること以外は、第2実施形態は第1実施形態と同じ構造および動作手順となるので、重複する説明を省略する。
図面においても、共通の構成または機能を有する部分は同一符号で示し、重複する説明を省略する。
Since the second embodiment has the same structure and operation procedure as the first embodiment except that the bismuth-based superconducting wire 30A is used as the reinforcing wire 13, the redundant description is omitted.
Also in the drawings, portions having a common configuration or function are denoted by the same reference numerals, and redundant description is omitted.

このように、第2実施形態にかかる超電導コイル10によれば、第1実施形態の効果に加え、より低い電気抵抗で超電導電流Iを金属板14に流入させることができる。   As described above, according to the superconducting coil 10 according to the second embodiment, the superconducting current I can be caused to flow into the metal plate 14 with a lower electric resistance in addition to the effects of the first embodiment.

(第3実施形態)
図9は、第3実施形態にかかる超電導コイル10の金属板14の架設箇所を巻回軸方向Aからみた拡大断面図である。
(Third embodiment)
FIG. 9 is an enlarged cross-sectional view of the installation location of the metal plate 14 of the superconducting coil 10 according to the third embodiment when viewed from the winding axis direction A.

第3実施形態にかかる超電導コイル10は、図9および図1に示されるように、第1実施形態などの構成において、薄膜テープ線20の側面のうち基板22に関して超電導層25と反対側の側面38(以下、「裏面38」という)に補強線材13が設けられる。   As shown in FIGS. 9 and 1, the superconducting coil 10 according to the third embodiment has a side surface opposite to the superconducting layer 25 with respect to the substrate 22 among the side surfaces of the thin film tape wire 20 in the configuration of the first embodiment and the like. The reinforcing wire 13 is provided on 38 (hereinafter referred to as “back surface 38”).

通常、層の形成を容易にするために、基板22の表面に超電導層25などの他の層を形成する。
つまり、通常、積層体40である薄膜テープ線20は、層として基板22を含む。
ステンレスなどの常電導体で組成されて層厚が厚い基板22は、電気抵抗が高い。
Usually, other layers such as the superconducting layer 25 are formed on the surface of the substrate 22 in order to facilitate the formation of the layers.
That is, the thin film tape wire 20 that is usually the laminate 40 includes the substrate 22 as a layer.
The substrate 22 made of a normal conductor such as stainless steel and having a thick layer has a high electric resistance.

一方、安定化層21などの他の層は薄く、超電導層25を通流した超電導電流Iを容易に通す。
よって、薄膜テープ線20は、薄膜テープ線20の側面のうち基板22に関して超電導層25と同一側の側面39(以下、「表面39(おもてめん)」という)から電流が流出する。
そこで、通常、超電導電流Iを他の導体に流出させる場合、この導体を表面39に接合する。
On the other hand, the other layers such as the stabilization layer 21 are thin and easily allow the superconducting current I flowing through the superconducting layer 25 to pass therethrough.
Therefore, current flows out from the side surface 39 of the thin film tape wire 20 on the same side as the superconducting layer 25 with respect to the substrate 22 (hereinafter, referred to as “surface 39”).
Therefore, normally, when the superconducting current I flows out to another conductor, this conductor is joined to the surface 39.

しかし、安定化層21など基板22以外の層は薄いため、容易に受けた外力を他の層へ伝播させてしまう。
特に、安定化層21が薄く形成された薄膜テープ線20を使用した場合、薄膜テープ線20の超電導特性の劣化が顕著になる。
そこで、パンケーキコイル11の最外周において裏面38が外表面12となるように薄膜テープ線20を巻回して、補強線材13を薄膜テープ線20のこの裏面38に接合する。
補強線材13を裏面38に接合することで、端辺27(図6等)の周辺に集中する応力が剥離または破断しやすい層などに外力が伝播するのを基板22で阻止することができる。
However, since the layers other than the substrate 22 such as the stabilization layer 21 are thin, the external force easily received is propagated to other layers.
In particular, when the thin film tape wire 20 in which the stabilization layer 21 is formed thin is used, the deterioration of the superconducting characteristics of the thin film tape wire 20 becomes remarkable.
Therefore, the thin film tape wire 20 is wound so that the back surface 38 becomes the outer surface 12 at the outermost periphery of the pancake coil 11, and the reinforcing wire 13 is joined to the back surface 38 of the thin film tape wire 20.
By joining the reinforcing wire 13 to the back surface 38, the substrate 22 can prevent the external force from being propagated to a layer where the stress concentrated around the edge 27 (FIG. 6 and the like) is easily peeled off or broken.

