JP7404187B2 - Superconducting coils and superconducting coil devices - Google Patents

Superconducting coils and superconducting coil devices Download PDF

Info

Publication number
JP7404187B2
JP7404187B2 JP2020125079A JP2020125079A JP7404187B2 JP 7404187 B2 JP7404187 B2 JP 7404187B2 JP 2020125079 A JP2020125079 A JP 2020125079A JP 2020125079 A JP2020125079 A JP 2020125079A JP 7404187 B2 JP7404187 B2 JP 7404187B2
Authority
JP
Japan
Prior art keywords
superconducting
winding
superconducting coil
wire
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125079A
Other languages
Japanese (ja)
Other versions
JP2022021490A (en
Inventor
達郎 宇都
貞憲 岩井
寛史 宮崎
圭 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020125079A priority Critical patent/JP7404187B2/en
Publication of JP2022021490A publication Critical patent/JP2022021490A/en
Application granted granted Critical
Publication of JP7404187B2 publication Critical patent/JP7404187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、熱暴走またはクエンチを防止する機能を備えた超電導コイル及び超電導コイル装置に関する。 Embodiments of the present invention relate to a superconducting coil and a superconducting coil device having a function of preventing thermal runaway or quenching.

超電導線材には、超電導状態を維持できる電流、温度、磁場の範囲、いわゆる臨界電流、臨界温度、臨界磁場が存在する。したがって電気抵抗がほぼゼロといえども無限に電流が流せるわけではなく、いずれかの臨界値を超えると、常電導状態への転移現象、すなわちクエンチが発生する。このようなクエンチによる常電導転移領域のジュール発熱は、瞬時に超電導コイルを熱暴走させ、最悪の場合、焼損に至る危険性があるため、クエンチに対する保護技術が不可欠である。 A superconducting wire has a range of current, temperature, and magnetic field that can maintain a superconducting state, that is, a so-called critical current, critical temperature, and critical magnetic field. Therefore, even though the electrical resistance is almost zero, it does not mean that the current can flow infinitely; if any critical value is exceeded, a transition phenomenon to a normal conduction state, that is, quenching occurs. Joule heat generation in the normal conduction transition region caused by such quenching can cause instantaneous thermal runaway in the superconducting coil, and in the worst case, there is a risk of burnout, so protection technology against quenching is essential.

クエンチ保護に関する従来技術としては、例えば超電導コイルと並列に保護抵抗をつなぐ方法がある。この本方法は、常電導状態に転移することで発生するコイル電圧や温度上昇を検出し、これをトリガーとして励磁電源を遮断するものである。遮断後は超電導コイルと保護抵抗の閉回路となるため、室温部に配置した保護抵抗のジュール発熱で超電導コイルの蓄積エネルギーが消費され、コイルに流れる電流を減衰させることができる。 As a conventional technique regarding quench protection, for example, there is a method of connecting a protection resistor in parallel with a superconducting coil. This method detects the coil voltage and temperature rise that occur due to transition to a normal conduction state, and uses this as a trigger to cut off the excitation power source. After shutoff, the superconducting coil and protective resistor form a closed circuit, so the Joule heat generated by the protective resistor placed at room temperature consumes the energy stored in the superconducting coil, making it possible to attenuate the current flowing through the coil.

このような超電導コイルに使用する超電導線材としては、例えばBiSrCaCu10線材やRE線材といった高温超電導線材がある。高温超電導線材を用いた超電導コイルでは、従来のNbTi等の低温超電導線材に比べ、20K~50Kといった高い温度でも高い臨界電流密度を有するため、高温での高電流密度運転が可能となる。 Examples of superconducting wires used in such superconducting coils include high-temperature superconducting wires such as Bi 2 Sr 2 Ca 2 Cu 3 O 10 wire and RE 1 B 2 C 3 O 7 wire. A superconducting coil using a high-temperature superconducting wire has a higher critical current density even at a high temperature of 20K to 50K than a conventional low-temperature superconducting wire such as NbTi, so high current density operation at high temperatures is possible.

