JP7222622B2 - Superconducting coil and superconducting coil device - Google Patents

Superconducting coil and superconducting coil device Download PDF

Info

Publication number
JP7222622B2
JP7222622B2 JP2018137053A JP2018137053A JP7222622B2 JP 7222622 B2 JP7222622 B2 JP 7222622B2 JP 2018137053 A JP2018137053 A JP 2018137053A JP 2018137053 A JP2018137053 A JP 2018137053A JP 7222622 B2 JP7222622 B2 JP 7222622B2
Authority
JP
Japan
Prior art keywords
superconducting
winding
superconducting coil
detour
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018137053A
Other languages
Japanese (ja)
Other versions
JP2020013960A (en
Inventor
達郎 宇都
寛史 宮崎
貞憲 岩井
圭 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018137053A priority Critical patent/JP7222622B2/en
Publication of JP2020013960A publication Critical patent/JP2020013960A/en
Application granted granted Critical
Publication of JP7222622B2 publication Critical patent/JP7222622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明の実施形態は、超電導線材がコイル状に巻回された超電導コイル及びこの超電導
コイルを使用する超電導コイル装置に関する。
An embodiment of the present invention relates to a superconducting coil in which a superconducting wire is wound in a coil shape, and a superconducting coil device using this superconducting coil.

超電導線材には、超電導状態を維持できる電流、温度、磁場の範囲、いわゆる臨界電流
、臨界温度、臨界磁場が存在する。したがって電気抵抗がほぼゼロといえども無限に電流
が流せるわけではなく、いずれかの臨界値を超えると、常電導状態への転移現象、すなわ
ちクエンチが発生する。このようなクエンチによる常電導転移領域のジュール発熱は、瞬
時に超電導コイルを熱暴走させ、最悪の場合、焼損に至る危険性があるため、クエンチに
対する保護技術が不可欠である。
A superconducting wire has a range of current, temperature, and magnetic field in which the superconducting state can be maintained, that is, so-called critical current, critical temperature, and critical magnetic field. Therefore, even if the electrical resistance is almost zero, the current cannot flow infinitely, and if any critical value is exceeded, a transition phenomenon to the normal conducting state, that is, quench occurs. Joule heating in the normal-conducting transition region due to such quench causes instantaneous thermal runaway of the superconducting coil, and in the worst case, there is a risk of burnout. Therefore, protection technology against quench is essential.

クエンチ保護に関する従来技術としては、たとえば超電導コイルと並列に保護抵抗をつ
なぐ方法がある。この方法は、常電導状態に転移することで発生するコイル電圧や温度上
昇を検出し、これをトリガーとして励磁電源を遮断するものである。遮断後は超電導コイ
ルと保護抵抗の閉回路となるため、室温部に配置した保護抵抗のジュール発熱で超電導コ
イルの蓄積エネルギーが消費され、コイルに流れる電流を減衰させることができる。
As a conventional technique for quench protection, for example, there is a method of connecting a protection resistor in parallel with a superconducting coil. This method detects the coil voltage and temperature rise generated by the transition to the normal conducting state, and uses this as a trigger to cut off the excitation power supply. After shutting down, the superconducting coil and the protection resistor form a closed circuit, so the Joule heating of the protection resistor placed at room temperature consumes the stored energy in the superconducting coil, and the current flowing through the coil can be attenuated.

このような超電導コイルに使用する超電導線材としては、たとえばBiSrCa
Cu10+x線材やRE1B2C3O7線材(REBCO線材)といった高温超電導線
材がある。高温超電導線材を用いた超電導コイルでは、従来のNbTiなどの低温超電導
線材に比べ、20K~50Kといった高い温度でも高い臨界電流密度を有するため、高温
での高電流密度運転が可能となる。
Superconducting wires used in such superconducting coils include, for example, Bi 2 Sr 2 Ca 2
There are high-temperature superconducting wires such as Cu 3 O 10 +x wires and RE1B2C3O7 wires (REBCO wires). A superconducting coil using a high-temperature superconducting wire has a high critical current density even at a high temperature of 20 K to 50 K compared to a conventional low-temperature superconducting wire such as NbTi, so high current density operation at high temperature is possible.

なお、「RE1B2C3O7」の「RE」は希土類元素(例えば、ネオジム(Nd)、
ガドリニウム(Gd)、ホルミニウム(Ho)、サマリウム(Sm)等)及びイットリウ
ム元素の少なくともいずれかを、「B」はバリウム(Ba)を、「C」は銅(Cu)を、
「O」は酸素(O)を意味している。
In addition, "RE" of "RE1B2C3O7" is a rare earth element (for example, neodymium (Nd),
gadolinium (Gd), holminium (Ho), samarium (Sm), etc.) and at least one of yttrium elements, "B" is barium (Ba), "C" is copper (Cu),
"O" means oxygen (O).

しかしながら、高電流密度運転時にクエンチが生じた場合、20K~50Kの温度範囲
では、低温超電導線材を使ったマグネットの運転温度よりも比熱が大きいために常電導転
移領域の拡大が遅く、また、高電流密度運転すると発熱密度も高くなるため、前記従来技
術のクエンチ保護方法では、検知する前に局所的に熱暴走が発生し焼損してしまう可能性
がある。
However, when quenching occurs during high-current-density operation, the expansion of the normal-conducting transition region is slow in the temperature range of 20K to 50K because the specific heat is greater than the operating temperature of magnets using low-temperature superconducting wires. Since the current density operation also increases the heat generation density, the quench protection method of the prior art may cause local thermal runaway and burnout before detection.

そこで、超電導コイル内部の異なるターンの超電導線材同士がターン間で短絡されてい
れば、常電導転移した部分に流れる電流を異なるターンの超電導線材に迂回させることが
できる。電流が常電導部分を迂回することで、常電導転移領域での局所的な発熱、および
熱暴走を抑制することが可能である。具体的には、超電導コイルのコイル径方向に沿った
巻線部材の側面に超電導線材と電気的に接続された迂回路を設けることにより、迂回路を
介して異なるターンの超電導線材同士を短絡する技術がある。
Therefore, if the superconducting wires of different turns inside the superconducting coil are short-circuited between the turns, the current flowing in the portion where the normal conduction transition occurs can be detoured to the superconducting wires of different turns. By bypassing the normal-conducting portion of the current, it is possible to suppress local heat generation and thermal runaway in the normal-conducting transition region. Specifically, by providing a detour electrically connected to the superconducting wire on the side surface of the winding member along the coil radial direction of the superconducting coil, the superconducting wires of different turns are short-circuited via the detour. I have the technology.