また、図10は、第3実施形態にかかる超電導コイル10で用いられる薄膜テープ線20の変形例の断面斜視図である。
なお、図10では、超電導層25、基板22および安定化層21以外の図1において示した各層は省略している。
FIG. 10 is a cross-sectional perspective view of a modification of the thin film tape wire 20 used in the superconducting coil 10 according to the third embodiment.
In FIG. 10, the layers shown in FIG. 1 other than the superconducting layer 25, the substrate 22, and the stabilization layer 21 are omitted.

図10に示されるように、安定化層21を除く積層体40の外周を安定化層21で被覆した薄膜テープ線20を用いてもよい。
外周を安定化層21で被覆することで、超電導層25を通流した超電導電流Iは、安定化層21を流れることで基板22を迂回して裏面38に到達することができる。
つまり、安定化層21で被覆することで、超電導電流Iが基板22を直接横断する場合よりも低い電気抵抗で、超電導電流Iを金属板14に流入させることができる。
As shown in FIG. 10, a thin film tape wire 20 in which the outer periphery of the laminated body 40 excluding the stabilization layer 21 is covered with the stabilization layer 21 may be used.
By covering the outer periphery with the stabilization layer 21, the superconducting current I flowing through the superconducting layer 25 can flow through the stabilization layer 21 and bypass the substrate 22 to reach the back surface 38.
That is, by covering with the stabilization layer 21, the superconducting current I can flow into the metal plate 14 with lower electrical resistance than when the superconducting current I crosses the substrate 22 directly.

なお、薄膜テープ線20の裏面38が外表面12となるように薄膜テープ線20を巻回することおよびこの裏面38に補強線材13を接合すること以外は、第3実施形態は第1実施形態と同じ構造および動作手順となるので、重複する説明を省略する。
図面においても、共通の構成または機能を有する部分は同一符号で示し、重複する説明を省略する。
The third embodiment is the first embodiment except that the thin film tape wire 20 is wound so that the back surface 38 of the thin film tape wire 20 becomes the outer surface 12, and the reinforcing wire 13 is joined to the back surface 38. The same structure and operation procedure as those in FIG.
Also in the drawings, portions having a common configuration or function are denoted by the same reference numerals, and redundant description is omitted.

このように、第3実施形態にかかる超電導コイル10によれば、第1実施形態の効果に加え、補強線材13を設けることによる薄膜テープ線20の劣化をさらに効果的に防止することができる。   Thus, according to the superconducting coil 10 according to the third embodiment, in addition to the effects of the first embodiment, the deterioration of the thin film tape wire 20 due to the provision of the reinforcing wire 13 can be further effectively prevented.

(第4実施形態)
図11は、第4実施形態にかかる超電導コイル10を構成するパンケーキコイル11の上面断面図である。
(Fourth embodiment)
FIG. 11 is a top sectional view of the pancake coil 11 constituting the superconducting coil 10 according to the fourth embodiment.

第4実施形態にかかる超電導コイル10は、図11に示されるように、巻回されて対向する薄膜テープ線20の対向面間の間隙に接着材(図示せず)が配置され、接着材は、対向面への接着力を抑制する離形処理が施される。
例えば、フッ素樹脂テープ、パラフィン、グリース、シリコンオイルなどを塗布して接着材の表面の一部に離形層43を形成して接着材の一部が容易に離形させる。
In the superconducting coil 10 according to the fourth embodiment, as shown in FIG. 11, an adhesive (not shown) is disposed in the gap between the opposing surfaces of the thin film tape wires 20 that are wound to oppose each other. The mold release process for suppressing the adhesive force to the facing surface is performed.
For example, a release layer 43 is formed on a part of the surface of the adhesive by applying a fluororesin tape, paraffin, grease, silicon oil, etc., and a part of the adhesive is easily released.

例えば、超電導コイル10に超電導電流Iが通流して高い磁場が発生している場合、超電導コイル10には、径方向Cの外向きに外力がかかる。
また、超電導コイル10を極低温まで冷却するときにも、薄膜テープ線20に固定されている種々の部材の熱収縮の差異によって不均一な応力が発生することがある。
For example, when the superconducting current I flows through the superconducting coil 10 and a high magnetic field is generated, an external force is applied to the superconducting coil 10 outward in the radial direction C.
Further, when the superconducting coil 10 is cooled to a very low temperature, uneven stress may be generated due to the difference in thermal contraction of various members fixed to the thin film tape wire 20.