しかしながら、高電流密度運転時にクエンチが生じた場合、20K~50Kの温度範囲では、低温超電導線材を使ったマグネットの運転温度よりも比熱が大きいために常電導転移領域の拡大が遅く、また高電流密度運転をすると発熱密度も高くなるため、上述した従来技術のクエンチ保護方法では、検知する前に局所的に熱暴走が発生し焼損してしまう可能性がある。 However, if quenching occurs during high current density operation, the expansion of the normal conduction transition region is slow in the temperature range of 20K to 50K because the specific heat is larger than the operating temperature of magnets using low-temperature superconducting wires, and When high-density operation is performed, the density of heat generation increases, so in the conventional quench protection method described above, there is a possibility that thermal runaway occurs locally and burnout occurs before detection.

そこで、超電導コイル内部の異なるターンの超電導線材同士がターン間で短絡されていれば、常電導転移した部分に流れる電流を異なるターンの超電導線材に迂回させることができる。電流が常電導部分を迂回することで、常電導転移領域での局所的な発熱、および熱暴走を抑制することが可能である。 Therefore, if the superconducting wires in different turns inside the superconducting coil are short-circuited between turns, the current flowing through the part where the normal conduction transition has occurred can be diverted to the superconducting wire in different turns. By causing the current to bypass the normal conducting portion, it is possible to suppress local heat generation and thermal runaway in the normal conducting transition region.

具体的には、例えば超電導コイルのコイル径方向に沿った巻線部の側面に超電導線材と電気的に接続された迂回路を設けることにより、迂回路を介して異なるターンの超電導線材同士を短絡する手段が開示されている(特許文献1)。 Specifically, for example, by providing a detour electrically connected to the superconducting wire on the side surface of the winding portion of the superconducting coil along the coil radial direction, superconducting wires of different turns can be short-circuited via the detour. A means for doing so has been disclosed (Patent Document 1).

また、電極部については最外周のターンの超電導線材と、巻線部の最外周よりも1ターン内の超電導線材との間に電極が配置される超電導コイルが開示されている(特許文献2)。 Furthermore, regarding the electrode part, a superconducting coil is disclosed in which the electrode is arranged between the superconducting wire of the outermost turn and the superconducting wire within one turn of the outermost turn of the winding part (Patent Document 2). .

さらに、電極と超電導線材の接合部の構造として、超電導線材の上に設けられた電極の少なくとも一部を覆うようにカバー用超電導テープを設け、これらを互いに電気的に接続する構造が開示されている(特許文献3)。その際、超電導線材とカバー用超電導テープを電気的に接続する具体的な方法としては、はんだ付けが用いられている。 Furthermore, as a structure of a joint between an electrode and a superconducting wire, a structure is disclosed in which a superconducting tape for a cover is provided so as to cover at least a part of the electrode provided on the superconducting wire, and these are electrically connected to each other. (Patent Document 3). At this time, soldering is used as a specific method for electrically connecting the superconducting wire and the superconducting tape for the cover.

特許6486817号公報Patent No. 6486817 特許5858723号公報Patent No. 5858723 特許5568361号公報Patent No. 5568361

しかしながら、最も外周側(最外周)のターンもしくは最も内周側(最内周)のターンにおいて常電導転移が生じた場合、他のターンで常電導転移が生じた場合と比較して、隣り合う超電導線材間の迂回路の面積が小さくなるため、相対的に迂回路の抵抗値が大きくなり、電流が十分に迂回できずに、超電導コイルの温度を上昇させてクエンチを引き起こす恐れがあった。 However, if a normal conduction transition occurs in the outermost (outermost) turn or the innermost (innermost) turn, compared to the case in which a normal conduction transition occurs in other turns, Since the area of the detour between the superconducting wires becomes smaller, the resistance value of the detour becomes relatively large, and the current cannot be sufficiently detoured, raising the temperature of the superconducting coil and causing quenching.