特開2017―103352号公報JP 2017-103352 A 国際公開第2017/061563号WO2017/061563

しかしながら、超電導コイルの伝導冷却に用いる伝熱板を超電導コイル側面に設けた場
合、コイル側面の迂回路と伝熱板が電気的に導通し、伝熱板と接続された冷凍機が故障し
てしまう課題があった。一方、迂回路と伝熱板の間に絶縁材を挿入した場合でも、超電導
コイルの負荷率が上昇した際に迂回路に過大な電圧がかかり、絶縁破壊を起こして迂回路
が伝熱板と導通してしまう恐れがあった。
However, when the heat transfer plate used for conduction cooling of the superconducting coil is provided on the side of the superconducting coil, the detour on the side of the coil and the heat transfer plate are electrically connected, and the refrigerator connected to the heat transfer plate breaks down. I had a problem. On the other hand, even if an insulating material is inserted between the detour and the heat transfer plate, an excessive voltage is applied to the detour when the load factor of the superconducting coil increases, causing dielectric breakdown and the detour and the heat transfer plate to conduct. I was afraid that I would lose it.

迂回路と伝熱板の間の絶縁材の厚みを大きくすることで絶縁破壊の恐れを小さくするこ
とができるが、絶縁材の厚みを大きくするほど超電導コイルの電流密度が低下してしまう
The risk of dielectric breakdown can be reduced by increasing the thickness of the insulating material between the detour and the heat transfer plate, but the thicker the insulating material, the lower the current density of the superconducting coil.

本発明はこのような事情を考慮してなされたもので、熱暴走またはクエンチの発生を抑
制し、かつ伝熱板を用いた伝導冷却が可能な超電導コイル及び超電導コイル装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a superconducting coil and a superconducting coil device that can suppress the occurrence of thermal runaway or quenching and that can be conductively cooled using a heat transfer plate. and

本実施形態にかかる超電導コイルは、超電導線材が巻回により、巻回の径方向に積層さ
れることで形成される巻回径方向に沿った一対の巻線側面部を有する巻線部材と、この巻
線部材の一方の前記巻線側面部に設けられて異なるターンの前記超電導線材同士を径方向
に電気的に接続する迂回路を有し、前記巻線部材の前記迂回路が設けられていない他方の
前記巻線側面部には巻線部材から電気的に絶縁された伝熱板が設けられている超電導コイ
ルであって、前記伝熱板を備えた方の前記巻線側面部同士もしくは前記迂回路を備えた方
の前記巻線側面部同士が対向するようにして、巻回中心軸に沿って積層させたことを特徴
とする。
The superconducting coil according to the present embodiment includes a winding member having a pair of winding side portions along the winding radial direction formed by laminating the superconducting wire material in the winding radial direction by winding, A detour is provided on one of the winding side portions of the winding member to electrically connect the superconducting wires of different turns in a radial direction , and the detour of the winding member is provided. A superconducting coil in which a heat transfer plate electrically insulated from the winding member is provided on the other winding side portion
In the coil, the winding side portions of the side provided with the heat transfer plate or the side provided with the detour
are laminated along the winding central axis so that the winding side portions of the winding face each other .

また、本実施形態にかかる超電導コイル装置は、上記超電導コイルを備えることを特徴
とする。
A superconducting coil device according to the present embodiment is characterized by including the superconducting coil described above.

本発明により、熱暴走またはクエンチの発生を抑制し、かつ伝熱板を用いた伝導冷却が
可能な超電導コイル及び超電導コイル装置を提供することができる。
According to the present invention, it is possible to provide a superconducting coil and a superconducting coil device capable of suppressing the occurrence of thermal runaway or quenching and conducting conduction cooling using a heat transfer plate.

一般的な高温超電導線材の一部切欠き斜視図。FIG. 2 is a partially cutaway perspective view of a general high-temperature superconducting wire; 高温超電導線材を巻回した巻線部材からなる超電導コイルの一例を簡略的に示す斜視図。1 is a perspective view schematically showing an example of a superconducting coil made of a winding member wound with a high-temperature superconducting wire; FIG. 超電導コイルを示す図2のII-II線のコイル径方向断面を示す断面図。FIG. 3 is a cross-sectional view showing a coil radial cross section taken along line II-II of FIG. 2 showing the superconducting coil; 図3のΩ部を拡大して示すコイル径方向断面図。FIG. 4 is a coil radial direction sectional view showing an enlarged Ω portion of FIG. 3 ; 導電性樹脂の概略断面図。Schematic cross-sectional view of a conductive resin. 本発明の第1実施形態に係る超電導コイルの要部を拡大して示すコイル径方向断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a coil radial cross-sectional view showing an enlarged main part of a superconducting coil according to a first embodiment of the present invention; 本発明の第2実施形態に係る超電導コイルの要部を拡大して示すコイル径方向断面図。FIG. 5 is a coil radial direction cross-sectional view showing an enlarged main part of a superconducting coil according to a second embodiment of the present invention. 本発明の第2実施形態の他の例に係る超電導コイルの要部を拡大して示すコイル径方向断面図。FIG. 10 is a coil radial direction cross-sectional view showing an enlarged main part of a superconducting coil according to another example of the second embodiment of the present invention. 本発明の第2実施形態の他の例に係る超電導コイルの要部を拡大して示すコイル径方向断面図。FIG. 10 is a coil radial direction cross-sectional view showing an enlarged main part of a superconducting coil according to another example of the second embodiment of the present invention.

本発明の第3実施形態に係る超電導コイルの要部を拡大して示すコイル径方向断面図。FIG. 3 is a coil radial direction cross-sectional view showing an enlarged main part of a superconducting coil according to a third embodiment of the present invention.

以下、本発明の実施形態を添付図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the accompanying drawings.

実施形態にかかる超電導コイルは、高温超電導線材および低温超電導線材のいずれにお
いても効果を発揮する。ただし、以下では、特に高い効果を発揮する高温超電導線材を用
いた場合を例にして説明する。
The superconducting coils according to the embodiments are effective for both high-temperature superconducting wires and low-temperature superconducting wires. However, in the following, the case of using a high-temperature superconducting wire that exhibits a particularly high effect will be described as an example.

(実施例1)
まず、図1の高温超電導線材20の構成斜視図を用いて、高温超電導線20の構成を説
明する。高温超電導線材20は、図1に示されるように、薄膜状の層が積層されたテープ
形状の薄膜線材20を構成している。この薄膜線材20は、例えばレアメタル酸化物(R
E酸化物)(以下、「高温超電導層25」という)を含むREBCO線材などの線材であ
る。
(Example 1)
First, the configuration of the high-temperature superconducting wire 20 will be described using the configuration perspective view of the high-temperature superconducting wire 20 in FIG. As shown in FIG. 1, the high-temperature superconducting wire 20 constitutes a tape-shaped thin-film wire 20 in which thin-film layers are laminated. This thin film wire 20 is made of, for example, a rare metal oxide (R
E oxide) (hereinafter referred to as "high-temperature superconducting layer 25"), such as a REBCO wire.