前述したように、薄膜テープ線20は剥離方向C(すなわち径方向C)の応力に対して非常に脆弱であるので、このような応力で容易に超電導特性を劣化させてしまう。
よって、熱収縮率の異なる接着材に拘束されて薄膜テープ線20の自由な熱収縮が阻害されて、薄膜テープ線20に不要な剥離応力が発生しないように、接着材に離形処理をすることがある。
As described above, since the thin film tape wire 20 is very fragile to the stress in the peeling direction C (that is, the radial direction C), the superconducting characteristics are easily deteriorated by such stress.
Therefore, the adhesive is subjected to a release treatment so that it is constrained by adhesives having different thermal shrinkage rates and free heat shrinkage of the thin film tape wire 20 is hindered and unnecessary peeling stress is not generated in the thin film tape wire 20. Sometimes.

しかし、離形処理を施すと、パンケーキコイル11の変形の自由度が上がる。また、離形を繰り返すうちに、パンケーキコイル11の剛性も低下する。
よって、金属板14を架設することで金属板14の周縁にパンケーキコイル11の変形による応力の集中がより発生しやすくなる。
よって、このような離形処理が施されているパンケーキコイル11を用いる場合には特に第1実施形態から第3実施形態までで示した補強線材13を用いることが効果的になる。
However, when the mold release process is performed, the degree of freedom of deformation of the pancake coil 11 is increased. Moreover, the rigidity of the pancake coil 11 also decreases as the mold release is repeated.
Therefore, the concentration of stress due to the deformation of the pancake coil 11 is more likely to occur on the periphery of the metal plate 14 by installing the metal plate 14.
Therefore, when using the pancake coil 11 subjected to such a release process, it is particularly effective to use the reinforcing wire 13 shown in the first to third embodiments.

なお、超電導コイル10を構成するパンケーキコイル11に離形処理が施されていること以外は、第4実施形態は第1実施形態と同じ構造および動作手順となるので、重複する説明を省略する。
図面においても、共通の構成または機能を有する部分は同一符号で示し、重複する説明を省略する。
Since the fourth embodiment has the same structure and operation procedure as the first embodiment except that the pancake coil 11 constituting the superconducting coil 10 is subjected to a mold release process, the redundant description is omitted. .
Also in the drawings, portions having a common configuration or function are denoted by the same reference numerals, and redundant description is omitted.

このように、第4実施形態にかかる超電導コイル10によれば、第1実施形態の効果に加え、離形処理が施されて変形の自由度の高いパンケーキコイル11においても超電導特性の低下を防止することができる。   As described above, according to the superconducting coil 10 according to the fourth embodiment, in addition to the effects of the first embodiment, the superconducting characteristics are reduced even in the pancake coil 11 which is subjected to the release process and has a high degree of freedom of deformation. Can be prevented.

以上述べた少なくとも一つの実施形態の超電導コイル10によれば、補強線材13を介して金属板14を架設することにより、パンケーキコイル11の最外周における金属板14の架設による薄膜テープ線20の耐劣化性能を向上することが可能となる。   According to the superconducting coil 10 of at least one embodiment described above, the metal plate 14 is installed via the reinforcing wire 13, so that the thin film tape wire 20 by the installation of the metal plate 14 on the outermost periphery of the pancake coil 11. It becomes possible to improve the deterioration resistance.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。
これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention.
These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention.