また、巻線部の最外周よりも1ターン内の超電導線材は、電極に絶縁材からなる接着剤で接合されているために、電極とは電気的に接続されておらず、超電導コイルを流れる電流は超電導コイルの最外周のターンの超電導線材のみを介して電極へ流出する。したがって、最外周ターンの超電導線材で常電導転移が生じた際は、電流が常電導転移部分を避けて電極へ流れる経路が存在せず、焼損してしまう恐れがあった。 In addition, the superconducting wire within one turn from the outermost circumference of the winding section is bonded to the electrode with an adhesive made of insulating material, so it is not electrically connected to the electrode and flows through the superconducting coil. Current flows to the electrodes only through the superconducting wire in the outermost turns of the superconducting coil. Therefore, when a normal conduction transition occurs in the superconducting wire at the outermost turn, there is no path for current to flow to the electrodes avoiding the normal conduction transition portion, and there is a risk of burnout.

さらに、従来の電極と超電導線材の接合手段では、電極付近の発熱量を低減する効果が期待できるが、超電導コイルの最外周において常電導転移が生じた際に超電導コイルが焼損してしまう課題がある。仮に、カバー用超電導線材の架設箇所を電極付近に限定してしまうと、超電導コイルの最外周の内、カバー用超電導線材が架設されていない箇所において常電導転移が生じた際に、電流が常電導転移部分を避けて電極へ流れる経路が存在せず、焼損してしまう恐れがある。 Furthermore, although conventional methods for joining electrodes and superconducting wires can be expected to have the effect of reducing the amount of heat generated near the electrodes, there is a problem in that the superconducting coils may burn out when normal conduction transition occurs at the outermost periphery of the superconducting coils. be. If the installation location of the superconducting wire for the cover is limited to the vicinity of the electrodes, when a normal conduction transition occurs at a location on the outermost periphery of the superconducting coil where the superconducting wire for the cover is not installed, the current will not flow normally. There is no path for flow to the electrodes that avoids the conductive transition area, and there is a risk of burnout.

一方、カバー用超電導線材の架設箇所を電極付近に限定せずに超電導コイルの最外周全周を覆う場合を考えると、超電導線材全周にわたりはんだ付けをする必要が生じるため、電極付近のみをはんだ付けする場合に比べて、はんだごての熱により超電導線材が劣化してしまうリスクが増えてしまう課題がある。また、冷却時の熱収縮によりカバー用超電導線材と電極の角部で局所応力が生じてカバー用超電導線材が劣化してしまう恐れがあった。 On the other hand, if we consider the case where the superconducting wire for the cover is not limited to the vicinity of the electrodes but covers the entire outermost circumference of the superconducting coil, it will be necessary to solder the entire circumference of the superconducting wire, so solder only the vicinity of the electrodes. There is a problem in that the risk of deterioration of the superconducting wire due to the heat of the soldering iron increases compared to when the superconducting wire is attached. In addition, there is a possibility that local stress is generated at the corners of the superconducting wire for the cover and the electrode due to thermal contraction during cooling, resulting in deterioration of the superconducting wire for the cover.

本発明の実施形態は上記課題を解決するためになされたもので、熱暴走またはクエンチの発生を抑制することが可能な超電導コイル及び超電導コイル装置を提供することを目的とする。 Embodiments of the present invention have been made to solve the above problems, and an object thereof is to provide a superconducting coil and a superconducting coil device that can suppress the occurrence of thermal runaway or quench.

上記課題を解決するための、本実施形態に係る超電導コイルは、超電導線材が巻回されてなる巻線部と、径方向に隣り合う前記超電導線材同士を電気的に接続する迂回路と、前記巻線部に電気的に接続される外側電極及び内側電極と、を備えた超電導コイルであって、前記外側電極は前記巻線部の最外周ターンの巻回方向端部と反巻回方向端部との両方に跨って、及び/又は前記内側電極は前記巻線部の最内周ターンの巻回方向端部と反巻回方向端部との両方に跨って、電気的に接続されることを特徴とする。 In order to solve the above problems, a superconducting coil according to the present embodiment includes: a winding portion in which a superconducting wire is wound; a detour electrically connecting the superconducting wires that are adjacent to each other in the radial direction; A superconducting coil comprising an outer electrode and an inner electrode electrically connected to a winding section, wherein the outer electrode is connected to an end in a winding direction and an end in a counter-winding direction of the outermost turn of the winding section. and/or the inner electrode is electrically connected across both the winding direction end and the counter-winding direction end of the innermost turn of the winding part. It is characterized by