薄膜線材20は、例えば、ニッケル基合金、ステンレスまたは銅などの高強度の金属材
質である基板22と、基板22の上に形成される中間層24と、中間層24を基板22の
表面に配向させるマグネシウムなどからなる配向層23と、中間層24の上に形成される
酸化物でできた高温超電導層25と、銀、金または白金などで組成される保護層26と、
銅またはアルミニウムなどの良伝導性金属である安定化層21と、から構成される。
The thin film wire 20 includes a substrate 22 made of a high-strength metal material such as nickel-based alloy, stainless steel, or copper, an intermediate layer 24 formed on the substrate 22, and the intermediate layer 24 oriented on the surface of the substrate 22. a high-temperature superconducting layer 25 made of oxide formed on the intermediate layer 24; a protective layer 26 made of silver, gold, platinum, or the like;
and a stabilization layer 21, which is a well-conducting metal such as copper or aluminum.

中間層24は、基板22と超電導層25の熱収縮の際に起因する熱歪みを防止する。保
護層26は、高温超電導層25に含まれる酸素が超電導層25から拡散することを防止し
て、超電導層25を保護している。また、安定化層21は、超電導層25への過剰通電電
流の迂回経路となって熱暴走を防止する。ただし、薄膜線材20を構成する各層の種類お
よび数はこれに限定されるものではなく、必要に応じて多くても少なくてもよい。
Intermediate layer 24 prevents thermal distortion caused by thermal contraction of substrate 22 and superconducting layer 25 . The protective layer 26 protects the superconducting layer 25 by preventing oxygen contained in the high-temperature superconducting layer 25 from diffusing from the superconducting layer 25 . In addition, the stabilization layer 21 serves as a detour path for excessive current flow to the superconducting layer 25 to prevent thermal runaway. However, the kind and number of each layer constituting the thin film wire 20 are not limited to this, and may be as large or small as necessary.

図3は、超電導コイル10の構成を示すもので、図2のII-II線に沿うコイル径方
向断面を示す断面図である。また、図4は、図3のΩ部を拡大して示す断面図である。
FIG. 3 shows the configuration of the superconducting coil 10, and is a cross-sectional view showing a coil radial cross section taken along line II--II in FIG. Moreover, FIG. 4 is sectional drawing which expands and shows the (omega) part of FIG.

図3に示される超電導コイル10は、薄膜線材20が巻枠14へ巻回されることにより
、巻回軸方向中心Cを貫通する空間を有するパンケーキ状の巻線部材12を形成すること
によって得られる。この、薄膜線材20を同心円状に巻回してパンケーキ状に形成された
コイルをパンケーキコイルと呼ぶ。
The superconducting coil 10 shown in FIG. 3 is formed by winding the thin-film wire 20 around the winding frame 14 to form the pancake-shaped winding member 12 having a space penetrating the center C in the winding axial direction. can get. A coil formed in a pancake shape by concentrically winding the thin film wire 20 is called a pancake coil.

巻線部材12は、薄膜線材20が巻回によって積層されることで形成される一対の巻線
側面部18を有する。また、超電導コイル10において隣接する別のターンの薄膜線材2
0同士の間隙のことを単にコイルターン間と呼ぶ。図4に示すように、薄膜線材20の間
には、隣接するターン間の絶縁のために、絶縁性部材33が挿入配置される。絶縁性部材
33としては、例えばポリイミド等により形成された絶縁性のテープが好適に用いられる
。テープ状の絶縁性部材33は、薄膜線材20と共巻することによりコイルターン間に挿
入されている。
The winding member 12 has a pair of winding side portions 18 formed by laminating the thin film wire 20 by winding. In addition, in the superconducting coil 10, the thin film wire 2 of another adjacent turn
The gap between 0's is simply called between coil turns. As shown in FIG. 4, an insulating member 33 is inserted between the thin-film wires 20 for insulation between adjacent turns. As the insulating member 33, for example, an insulating tape made of polyimide or the like is preferably used. The tape-shaped insulating member 33 is inserted between the coil turns by being co-wound with the thin film wire 20 .

超電導コイル10は、エポキシ樹脂などの粘着性を有する絶縁材料で含浸されることも
ある。粘着性のある樹脂で含浸されることにより、超電導コイル10内の隣接する薄膜線
材20と絶縁性部材33が固着され、超電導コイル10の熱伝導度及び機械的強度が向上
する。なお、エポキシ樹脂などの粘着性を有する絶縁材料もターン間に挿入されることで
絶縁性部材33として働きうるが、超電導コイルターン間の確実な絶縁の為には、テープ
状のポリイミド等により確実にコイルターン間を絶縁することが好ましい。
The superconducting coil 10 may be impregnated with a sticky insulating material such as epoxy resin. By being impregnated with adhesive resin, adjacent thin film wire 20 and insulating member 33 in superconducting coil 10 are fixed, and thermal conductivity and mechanical strength of superconducting coil 10 are improved. An insulating material having adhesiveness such as epoxy resin can also work as the insulating member 33 by being inserted between the turns. Insulation between coil turns is preferred.

なお、超電導コイル10は、図4に示されるように、一対の巻線側面部18の片面に、
超電導コイル10内の異なる位置の薄膜線材20同士を電気的に接続する迂回路19を備
える。迂回路19の材料は、通常運転時においての超電導コイル10の抵抗より大きく、
かつこの超電導コイル10の常電導転移時の抵抗よりも小さい抵抗の材料が選択される。
In addition, the superconducting coil 10 has, as shown in FIG.
A detour 19 is provided to electrically connect the thin-film wires 20 at different positions within the superconducting coil 10 . The material of the detour 19 is larger than the resistance of the superconducting coil 10 during normal operation,
In addition, a material having a resistance smaller than the resistance of the superconducting coil 10 at the time of transition to normal conduction is selected.

この迂回路19の材料は、例えば、銅、ステンレス、アルミもしくはインジウムなどの
常電導金属、半導体、導電性プラスチック、セラミックス材、導電性樹脂または超電導材
料などである。また、グラファイト、炭素繊維または炭素繊維複合材などのカーボン材料
なども迂回路19として好適に用いることができる。これらの材料は、板材または箔など
にして圧着またはハンダ接続などによって電気的に巻線部材12に接続される。
The material of the detour 19 is, for example, copper, stainless steel, aluminum or indium or other normally conducting metals, semiconductors, conductive plastics, ceramics materials, conductive resins, superconducting materials, or the like. A carbon material such as graphite, carbon fiber, or carbon fiber composite material can also be suitably used as the detour 19 . These materials are made into plate materials, foils, or the like, and are electrically connected to the winding member 12 by crimping, soldering, or the like.

また、一方の巻線側面部18にメッキまたは塗布して、迂回路19を形成してもよい。
特にメッキによって迂回路19を形成すると、迂回路19を薄くすることができ、超電導
コイル10の自由な変形を阻害しない。また、この迂回路19は図5に示すような導電性
樹脂36を塗布して形成してもよい。
Alternatively, the detour 19 may be formed by plating or coating one winding side portion 18 .
In particular, when the detour 19 is formed by plating, the detour 19 can be made thin and free deformation of the superconducting coil 10 is not hindered. Alternatively, the detour 19 may be formed by applying a conductive resin 36 as shown in FIG.