例えば、補強線材13および金属板14は、一体にして形成してもよい。
これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
For example, the reinforcing wire 13 and the metal plate 14 may be integrally formed.
These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…高温超電導コイル(超電導コイル)、11…パンケーキコイル、11a(11)…第1パンケーキコイル、11b(11)…第2パンケーキコイル、12…外表面、13(13a,13b)…補強線材(第1補強線材,第2補強線材)、14…金属板、16…フランジ、17…口出し電極、18…内側面、19…巻枠、20…高温超電導線材(薄膜超電導テープ線,薄膜テープ線)、21…安定化層、22…基板、23…配向層、24…中間層、25…高温超電導層(超電導層)、26…保護層、27…端辺、28…テーパ、30(30A)…超電導テープ線(ビスマス系超電導線材)、31…銀マトリクス、32…超電導フィラメント、38…裏面、39…表面、40…積層体、43…離形層、A…巻回軸方向、B…周方向、C…径方向(剥離方向)、E…第1区間、F…第2区間、G…第3区間、H…第4区間、I…超電導電流、θ…角度。   DESCRIPTION OF SYMBOLS 10 ... High temperature superconducting coil (superconducting coil), 11 ... Pancake coil, 11a (11) ... 1st pancake coil, 11b (11) ... 2nd pancake coil, 12 ... Outer surface, 13 (13a, 13b) ... Reinforcing wire (first reinforcing wire, second reinforcing wire), 14 ... metal plate, 16 ... flange, 17 ... lead electrode, 18 ... inner surface, 19 ... reel, 20 ... high temperature superconducting wire (thin film superconducting tape wire, thin film) Tape line), 21 ... stabilization layer, 22 ... substrate, 23 ... alignment layer, 24 ... intermediate layer, 25 ... high temperature superconducting layer (superconducting layer), 26 ... protective layer, 27 ... edge, 28 ... taper, 30 ( 30A) ... superconducting tape wire (bismuth-based superconducting wire), 31 ... silver matrix, 32 ... superconducting filament, 38 ... back surface, 39 ... surface, 40 ... laminate, 43 ... release layer, A ... winding axis direction, B ... Circumferential direction, C ... Diameter Direction (peeling direction), E ... first segment, F ... second interval, G ... third section, H ... fourth section, I ... supercurrent, theta ... angle.

Claims (15)