また、本実施形態に係る超電導コイル装置は、本実施形態に係る超電導コイルを巻回軸方向に複数積層した超電導コイル装置であって、前記複数積層した超電導コイルのうち隣接する2つの超電導コイルに架設され、電極として機能する外側金属板及び内側金属板を有し、前記外側金属板は1つの超電導コイルの巻線部の最外周ターンの巻回方向端部と反巻回方向端部の両方に跨って、及び/又は前記内側金属板は1つの超電導コイルの巻線部の最内周ターンの巻回方向端部と反巻回方向端部の両方に跨って、電気的に接続されることを特徴とする。 Further, the superconducting coil device according to the present embodiment is a superconducting coil device in which a plurality of superconducting coils according to the present embodiment are laminated in the winding axis direction, and in which two adjacent superconducting coils among the plurality of laminated superconducting coils are stacked. It has an outer metal plate and an inner metal plate that are installed and function as electrodes, and the outer metal plate covers both the winding direction end and the counter-winding direction end of the outermost turn of the winding part of one superconducting coil. and/or the inner metal plate is electrically connected across both the winding direction end and the counter-winding direction end of the innermost turn of the winding portion of one superconducting coil. It is characterized by

本発明の実施形態によれば、超電導コイル及び超電導コイル装置の熱暴走又はクエンチの発生を抑制することができる。 According to the embodiments of the present invention, it is possible to suppress the occurrence of thermal runaway or quenching of a superconducting coil and a superconducting coil device.

一般的な高温超電導線材の構成図。A configuration diagram of a general high-temperature superconducting wire. 超電導コイルの概観図。An overview diagram of a superconducting coil. (a)、(b)は巻回方向の説明図。(a) and (b) are explanatory views of the winding direction. 図2のA-A線断面図。FIG. 3 is a sectional view taken along line AA in FIG. 2. 図4の領域R1の拡大断面図。FIG. 5 is an enlarged sectional view of region R1 in FIG. 4. 導電性樹脂からなる迂回路の断面図。FIG. 3 is a cross-sectional view of a detour made of conductive resin. (a)は電極が取付けられた従来の超電導コイルの概観図、(b)は従来の電極取付け構成図。(a) is a general view of a conventional superconducting coil with electrodes attached, and (b) is a configuration diagram of a conventional electrode attachment. 従来の超電導コイル装置の概観図。An overview diagram of a conventional superconducting coil device. 第1の実施形態に係る外側電極取付け構成図。FIG. 3 is a configuration diagram of an outer electrode attachment according to the first embodiment. (a)、(b)は従来の電極取付け構成における迂回電流の流れを示す図、(c)は第1の実施形態に係る電極取付け構成における迂回電流の流れを示す図。(a) and (b) are diagrams showing the flow of detour current in the conventional electrode mounting configuration, and (c) is a diagram showing the flow of detour current in the electrode mounting configuration according to the first embodiment. 第2の実施形態に係る電極取付け構成図。FIG. 7 is a configuration diagram of an electrode attachment according to a second embodiment. 第2の実施形態に係る電極取付け構成における迂回電流の流れを示す図。FIG. 7 is a diagram showing the flow of detour current in the electrode mounting configuration according to the second embodiment. (a)は第3の実施形態に係る巻線部の最外周部分の部分断面図、(b)は最内周部分の断面図。(a) is a partial cross-sectional view of the outermost peripheral part of the winding part according to the third embodiment, and (b) is a cross-sectional view of the innermost peripheral part.