この導電性樹脂36は例えば、導電性を持たない樹脂37に導電性粉末35を混入させ
たものを用いることが出来る。この場合は、導電性樹脂36に配合される導電性粉末35
の割合や種類を変更することにより、導電性樹脂36の体積抵抗率を容易に調整すること
が出来る。導電性粉末35としては、例えばカーボンブラック、炭素繊維またはグラファ
イトなどのカーボン系の粉末が用いられる。また、導電性粉末35には、金属微粒子、金
属酸化物、金属繊維またはウィスカーなどの金属系の粉末が用いられてもよい。さらに、
微粒子または合成繊維を金属コートすることで導電性粉末35にしてもよい。また、巻線
側面部18の位置ごとに異なる組成の導電性樹脂層36を塗布して迂回路19を形成して
もよい。
For the conductive resin 36, for example, a resin 37 having no conductivity mixed with conductive powder 35 can be used. In this case, the conductive powder 35 mixed with the conductive resin 36
It is possible to easily adjust the volume resistivity of the conductive resin 36 by changing the ratio and type of . As the conductive powder 35, for example, carbon-based powder such as carbon black, carbon fiber, or graphite is used. Also, the conductive powder 35 may be metal-based powder such as fine metal particles, metal oxides, metal fibers, or whiskers. moreover,
The conductive powder 35 may be formed by coating fine particles or synthetic fibers with a metal. Alternatively, the detour 19 may be formed by applying a conductive resin layer 36 having a different composition to each position of the winding side portion 18 .

ここで、迂回路19を設けることで熱暴走等が発生することを抑制できる効果について
述べる。薄膜線材20は、通電電流の限界である臨界電流に近づくにつれ、徐々に外部磁
場が侵入し、局所的に超電導状態が破壊された部分が常電導転移する。この局所的な常電
導転移に伴うフラックスフロー抵抗は、ジュール損失による発熱を発生するため、コイル
温度の上昇などで増大すると熱暴走またはクエンチ(以下、まとめて「熱暴走等」という
)を誘引する。
Here, the effect of suppressing the occurrence of thermal runaway or the like by providing the detour 19 will be described. As the thin film wire 20 approaches the critical current, which is the limit of the applied current, the external magnetic field gradually penetrates, and the part where the superconducting state is locally destroyed transitions to normal conduction. The flux flow resistance associated with this local transition to normal conduction generates heat due to Joule loss, so if it increases due to a rise in coil temperature, etc., it induces thermal runaway or quench (hereinafter collectively referred to as "thermal runaway, etc."). .

迂回路19を設けることで、薄膜線材20の一部で常電導転移による局所的なフラック
スフロー抵抗が発生したときに、コイル周方向に流れていた通電電流Iの一部Iaが、迂
回路19を介して隣接する他のターンの薄膜線材20に、コイル径方向へ迂回することが
できる。ここで、コイル周方向に流れる通電電流はIからI-Iaに減少する。このとき
、迂回路19の抵抗をRa、フラックスフロー抵抗をRとすると、コイル径方向に迂回す
る電流Iaは、R/(R+Ra)に比例する。そして、フラックスフロー抵抗の増大に伴い
、より多くの通電電流がコイル径方向に迂回することになる。
By providing the detour 19, when a local flux flow resistance due to a normal-conducting transition occurs in a part of the thin film wire 20, a part Ia of the conducting current I flowing in the coil circumferential direction is transferred to the detour 19. It is possible to make a detour in the coil radial direction to the thin film wire 20 of another turn adjacent via. Here, the current flowing in the circumferential direction of the coil decreases from I to I-Ia. At this time, assuming that the resistance of the detour 19 is Ra and the flux flow resistance is R, the current Ia detoured in the radial direction of the coil is proportional to R/(R+Ra). As the flux flow resistance increases, a larger amount of current flows in the radial direction of the coil.

よって、局所的に常電導状態に転移した常電導箇所に多量の通電電流Iが流れるのを未
然に防止することができ、熱暴走等が発生することを抑制することができる。
Therefore, it is possible to prevent a large amount of energizing current I from flowing through the normally conducting portion that has locally transitioned to the normal conducting state, and it is possible to suppress the occurrence of thermal runaway or the like.

なお、コイルターン間を、迂回路19を介して電気的に接続すると、フラックスフロー
抵抗が発生したときだけでなく、超電導コイル10を非通電状態から定格電流値まで励磁
する際にも、誘導電圧により電源から供給される通電電流Iの一部I’が、迂回路19を
介して他のターンの薄膜線材20に、コイル径方向へ迂回してしまう。励磁完了後は誘導
電圧が発生しないため、迂回路19に流れた電流I’は徐々にコイル周方向に流れ込むこ
ととなり、設計した磁場の値に到達するまでに時間を要する。したがって、コイルターン
間の抵抗を低くすればするほど、より多くの電流が励磁中に迂回してしまい、不要に励磁
時間が長くなってしまう。迂回路19の抵抗Raはフラックスフロー抵抗発生時に十分な
量の電流が迂回路へ転流できる程度に小さな抵抗で、かつ、超電導コイル10を非通電状
態から定格電流値まで励磁する際に不要に励磁時間が長くしないほどに大きな抵抗となる
ように設定することが好ましい。
Note that if the coil turns are electrically connected via the detour 19, the induced voltage is reduced not only when the flux flow resistance is generated, but also when the superconducting coil 10 is excited from the non-energized state to the rated current value. A part I′ of the current I supplied from the power source is detoured to the thin film wire 20 of another turn through the detour 19 in the radial direction of the coil. Since no induced voltage is generated after completion of excitation, the current I' flowing through the detour 19 gradually flows in the circumferential direction of the coil, and it takes time to reach the designed value of the magnetic field. Therefore, the lower the resistance between the coil turns, the more current is bypassed during excitation, unnecessarily lengthening the excitation time. The resistance Ra of the detour 19 is small enough to allow a sufficient amount of current to commutate to the detour when flux flow resistance occurs, and is unnecessary when the superconducting coil 10 is excited from a non-energized state to a rated current value. It is preferable to set the resistance so as not to increase the excitation time.

図6は、第1実施形態にかかる超電導コイル10のコイル径方向断面を示したものであ
る。第1実施形態にかかる超電導コイル10においては、伝熱板17が超電導コイル10
の一対の巻線側面部18の内、迂回路19が設けられていない他方の巻線側面部18に設
けられており、巻線部材12と伝熱板17が電気的に絶縁されている。伝熱板17の材料
としては熱伝導率が高い物質が好ましく、アルミニウム、銅などの金属が好適に用いられ
る。これらの材料は板材または箔などにして超電導コイル10の他方の巻線側面部18に
接着される。
FIG. 6 shows a coil radial cross section of the superconducting coil 10 according to the first embodiment. In the superconducting coil 10 according to the first embodiment, the heat transfer plate 17 is
Of the pair of winding side portions 18, the detour 19 is provided in the other winding side portion 18 where the detour 19 is not provided, and the winding member 12 and the heat transfer plate 17 are electrically insulated. As a material for the heat transfer plate 17, a substance having a high thermal conductivity is preferable, and a metal such as aluminum or copper is preferably used. These materials are made into plates or foils and adhered to the other winding side portion 18 of the superconducting coil 10 .