少なくとも高温超電導層を含む積層体で構成される薄膜超電導テープ線が巻回されてなるパンケーキコイルと、
前記パンケーキコイルの最外周の外表面に貼り合される可撓性を有する導体の補強線材と、
巻回軸方向に積み重ねられた複数の前記パンケーキコイルのうち隣接する2つにそれぞれ貼り合された前記補強線材に架設される金属板と、を備えることを特徴とする高温超電導コイル。
A pancake coil formed by winding a thin film superconducting tape wire composed of a laminate including at least a high-temperature superconducting layer;
A reinforcing wire of a flexible conductor that is bonded to the outermost outer surface of the pancake coil;
A high-temperature superconducting coil comprising: a metal plate laid on the reinforcing wire bonded to two adjacent pancake coils stacked in the winding axis direction.
前記補強線材の端辺には、前記パンケーキコイルの径方向に対してテーパが設けられる請求項1に記載の高温超電導コイル。 2. The high-temperature superconducting coil according to claim 1, wherein an end side of the reinforcing wire is provided with a taper with respect to a radial direction of the pancake coil. 前記テーパは、前記外表面と接触する前記補強線材を最大表面積とする複数の前記補強線材が積層されて形成される請求項2に記載の高温超電導コイル。 The high-temperature superconducting coil according to claim 2, wherein the taper is formed by laminating a plurality of the reinforcing wires having a maximum surface area that is the reinforcing wire in contact with the outer surface. 前記補強線材の端辺は、前記パンケーキコイルの前記巻回軸方向に対して勾配を有する請求項1から請求項3のいずれか1項に記載の高温超電導コイル。 The high temperature superconducting coil according to any one of claims 1 to 3, wherein an end side of the reinforcing wire has a gradient with respect to a direction of the winding axis of the pancake coil. 前記補強線材の前記パンケーキコイルの周方向の長さは、前記金属板の前記周方向の長さよりも長い請求項3に記載の高温超電導コイル。 The high-temperature superconducting coil according to claim 3, wherein a circumferential length of the pancake coil of the reinforcing wire is longer than a circumferential length of the metal plate. 前記補強線材は、前記積層体の積層方向にかかる剥離応力に対する超電導特性の低下比率が前記薄膜超電導テープ線と比較して低い超電導テープ線である請求項1から請求項5のいずれか1項に記載の高温超電導コイル。 6. The superconducting tape wire according to claim 1, wherein the reinforcing wire is a superconducting tape wire in which a reduction ratio of superconducting properties with respect to peeling stress in the stacking direction of the laminate is lower than that of the thin film superconducting tape wire. The high-temperature superconducting coil described. 前記超電導テープ線は、ビスマス系超電導線材である請求項6に記載の高温超電導コイル。 The high-temperature superconducting coil according to claim 6, wherein the superconducting tape wire is a bismuth-based superconducting wire. 前記補強線材および前記金属板の材料の少なくとも一方は、インジウム、銅、銀および金の少なくとも1つから選択される請求項1から請求項7のいずれか1項に記載の高温超電導コイル。 The high-temperature superconducting coil according to any one of claims 1 to 7, wherein at least one of the material of the reinforcing wire and the metal plate is selected from at least one of indium, copper, silver, and gold. 前記補強線材は、前記金属板よりも前記パンケーキコイルの径方向の厚さが薄い請求項1から請求項8のいずれか1項に記載の高温超電導コイル。 The high-temperature superconducting coil according to any one of claims 1 to 8, wherein the reinforcing wire has a thickness in a radial direction of the pancake coil that is smaller than that of the metal plate. 前記積層体は層として基板を含み、
前記薄膜超電導テープ線の側面のうち前記基板に関して前記高温超電導層と反対側の側面に前記補強線材を設ける請求項1から請求項9のいずれか1項に記載の高温超電導コイル。
The laminate includes a substrate as a layer,
10. The high-temperature superconducting coil according to claim 1, wherein the reinforcing wire is provided on a side surface of the thin film superconducting tape wire opposite to the high-temperature superconducting layer with respect to the substrate.
巻回されて対向する薄膜超電導テープ線の対向面間の間隙に接着材が配置され、
前記接着材は、前記対向面への接着力を抑制する離形処理が施されている請求項1から請求項10のいずれか1項に記載の高温超電導コイル。
An adhesive is placed in the gap between the opposing surfaces of the thin film superconducting tape wire that is wound and opposed,
The high-temperature superconducting coil according to any one of claims 1 to 10, wherein the adhesive is subjected to a release treatment for suppressing an adhesive force to the facing surface.
前記離形処理は、フッ素樹脂テープ、パラフィン、グリース、シリコンオイルからなる群より選ばれた少なくとも一種で構成される離形層の形成による請求項11に記載の高温超電導コイル。 The high-temperature superconducting coil according to claim 11, wherein the release treatment is performed by forming a release layer composed of at least one selected from the group consisting of fluororesin tape, paraffin, grease, and silicon oil. 1つの前記金属板と1つの前記補強線材とは、一体に形成される請求項1から請求項12のいずれか1項に記載の高温超電導コイル。 The high-temperature superconducting coil according to any one of claims 1 to 12, wherein one metal plate and one reinforcing wire are integrally formed. 前記積層体の両端の層は、常電導体で組成される安定化層であり、
前記両端の前記安定化層は、互いに電気的に接続されている請求項1から請求項13のいずれか1項に記載の高温超電導コイル。
The layers at both ends of the laminate are stabilization layers composed of normal conductors,
The high-temperature superconducting coil according to any one of claims 1 to 13, wherein the stabilizing layers at both ends are electrically connected to each other.
前記金属板および前記補強線材は、一体に形成される請求項1から請求項14のいずれか1項に記載の高温超電導コイル。 The high-temperature superconducting coil according to any one of claims 1 to 14, wherein the metal plate and the reinforcing wire are integrally formed.
JP2015043799A 2015-03-05 2015-03-05 High temperature superconducting coil Active JP6548916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043799A JP6548916B2 (en) 2015-03-05 2015-03-05 High temperature superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043799A JP6548916B2 (en) 2015-03-05 2015-03-05 High temperature superconducting coil

Publications (2)

Publication Number Publication Date
JP2016163026A true JP2016163026A (en) 2016-09-05
JP6548916B2 JP6548916B2 (en) 2019-07-24

Family

ID=56847282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043799A Active JP6548916B2 (en) 2015-03-05 2015-03-05 High temperature superconducting coil

Country Status (1)

Country Link
JP (1) JP6548916B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039978A (en) * 2019-08-30 2021-03-11 株式会社東芝 High-temperature superconducting coil
JP2021064687A (en) * 2019-10-11 2021-04-22 株式会社フジクラ Superconducting coil
JP2022021490A (en) * 2020-07-22 2022-02-03 株式会社東芝 Superconducting coil and superconducting coil device
US11289253B2 (en) 2018-01-31 2022-03-29 Tokamak Energy Ltd. Wound HTS magnet coils