まず、一般的な超電導コイル及び超電導コイル装置の構成、作用を、図1~図8を用いて説明する。
なお、超電導コイル及び超電導コイル装置には高温超電導線材又は低温超電導線材が用いられるが、以下の説明では、特に高い効果を発揮する高温超電導線材を用いた場合を例にして説明する。
First, the configuration and operation of a general superconducting coil and superconducting coil device will be explained using FIGS. 1 to 8.
Note that high-temperature superconducting wires or low-temperature superconducting wires are used in superconducting coils and superconducting coil devices, and in the following explanation, an example will be described in which a high-temperature superconducting wire that exhibits particularly high effects is used.

(高温超電導線材)
一般的な高温超電導線材20は、図1に示されるように、一般に薄膜状の層が積層されたテープ形状の薄膜線材から構成され、高温超電導層25として例えばレアメタル酸化物(RE酸化物)を含むREBCO線材等が用いられる。
(High-temperature superconducting wire)
As shown in FIG. 1, a general high temperature superconducting wire 20 is generally composed of a tape-shaped thin film wire in which thin film layers are laminated. A REBCO wire rod containing the like is used.

高温超電導線材(以下、「薄膜線材」ともいう。)20は、例えば、ニッケル基合金、ステンレス又は銅等からなる高強度の金属材質である基板22と、基板22の上に形成される中間層24と、中間層24を基板22の表面に配向させるマグネシウム等からなる配向層23と、中間層24の上に形成されるレアメタル酸化物等からなる高温超電導層25と、銀、金又は白金等で組成される保護層26と、銅又はアルミニウムなどの良伝導性金属からなる安定化層21と、から構成される。 The high-temperature superconducting wire (hereinafter also referred to as "thin film wire") 20 includes a substrate 22 made of a high-strength metal material such as a nickel-based alloy, stainless steel, or copper, and an intermediate layer formed on the substrate 22. 24, an alignment layer 23 made of magnesium or the like that orients the intermediate layer 24 on the surface of the substrate 22, a high-temperature superconducting layer 25 made of a rare metal oxide or the like formed on the intermediate layer 24, and a layer 25 of silver, gold, platinum, etc. The stabilizing layer 21 is made of a highly conductive metal such as copper or aluminum.

中間層24は、基板22と超電導層25の熱収縮の際に起因する熱歪みを防止する。保護層26は、超電導層25に含まれる酸素が超電導層25から拡散することを防止して、超電導層25を保護している。安定化層21は、超電導層25への過剰通電電流の迂回経路となって熱暴走を防止する。なお、薄膜線材20を構成する各層の種類及び数はこれに限定されるものではなく、必要に応じて種類及び数を適宜増減してもよい。 The intermediate layer 24 prevents thermal distortion caused by thermal contraction of the substrate 22 and the superconducting layer 25. The protective layer 26 protects the superconducting layer 25 by preventing oxygen contained in the superconducting layer 25 from diffusing from the superconducting layer 25. The stabilizing layer 21 serves as a detour path for excessive current flowing to the superconducting layer 25 and prevents thermal runaway. Note that the type and number of each layer constituting the thin film wire 20 are not limited to these, and the type and number may be increased or decreased as necessary.

(超電導コイル)
上述した高温超電導線材20が巻回されてなる超電導コイル10について、図2~図8を用いて説明する。ここで、図2は超電導コイル10の概観図、図3(a)、(b)は巻線部12の巻回方向の説明図、図4は図2のA-A線断面図、図5は図4の領域R1の拡大断面図、図6は導電性樹脂からなる迂回路19の断面図、図7(a)は電極40(外側電極40a、内側電極40b)が取付けられた従来の超電導コイル10の概観図、図7(b)は電極の取付け構造の説明図、図8は従来の超電導コイル装置100の概観図である。
(superconducting coil)
The superconducting coil 10 formed by winding the high temperature superconducting wire 20 described above will be explained using FIGS. 2 to 8. Here, FIG. 2 is an overview diagram of the superconducting coil 10, FIGS. 3(a) and 3(b) are explanatory diagrams of the winding direction of the winding part 12, FIG. 4 is a sectional view taken along the line AA in FIG. 2, and FIG. is an enlarged sectional view of region R1 in FIG. 4, FIG. 6 is a sectional view of the detour path 19 made of conductive resin, and FIG. FIG. 7B is an explanatory diagram of the electrode mounting structure, and FIG. 8 is an outline diagram of the conventional superconducting coil device 100.