伝熱板17は図示しない冷凍機に直接、もしくは他の伝熱部材を介して間接的に熱的に
接続されており、超電導コイル10で発生した熱を取り除く作用がある。巻線部材12と
伝熱板17を電気的に絶縁する方法としては、エポキシ樹脂等の電気的に絶縁性の接着剤
を用いて巻線部材12に伝熱板17を接着することができる。もちろん、巻線部材12を
エポキシ樹脂等の絶縁性の含侵材を用いて含浸してもよい。巻線部材12と伝熱板17の
間に電気的な絶縁板16を挿入してもよく、絶縁板16としては繊維強化プラスチック等
が好適に用いられる。巻線部材12と伝熱板17の間に絶縁板16を挿入する場合、巻線
部材12、絶縁板16、伝熱板17を互いにエポキシ樹脂で接着することで、巻線部材1
2と伝熱板17を熱的に接続しつつ、電気的な絶縁性を向上させることができる。
The heat transfer plate 17 is thermally connected to a refrigerator (not shown) directly or indirectly via another heat transfer member, and has the effect of removing heat generated by the superconducting coil 10 . As a method for electrically insulating the winding member 12 and the heat transfer plate 17, the heat transfer plate 17 can be adhered to the winding member 12 using an electrically insulating adhesive such as epoxy resin. Of course, the winding member 12 may be impregnated with an insulating impregnating material such as epoxy resin. An electrical insulating plate 16 may be inserted between the winding member 12 and the heat transfer plate 17, and the insulating plate 16 is preferably made of fiber-reinforced plastic or the like. When inserting the insulating plate 16 between the winding member 12 and the heat transfer plate 17, the winding member 1 is bonded by bonding the winding member 12, the insulating plate 16, and the heat transfer plate 17 together with an epoxy resin.
2 and the heat transfer plate 17 can be thermally connected, and electrical insulation can be improved.

上述したように、迂回路19の材料は、通常運転時においての超電導コイル10の抵抗
より大きく、かつこの超電導コイル10の常電導転移時の抵抗よりも小さい抵抗の材料が
選択される。例として、薄膜線材20が全長にわたり常電導転移した時の、超電導コイル
全長にわたるフラックスフロー抵抗をRnとして、迂回路19の抵抗Ra=R/10とし
た場合、R/(R+Ra)=0.9となり、通電電流の約90%がコイル径方向に迂回する
。この状態で迂回路19に過大な電圧が発生した際に、伝熱板17が迂回路19と同じ側
の巻線部側面18に設けられている場合、仮に伝熱板17が絶縁されていたとしても、絶
縁破壊によりコイル径方向に迂回している電流(通電電流の90%)が伝熱板17に流れ
る恐れがある。
As described above, the material of the detour 19 is selected to have a resistance greater than the resistance of the superconducting coil 10 during normal operation and less than the resistance of the superconducting coil 10 during the transition to normal conduction. For example, when the flux flow resistance over the entire length of the superconducting coil is Rn when the thin film wire 20 transitions to normal conduction over the entire length, and the resistance of the detour 19 is Ra=R/10, then R/(R+Ra)=0.9. Approximately 90% of the applied current is detoured in the radial direction of the coil. When an excessive voltage is generated in the detour 19 in this state, if the heat transfer plate 17 is provided on the winding part side surface 18 on the same side as the detour 19, the heat transfer plate 17 is temporarily insulated. Even so, there is a risk that the current (90% of the energized current) detoured in the radial direction of the coil due to dielectric breakdown will flow through the heat transfer plate 17 .

第1実施形態にかかる超電導コイル10では、伝熱板17が迂回路19とは巻線部材1
2を隔てて反対側の側面に絶縁されて設けられているため、この状態で迂回路19に過大
な電圧が発生したとしても、迂回路19を流れる電流が伝熱板17に直接流れ込む恐れが
ない。また、仮に巻線部材12と伝熱板17の間で絶縁破壊を起こしたとしても、伝熱板
17に流れる電流は通電電流の10%程度であり、伝熱板17が迂回路19と同じ側の巻
線部側面18に設けられている場合に比べて大幅に低減できる。
In the superconducting coil 10 according to the first embodiment, the heat transfer plate 17 is different from the detour 19 in the winding member 1 .
2, even if an excessive voltage is generated in the detour 19 in this state, the current flowing through the detour 19 may directly flow into the heat transfer plate 17. do not have. Moreover, even if a dielectric breakdown occurs between the winding member 12 and the heat transfer plate 17, the current flowing through the heat transfer plate 17 is about 10% of the current, and the heat transfer plate 17 is the same as the detour 19. This can be greatly reduced compared to the case where it is provided on the side winding portion side surface 18 .

したがって、従来例よりも絶縁破壊が生じた際に伝熱板17に流れる電流を軽減するこ
とができるため、伝熱板17につながれた冷凍機等の機器の故障確率を低減することがで
きる。
Therefore, the current flowing through the heat transfer plate 17 when dielectric breakdown occurs can be reduced more than in the conventional example, so the failure probability of equipment such as a refrigerator connected to the heat transfer plate 17 can be reduced.

(実施例2)
次に、図7、図8、図9を用いて実施例2を説明する。なお、実施例1と同一の構成に
は同一の符号を付し、重複する説明は省略する。
(Example 2)
Next, Example 2 will be described with reference to FIGS. 7, 8, and 9. FIG. In addition, the same code|symbol is attached|subjected to the structure same as Example 1, and the overlapping description is abbreviate|omitted.

第2実施形態にかかる超電導コイル40は、図7に示されるように、図6の超電導コイ
ル10を、伝熱板17を備えた方の巻線側面部18同士もしくは迂回路19を備えた方の
巻線側面部18同士が対向するようにして、巻回中心軸に沿って積層される。この際、隣
接して対向する2つの伝熱板17を一体化させて1つの伝熱板17に置き換えてもよい。
As shown in FIG. 7, the superconducting coil 40 according to the second embodiment is the superconducting coil 10 shown in FIG. are laminated along the winding central axis so that the winding side portions 18 face each other. In this case, the two adjacent heat transfer plates 17 may be integrated to replace one heat transfer plate 17 .