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167615U (en) * 1979-05-22 1980-12-02
JP2010067908A (en) * 2008-09-12 2010-03-25 Kobe Steel Ltd Superconducting magnet and method of manufacturing the same
JP2010109287A (en) * 2008-10-31 2010-05-13 Toshiba Corp Superconducting coil apparatus
JP2011134610A (en) * 2009-12-24 2011-07-07 Fujikura Ltd Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device
JP2011198469A (en) * 2010-03-17 2011-10-06 Toshiba Corp Insulating coating oxide superconducting wire and resin impregnated superconducting coil
JP2011222346A (en) * 2010-04-12 2011-11-04 Toshiba Corp High-temperature superconductor and high-temperature superconducting coil using the same
JP2012038812A (en) * 2010-08-04 2012-02-23 Toshiba Corp Superconducting coil device
JP2012151339A (en) * 2011-01-20 2012-08-09 Toshiba Corp Superconducting coil device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167615U (en) * 1979-05-22 1980-12-02
JP2010067908A (en) * 2008-09-12 2010-03-25 Kobe Steel Ltd Superconducting magnet and method of manufacturing the same
JP2010109287A (en) * 2008-10-31 2010-05-13 Toshiba Corp Superconducting coil apparatus
JP2011134610A (en) * 2009-12-24 2011-07-07 Fujikura Ltd Superconducting connection structure and connection method of superconducting wire rod and superconducting coil device
JP2011198469A (en) * 2010-03-17 2011-10-06 Toshiba Corp Insulating coating oxide superconducting wire and resin impregnated superconducting coil
JP2011222346A (en) * 2010-04-12 2011-11-04 Toshiba Corp High-temperature superconductor and high-temperature superconducting coil using the same
JP2012038812A (en) * 2010-08-04 2012-02-23 Toshiba Corp Superconducting coil device
JP2012151339A (en) * 2011-01-20 2012-08-09 Toshiba Corp Superconducting coil device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289253B2 (en) 2018-01-31 2022-03-29 Tokamak Energy Ltd. Wound HTS magnet coils
US11978587B2 (en) 2018-01-31 2024-05-07 Tokamak Energy Ltd. Wound HTS magnet coils
JP2021039978A (en) * 2019-08-30 2021-03-11 株式会社東芝 High-temperature superconducting coil
JP7234080B2 (en) 2019-08-30 2023-03-07 株式会社東芝 High temperature superconducting coil
JP2021064687A (en) * 2019-10-11 2021-04-22 株式会社フジクラ Superconducting coil
JP2022021490A (en) * 2020-07-22 2022-02-03 株式会社東芝 Superconducting coil and superconducting coil device
JP7404187B2 (en) 2020-07-22 2023-12-25 株式会社東芝 Superconducting coils and superconducting coil devices

Also Published As

Publication number Publication date
JP6548916B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP5823116B2 (en) Superconducting coil
JP5259487B2 (en) Superconducting coil
JP6486817B2 (en) Superconducting coil and superconducting coil device
KR100995907B1 (en) Method to make round wire and superconducting wire using superconducting tape
JP5342749B2 (en) High temperature superconducting coil
JP6505565B2 (en) Connection structure of high temperature superconducting conductor, high temperature superconducting coil and high temperature superconducting coil
WO2017061563A1 (en) Superconducting coil
US9691532B2 (en) Connection structure of high-temperature superconducting wire piece, high-temperature superconducting wire using connection structure, and high-temperature superconducting coil using connection structure
JP6548916B2 (en) High temperature superconducting coil
JP6490851B2 (en) Superconducting coil and superconducting coil device
US12046393B2 (en) Superconductive wire, stacked superconductive wire, superconductive coil and superconductive cable
JP6180729B2 (en) Superconducting coil and manufacturing method thereof
JP6180963B2 (en) High temperature superconducting coil
JP6005428B2 (en) Superconducting coil and superconducting coil device
JP7234080B2 (en) High temperature superconducting coil
JP4986291B2 (en) Superconducting cable
JP7222622B2 (en) Superconducting coil and superconducting coil device
JP6721100B2 (en) Superconducting wire and superconducting coil
JP2009246118A (en) Superconducting coil and method of manufacturing superconducting coil
JP2013207088A (en) Superconducting coil
JP7247080B2 (en) Superconducting coil device
JP2023169958A (en) High temperature superconducting coil and high temperature superconducting coil device
JP6327794B2 (en) Superconducting coil device
JP6721101B2 (en) Superconducting wire and superconducting coil
JP2024111476A (en) Superconducting wire and coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6548916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150