図2は薄膜線材20を同心状に巻回した巻線部12からなるパンケーキ状の超電導コイル10の概観図で、パンケーキコイルとも呼ばれる。図2に示すとおり、超電導コイル10の巻回軸と平行な方向を巻回軸方向C、薄膜線材20を巻き回す方向をコイル周方向、巻回により薄膜線材20が積層される方向をコイル径方向と呼ぶ。 FIG. 2 is a schematic view of a pancake-shaped superconducting coil 10 consisting of a winding portion 12 in which a thin film wire 20 is concentrically wound, and is also called a pancake coil. As shown in FIG. 2, the direction parallel to the winding axis of the superconducting coil 10 is the winding axis direction C, the direction in which the thin film wire 20 is wound is the coil circumferential direction, and the direction in which the thin film wire 20 is stacked by winding is the coil diameter. It's called direction.

さらに、コイル周方向は図3(a)、(b)に示すような向きが定められる。すなわち、コイル周方向のうち、薄膜線材20が巻線部12のコイル径方向内側から外側に向かう向きを巻回方向、コイル径方向外側から内側へ向かう向きを反巻回方向とする。巻線部12は、図2に示すように、薄膜線材20が巻回によって積層されることで形成される一対の巻線側面部18を有する。 Further, the circumferential direction of the coil is determined as shown in FIGS. 3(a) and 3(b). That is, in the coil circumferential direction, the direction in which the thin film wire 20 goes from the inside to the outside in the coil radial direction of the winding part 12 is defined as the winding direction, and the direction in which the thin film wire 20 goes from the outside to the inside in the coil radial direction is defined as the counter-winding direction. As shown in FIG. 2, the winding part 12 has a pair of winding side parts 18 formed by laminating the thin film wire 20 by winding.

図4は図2のA-A線断面図で、超電導コイル10の部分断面図である。ここでは、薄膜線材20が巻枠14へ巻回されることにより、巻回軸方向Cを貫通する空間を有するパンケーキ状の巻線部12が形成されている。 FIG. 4 is a cross-sectional view taken along the line AA in FIG. 2, and is a partial cross-sectional view of the superconducting coil 10. Here, by winding the thin film wire 20 around the winding frame 14, a pancake-shaped winding portion 12 having a space passing through the winding axis direction C is formed.

また、超電導コイル10において隣接する別のターンの薄膜線材20同士の間隙のことを単にコイルターン間と呼ぶ。図5は図4の領域R1の拡大断面図であるが、薄膜線材20の間には、隣接するターン間の絶縁のために、絶縁性部材33が配置される。絶縁性部材33としては、例えばポリイミド等により形成された絶縁性のテープが好適に用いられる。テープ状の絶縁性部材33は、薄膜線材20と共巻することによりコイルターン間に挿入される。 In addition, the gap between adjacent thin film wires 20 of different turns in the superconducting coil 10 is simply referred to as a coil-turn gap. FIG. 5 is an enlarged sectional view of region R1 in FIG. 4, and an insulating member 33 is disposed between the thin film wires 20 to insulate adjacent turns. As the insulating member 33, an insulating tape made of polyimide or the like is preferably used, for example. The tape-shaped insulating member 33 is inserted between the coil turns by being co-wound with the thin film wire 20 .