また、隣接して対向する2つの迂回路19を一体化させて1つの迂回路19に置き換えて
もよい。この場合、隣り合う超電導コイル10同士が電気的に接続されるため、超電導コ
イル10を流れる電流が隣り合う超電導コイル10へ迂回路19を通って転流することが
できる。ただし、超電導コイル10間を電気的に接続した場合、超電導コイル10のター
ン間を電気的に接続した場合と同様に励磁時間が長くなってしまう。このことから、励磁
時間を増加させないためには、他の実施例として図8に示すように超電導コイル41の迂
回路19と迂回路19の間の対向面に迂回路絶縁板42を挿入してもよい。
Alternatively, two detours 19 facing each other adjacently may be integrated and replaced with one detour 19 . In this case, since the adjacent superconducting coils 10 are electrically connected to each other, the current flowing through the superconducting coils 10 can be commutated to the adjacent superconducting coils 10 through the detour 19 . However, when the superconducting coils 10 are electrically connected, the excitation time becomes longer as in the case where the turns of the superconducting coil 10 are electrically connected. For this reason, in order not to increase the excitation time, as another embodiment shown in FIG. good too.

迂回路絶縁板42としては、板形状の繊維強化プラスチック等を用いることができる。
また、迂回路絶縁部材42としてエポキシ樹脂等を塗布して形成することができる。
A plate-shaped fiber-reinforced plastic or the like can be used as the detour insulating plate 42 .
Alternatively, the detour insulating member 42 can be formed by applying an epoxy resin or the like.

また、他の実施例として図9に示すように超電導コイル43の迂回路19が対向してい
る間隙に、巻回軸方向の伝熱性能を鑑みて薄く形成されたエポキシ樹脂、繊維強化プラス
チック等の絶縁材によって迂回路19との対向面が絶縁された絶縁均熱板13が設けられ
ていてもよい。絶縁均熱板13の材料としては伝熱板17と同様にアルミニウムや銅など
の熱伝導率が高い金属が好的に用いられる。そして、絶縁均熱板13は熱を伝えやすくす
るために迂回路19よりも厚く構成されている。よって、絶縁均熱板13は冷凍機等の超
電導コイルの外部の機器には絶縁材によって電気的に接続されておらず、隣り合う超電導
コイル10間を電気的に絶縁し、かつ隣り合う超電導コイル10内の温度を均一に保つ効
果を得ることができる。
As another embodiment, as shown in FIG. 9, a thin layer of epoxy resin, fiber reinforced plastic, or the like is formed in the gap where the detour 19 of the superconducting coil 43 faces in view of the heat transfer performance in the direction of the winding axis. An insulating heat equalizing plate 13 having a surface facing the detour 19 insulated with an insulating material may be provided. As the material of the insulating and heat equalizing plate 13, similarly to the heat transfer plate 17, a metal having a high thermal conductivity such as aluminum or copper is preferably used. The insulating and heat equalizing plate 13 is thicker than the detour 19 in order to facilitate heat transfer. Therefore, the insulating soaking plate 13 is not electrically connected to equipment outside the superconducting coils such as a refrigerator by an insulating material, and electrically insulates the adjacent superconducting coils 10 and The effect of keeping the temperature in 10 uniform can be obtained.

第2実施形態にかかる積層された超電導コイル40、41、43においても、伝熱板1
7が迂回路19とは巻線部材12を隔てて反対側の巻線側面部18に絶縁されて設けられ
ているため、この状態で迂回路19に過大な電圧が発生したとしても、迂回路19を流れ
る電流が伝熱板17に直接流れ込む恐れがない。また、仮に隣接して対向する迂回路19
同士の間に設けられた絶縁板16や、絶縁均熱板13を迂回路19から絶縁するための絶
縁体が絶縁破壊を起こしたとしても、伝熱板17は巻線部材12を隔てて迂回路19とは
反対側の巻線側面部18に位置しているので、迂回路19を流れる電流が伝熱板17に流
れ込む恐れがない。
In the laminated superconducting coils 40, 41, and 43 according to the second embodiment, the heat transfer plate 1
7 is insulated from the winding side portion 18 on the opposite side across the winding member 12 from the detour 19, so even if an excessive voltage is generated in the detour 19 in this state, the detour There is no danger that the current flowing through 19 will directly flow into the heat transfer plate 17 . In addition, if the detour 19 that is adjacent and faces
Even if the insulating plate 16 provided between them or the insulator for insulating the insulating and heat equalizing plate 13 from the detour 19 causes a dielectric breakdown, the heat transfer plate 17 is detoured across the winding member 12. Since it is positioned on the winding side portion 18 opposite to the path 19 , there is no danger that the current flowing through the detour 19 will flow into the heat transfer plate 17 .

したがって、実施例1の場合と同様に絶縁破壊が生じた際に従来例よりも伝熱板17に
流れる電流を軽減することができるため、伝熱板17につながれた冷凍機等の機器の故障
確率を低減することができる。
Therefore, as in the case of the first embodiment, when dielectric breakdown occurs, the current flowing through the heat transfer plate 17 can be reduced more than in the conventional example. Probability can be reduced.

(実施例3)
次に、図10を用いて実施例3を説明する。なお、実施例1および実施例2と同一の構
成には同一の符号を付し、重複する説明は省略する。
(Example 3)
Next, Example 3 will be described with reference to FIG. In addition, the same code|symbol is attached|subjected to the structure same as Example 1 and Example 2, and the overlapping description is abbreviate|omitted.

第3実施形態にかかる積層された超電導コイル50は、図4対応の図10に示されるよ
うに、超電導コイル10の少なくとも一部のコイルターン間に離形材34が挿入されてお
り、前記離型材34と隣接する薄膜線材20との接着力を弱めて構成されている。離形材
34とは、離形材34と隣接する薄膜線材20との間の離形性がよいものであれば何でも
よい。例えば、絶縁材部材33にフッ素樹脂、パラフィン、グリース、シリコンオイル等
を接着もしくは塗布したものを用いることができる。
In the laminated superconducting coil 50 according to the third embodiment, as shown in FIG. 10 corresponding to FIG. The adhesive force between the mold material 34 and the adjacent thin film wire 20 is weakened. Any material may be used as the release material 34 as long as the separation property between the release material 34 and the adjacent thin film wire 20 is good. For example, the insulating material member 33 can be used by adhering or applying fluorine resin, paraffin, grease, silicon oil, or the like.

超電導コイル10の使用時には、超電導コイル10内において運転温度までの冷却時に
発生するコイル径方向の熱応力および励磁により発生する電磁応力などの剥離応力がかか
る。特に、超電導コイル10を樹脂含浸する場合に、薄膜線材20の熱収縮率と超電導コ
イル10の含侵に用いた樹脂の熱収縮率との差に起因して生じる熱応力で、薄膜線材20
に許容値以上の剥離応力がかかることがある。
When the superconducting coil 10 is used, the superconducting coil 10 is subjected to thermal stress in the coil radial direction generated during cooling to the operating temperature and separation stress such as electromagnetic stress generated by excitation. In particular, when the superconducting coil 10 is impregnated with a resin, the thermal stress caused by the difference between the thermal contraction rate of the thin film wire 20 and the thermal contraction rate of the resin used for impregnating the superconducting coil 10 causes the thin film wire 20 to
may be subjected to peel stress exceeding the allowable value.

この薄膜線材20に許容値以上の剥離応力がかかると、薄膜線材20内部の高温超電導
層25が機械的に破壊されるため、超電導特性の低下(劣化)が生じる。超電導特性が劣
化すると、臨界電流値が著しく低下するため、通常、発生しないはずの通電電流値におい
てもフラックスフロー抵抗が発生してしまうため、定格運転時においても迂回路19に電
流が迂回し、コイル周方向に流れる通電電流が減ってしまう。超電導コイル10が発生す
る磁場は、コイル周方向に流れる通電電流に比例することから、この超電導コイル10で
設計した磁場を発生することができない。
When the thin film wire 20 is subjected to a peeling stress exceeding the allowable value, the high-temperature superconducting layer 25 inside the thin film wire 20 is mechanically destroyed, resulting in deterioration (degradation) of superconducting properties. When the superconducting property deteriorates, the critical current value is significantly lowered, so flux flow resistance is generated even at the energized current value that should not normally occur. The current flowing in the circumferential direction of the coil is reduced. Since the magnetic field generated by the superconducting coil 10 is proportional to the current flowing in the circumferential direction of the coil, the designed magnetic field cannot be generated by the superconducting coil 10 .

よって、超電導コイル10に薄膜線材20を用いる場合、剥離応力が許容値以上になら
ないように工夫する必要がある。ここで、冷却時に発生するコイル径方向の熱応力は、コ
イルの内径と外径の比に依存する。第9実施形態にかかる超電導コイル50(10)では
、離形材34によって巻線部材12を複数に分割することで、分割された各々の巻線部材
の内径と外径比の比を小さく設定することができ、剥離応力を許容値以下にすることがで
きる。
Therefore, when the thin-film wire 20 is used for the superconducting coil 10, it is necessary to devise measures so that the peel stress does not exceed the allowable value. Here, the thermal stress in the radial direction of the coil that occurs during cooling depends on the ratio of the inner diameter to the outer diameter of the coil. In the superconducting coil 50 (10) according to the ninth embodiment, the winding member 12 is divided into a plurality of pieces by the release member 34, so that the ratio of the inner diameter to the outer diameter of each divided winding member is set small. It is possible to keep the peel stress below the allowable value.

第3実施形態にかかる超電導コイル50によれば、実施例1で説明したコイルターン間
に離形材34を挿入することにより、薄膜線材20に加わる剥離応力を許容値以下にする
ことができる。したがって、超電導特性の劣化を防止できるため、定格運転時には設計し
た磁場の発生が可能になるとともに、局所的な常電導転移に伴うフラックスフロー抵抗が
発生した際には熱暴走を回避することができる。
According to the superconducting coil 50 according to the third embodiment, by inserting the release material 34 between the coil turns described in the first embodiment, the delamination stress applied to the thin film wire 20 can be reduced to an allowable value or less. Therefore, deterioration of superconducting properties can be prevented, so that a designed magnetic field can be generated during rated operation, and thermal runaway can be avoided when flux flow resistance occurs due to a local normal-conducting transition. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したも
のであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様
々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、
置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の
範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含
まれるものである。
While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions,
Substitutions, modifications and combinations can be made. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

例えば、本実施例1から3では、迂回路、導電性部材及び絶縁材が設けられた巻線部材
の形状として、いわゆるパンケーキ形状の超電導コイルを例示した。しかし、適用できる
巻線部材は、パンケーキ形状のものに限定されない。また、レーストラック型、鞍型、楕
円型などの非円形形状コイルなどにも適用することができる。
For example, in Examples 1 to 3, a so-called pancake-shaped superconducting coil was exemplified as the shape of the winding member provided with the detour, the conductive member, and the insulating material. However, applicable winding members are not limited to pancake-shaped ones. It can also be applied to non-circular coils such as racetrack, saddle, and elliptical coils.

また上記超電導コイルを重粒子治療装置等の磁場発生源として必要な装置に組み込むこ
とによって、所望の磁場を発生させる超電導コイル装置とすることが可能である。
Further, by incorporating the superconducting coil into a device such as a heavy particle therapy device that is required as a magnetic field generating source, it is possible to obtain a superconducting coil device that generates a desired magnetic field.

さらに、必要に応じて通常の超電導コイルと組み合わせて積層させ、熱暴走またはクエ
ンチの発生の可能性が高い部分のみに本発明の超電導コイルを採用して配置することも可
能である。
Furthermore, if necessary, it is possible to combine and stack a normal superconducting coil, and adopt and arrange the superconducting coil of the present invention only in a portion where thermal runaway or quenching is highly likely to occur.

10…超電導コイル、12…巻線部材、13…絶縁均熱板、14…巻枠、16…絶縁板(
絶縁部材)、17…伝熱板、18…巻線側面部、19…迂回路、20…高温超電導線材(
薄膜線材)、21…安定化層、22…基板、23…配向層、24…中間層、25…高温超
電導層、26…保護層、33…絶縁性部材、34…離形材、35…導電性粉末、36…導
電性樹脂、37…導電性を持たない樹脂、40,41,43…超電導コイル、42…迂回
路絶縁板(迂回路絶縁部材)、50…超電導コイル。
DESCRIPTION OF SYMBOLS 10... Superconducting coil, 12... Winding member, 13... Insulating soaking plate, 14... Winding frame, 16... Insulating plate (
insulating member), 17 heat transfer plate, 18 winding side portion, 19 detour, 20 high-temperature superconducting wire (
Thin film wire) 21 Stabilizing layer 22 Substrate 23 Orientation layer 24 Intermediate layer 25 High-temperature superconducting layer 26 Protective layer 33 Insulating member 34 Release material 35 Conductive conductive powder 36 conductive resin 37 non-conductive resin 40, 41, 43 superconducting coil 42 detour insulating plate (detour insulating member) 50 superconducting coil.

Claims (11)