また、超電導コイル10は、エポキシ樹脂などの粘着性を有する絶縁材料で含浸されることもある。粘着性のある樹脂で含浸されることにより、超電導コイル10内の隣接する薄膜線材20に絶縁性部材33が固着され、超電導コイル10の熱伝導度及び機械的強度が向上する。 The superconducting coil 10 may also be impregnated with an adhesive insulating material such as epoxy resin. By being impregnated with the sticky resin, the insulating member 33 is fixed to the adjacent thin film wire 20 in the superconducting coil 10, and the thermal conductivity and mechanical strength of the superconducting coil 10 are improved.

なお、エポキシ樹脂などの粘着性を有する絶縁材料もターン間に挿入されることで絶縁性部材33として機能するが、コイルターン間を確実に絶縁するために、ポリイミド等からなる絶縁性のテープを用いることが好ましい。 Note that an insulating material with adhesive properties such as epoxy resin also functions as the insulating member 33 by being inserted between the turns, but in order to reliably insulate between the coil turns, an insulating tape made of polyimide or the like is used. It is preferable to use

(迂回路)
超電導コイル10は、図4、図5に示されるように、一対の巻線側面部18(図2参照)の少なくとも一つの面に、超電導コイル10内の異なる位置の薄膜線材20同士を電気的に接続する迂回路19を備える。なお、一対の巻線側面部18の両面に迂回路19を設けてもよい。
(Detour)
As shown in FIGS. 4 and 5, the superconducting coil 10 electrically connects thin film wires 20 at different positions within the superconducting coil 10 to at least one surface of a pair of winding side portions 18 (see FIG. 2). A detour path 19 is provided. Note that the detour path 19 may be provided on both sides of the pair of winding side portions 18.

迂回路19の材料は、通常運転時においての超電導コイル10の抵抗より大きく、かつこの超電導コイル10の常電導転移時の抵抗よりも小さい抵抗の材料が選択される。例えば、銅、ステンレス、アルミ、インジウム、等の常電導金属、半導体、導電性プラスチック、セラミックス材、導電性樹脂、超電導材料、等が用いられる。 The material for the detour path 19 is selected to have a resistance greater than the resistance of the superconducting coil 10 during normal operation and smaller than the resistance of the superconducting coil 10 when the superconducting coil 10 transitions to normal conductivity. For example, normal conductive metals such as copper, stainless steel, aluminum, and indium, semiconductors, conductive plastics, ceramic materials, conductive resins, superconducting materials, and the like are used.

また、グラファイト、炭素繊維または炭素繊維複合材などのカーボン材料なども迂回路19として好適に用いることができる。これらの材料は、シート状の板材又は箔等にして圧着又ははんだ接続等によって巻線側面部18に形成される。 Further, carbon materials such as graphite, carbon fiber, or carbon fiber composite material can also be suitably used as the detour 19. These materials are formed into a sheet-like plate material, a foil, or the like, and are formed into the winding side surface portion 18 by crimping, soldering, or the like.

なお、巻線側面部18の一つの面にメッキ又は塗布して、迂回路19を形成してもよい。特に、メッキによって迂回路19を形成する場合は、迂回路19を薄くすることができ、超電導コイル10の自由な変形を阻害することがない。さらに、迂回路19をメッキや塗布で形成することで、迂回路19の巻回軸方向の厚みを調整し、迂回路19の抵抗値を調整することができる。 Note that the detour path 19 may be formed by plating or coating one surface of the winding side surface portion 18. In particular, when the detour path 19 is formed by plating, the detour path 19 can be made thin, and free deformation of the superconducting coil 10 is not inhibited. Furthermore, by forming the detour path 19 by plating or coating, the thickness of the detour path 19 in the winding axis direction can be adjusted, and the resistance value of the detour path 19 can be adjusted.

図6は、巻線側面部18の一つの面に導電性樹脂36を塗布して迂回路19を形成した例である。この導電性樹脂36は、例えば導電性を持たない樹脂に導電性粉末35を混入させたものを用いることができる。その際、導電性樹脂36に配合される導電性粉末35の割合や種類を変更することにより、導電性樹脂36の体積抵抗率を容易に調整することが可能となる。 FIG. 6 shows an example in which a detour 19 is formed by applying conductive resin 36 to one surface of the winding side surface portion 18. As the conductive resin 36, for example, a resin having no conductivity mixed with conductive powder 35 can be used. At this time, by changing the proportion and type of conductive powder 35 mixed into the conductive resin 36, it becomes possible to easily adjust the volume resistivity of the conductive resin 36.