超電導線材が巻回により、巻回の径方向に積層されることで形成される巻回径方向に沿
った一対の巻線側面部を有する巻線部材と、この巻線部材の一方の前記巻線側面部に設け
られて異なるターンの前記超電導線材同士を径方向に電気的に接続する迂回路を有し、
記巻線部材の前記迂回路が設けられていない他方の前記巻線側面部には巻線部材から電気
的に絶縁された伝熱板が設けられている超電導コイルであって、
前記伝熱板を備えた方の前記巻線側面部同士もしくは前記迂回路を備えた方の前記巻線
側面部同士が対向するようにして、巻回中心軸に沿って積層させたことを特徴とする超電
導コイル。
A winding member having a pair of winding side faces along the winding radial direction formed by laminating a superconducting wire material in the winding radial direction by winding, and one winding of the winding member A detour is provided on the wire side surface portion to electrically connect the superconducting wires of different turns in the radial direction , and the other winding side portion of the winding member is not provided with the detour path. is a superconducting coil provided with a heat transfer plate electrically insulated from the winding member,
The winding side portions provided with the heat transfer plate or the winding provided with the detour
A superconducting coil characterized by being laminated along a winding central axis so that side portions face each other .
前記伝熱板は、電気的にこの伝熱板を絶縁する絶縁部材を介して前記巻線部材に設けら
れることを特徴とする請求項1記載の超電導コイル。
2. A superconducting coil according to claim 1, wherein said heat transfer plate is provided on said winding member via an insulating member that electrically insulates said heat transfer plate.
積層させた前記超電導コイルの隣接した前記伝熱板または前記迂回路は一体化させた部
材としたことを特徴とする請求項記載の超電導コイル。
2. A superconducting coil according to claim 1 , wherein said adjacent heat transfer plates or said detours of said laminated superconducting coils are integral members.
積層させた前記超電導コイルの、隣接して対向した前記迂回路はその対向面に電気的に
この迂回路を絶縁する迂回路絶縁部材が設けられていることを特徴とする請求項記載の
超電導コイル。
2. The superconducting structure according to claim 1 , wherein the detours of the stacked superconducting coils are provided with a detour insulation member for electrically insulating the detours on the facing surfaces of the adjacently opposed detours. coil.
積層させた前記超電導コイルの、隣接して対向した前記迂回路はその対向面に電気的に
この迂回路を絶縁し、かつ隣接した前記超電導コイル内の温度を均一に保つ絶縁均熱板が
設けられていることを特徴とする請求項記載の超電導コイル。
In the laminated superconducting coils, adjacently facing detours are provided with an insulating heat equalizing plate on the facing surface to electrically insulate the detours and keep the temperature in the adjacent superconducting coils uniform. 2. The superconducting coil according to claim 1 , wherein the superconducting coil is
前記迂回路は導電性樹脂からなることを特徴とする請求項1から請求項のいずれか1
項記載の超電導コイル。
6. The detour according to any one of claims 1 to 5 , wherein the detour is made of a conductive resin.
A superconducting coil according to any one of claims 1 to 3.
前記絶縁部材はエポキシ樹脂または繊維強化プラスチックからなることを特徴とする請
求項2に記載の超電導コイル。
3. A superconducting coil according to claim 2, wherein said insulating member is made of epoxy resin or fiber reinforced plastic.
前記迂回路絶縁部材はエポキシ樹脂または繊維強化プラスチックからなることを特徴と
する請求項に記載の超電導コイル。
5. A superconducting coil according to claim 4 , wherein said detour insulating member is made of epoxy resin or fiber reinforced plastic.
前記巻線部材のターン間には隣接する前記超電導線材同士の接着力を弱める離型材が挿
入されていることを特徴とする請求項1から請求項のいずれか1項記載の超電導コイル
9. The superconducting coil according to any one of claims 1 to 8 , wherein a release material is inserted between the turns of the winding member to weaken the adhesive force between the adjacent superconducting wires.
請求項1から請求項のいずれか1項に記載の超電導コイルを備えることを特徴とする
超電導コイル装置。
A superconducting coil device comprising the superconducting coil according to any one of claims 1 to 9 .
請求項1から請求項のいずれか1項に記載の超電導コイルを含む複数の超電導コイル
が巻回中心に沿って積層されたことを特徴とする超電導コイル装置。
A superconducting coil device comprising a plurality of superconducting coils, including the superconducting coil according to any one of claims 1 to 9, laminated along the winding center.
JP2018137053A 2018-07-20 2018-07-20 Superconducting coil and superconducting coil device Active JP7222622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018137053A JP7222622B2 (en) 2018-07-20 2018-07-20 Superconducting coil and superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018137053A JP7222622B2 (en) 2018-07-20 2018-07-20 Superconducting coil and superconducting coil device

Publications (2)

Publication Number Publication Date
JP2020013960A JP2020013960A (en) 2020-01-23
JP7222622B2 true JP7222622B2 (en) 2023-02-15

Family

ID=69169619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018137053A Active JP7222622B2 (en) 2018-07-20 2018-07-20 Superconducting coil and superconducting coil device

Country Status (1)

Country Link
JP (1) JP7222622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496453B (en) * 2022-01-29 2023-12-22 中国科学院电工研究所 Niobium three-tin superconducting magnet with quench protection and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243588A (en) 2007-03-27 2008-10-09 Toshiba Corp High-temperature superconductive wire, high-temperature superconductive coil, and its manufacturing method
JP2014112617A (en) 2012-12-05 2014-06-19 Toshiba Corp Superconducting coil and manufacturing method thereof
JP2017103352A (en) 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2017117980A (en) 2015-12-25 2017-06-29 三菱電機株式会社 Superconducting magnet and superconducting magnet device for MRI
JP2018101465A (en) 2016-12-19 2018-06-28 株式会社東芝 Superconducting coil, method for manufacturing superconducting coil, and superconducting coil device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243588A (en) 2007-03-27 2008-10-09 Toshiba Corp High-temperature superconductive wire, high-temperature superconductive coil, and its manufacturing method
JP2014112617A (en) 2012-12-05 2014-06-19 Toshiba Corp Superconducting coil and manufacturing method thereof
JP2017103352A (en) 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2017117980A (en) 2015-12-25 2017-06-29 三菱電機株式会社 Superconducting magnet and superconducting magnet device for MRI
JP2018101465A (en) 2016-12-19 2018-06-28 株式会社東芝 Superconducting coil, method for manufacturing superconducting coil, and superconducting coil device

Also Published As

Publication number Publication date
JP2020013960A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US11967458B2 (en) Superconducting coil and superconducting coil device
JP5823116B2 (en) Superconducting coil
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP6666274B2 (en) High temperature superconducting permanent current switch and high temperature superconducting magnet device
JP6490851B2 (en) Superconducting coil and superconducting coil device
JP2010267835A (en) Superconductive coil
JP5921940B2 (en) Superconducting coil conductive cooling plate and superconducting coil device
JP2018101465A (en) Superconducting coil, method for manufacturing superconducting coil, and superconducting coil device
JP5022279B2 (en) Oxide superconducting current lead
JP6180729B2 (en) Superconducting coil and manufacturing method thereof
JP7222622B2 (en) Superconducting coil and superconducting coil device
JP6548916B2 (en) High temperature superconducting coil
JP2013247291A (en) Superconducting coil device
JP2001093721A (en) High-temperature superconducting magnet
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
JP5969418B2 (en) Permanent current switch
JP6005428B2 (en) Superconducting coil and superconducting coil device
JP7404187B2 (en) Superconducting coils and superconducting coil devices
JP2020136637A (en) High-temperature superconducting magnet device
JP7247080B2 (en) Superconducting coil device
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2021048154A (en) Conduction-cooled superconducting coil
JP2023044839A (en) Superconducting coil and superconducting coil device
JP2022174411A (en) Superconducting coil and method for manufacturing superconducting coil
JP7566682B2 (en) Superconducting coil and superconducting coil device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221130

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230203

R150 Certificate of patent or registration of utility model

Ref document number: 7222622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150