導電性粉末35としては、例えばカーボンブラック、炭素繊維、グラファイト、等のカーボン系の粉末が用いられる。また、導電性粉末35には、金属微粒子、金属酸化物、金属繊維、ウィスカー、等の金属系の粉末を用いてもよい。さらに、微粒子または合成繊維を金属コートすることで導電性粉末35にしてもよく、巻線側面部18の位置ごとに異なる組成の導電性樹脂36を塗布して迂回路19を形成してもよい。 As the conductive powder 35, carbon-based powder such as carbon black, carbon fiber, graphite, etc. is used, for example. Further, as the conductive powder 35, metal-based powder such as metal fine particles, metal oxide, metal fibers, whiskers, etc. may be used. Further, the conductive powder 35 may be formed by coating fine particles or synthetic fibers with a metal, or the detour path 19 may be formed by applying conductive resin 36 of a different composition to each position of the winding side surface portion 18. .

また、導電性樹脂36はコイル径方向に隣接する薄膜線材20同士の間を含めた巻線部12の一部又は全部を含浸して形成してもよい。これにより、導電性樹脂36と薄膜線材20の接触面積を大きくし、導電性樹脂36と薄膜線材20との間の接触抵抗を低減することができる。 Further, the conductive resin 36 may be formed by impregnating a part or all of the winding portion 12 including the spaces between the thin film wires 20 adjacent to each other in the coil radial direction. Thereby, the contact area between the conductive resin 36 and the thin film wire 20 can be increased, and the contact resistance between the conductive resin 36 and the thin film wire 20 can be reduced.

なお、コイル径方向に隣接する薄膜線材20の間に絶縁性部材33を設けずに、隣接する薄膜線材20同士を直接接触させてもよい。この場合、隣接する薄膜線材20の外表面を覆う安定化層21がコイル径方向に接触することで電気的に接続され、迂回路19として機能する。 Note that the insulating member 33 may not be provided between the thin film wires 20 adjacent to each other in the coil radial direction, and the adjacent thin film wires 20 may be brought into direct contact with each other. In this case, the stabilizing layers 21 covering the outer surfaces of the adjacent thin film wires 20 contact each other in the radial direction of the coils to be electrically connected and function as a detour 19 .

(迂回路の作用効果)
ここで、迂回路19を設けることで熱暴走等の発生を抑制できる作用効果について説明する。
(Effects of detour)
Here, the effect of suppressing the occurrence of thermal runaway etc. by providing the detour 19 will be explained.

薄膜線材20は、通電電流の限界である臨界電流に近づくにつれ、徐々に外部磁場が侵入し、局所的に超電導状態が破壊された部分が常電導転移する。この局所的な常電導転移に伴うフラックスフロー抵抗は、ジュール損失による発熱を発生するため、コイル温度の上昇などで増大すると熱暴走またはクエンチ(以下、まとめて「熱暴走等」という)を誘引する。 As the thin film wire 20 approaches a critical current, which is the limit of current flow, an external magnetic field gradually penetrates the thin film wire 20, and the portion where the superconducting state is locally destroyed transitions to normal conductivity. The flux flow resistance associated with this local normal conduction transition generates heat due to Joule loss, so if it increases due to a rise in coil temperature, etc., it induces thermal runaway or quench (hereinafter collectively referred to as "thermal runaway, etc."). .

そのため、迂回路19を設けることで、薄膜線材20の一部で常電導転移による局所的なフラックスフロー抵抗が発生したときに、コイル周方向に流れていた通電電流Iの一部の電流Ia(以下、「迂回電流」という。)が、迂回路19を介して隣接する他のターンの薄膜線材20へ迂回することができる。 Therefore, by providing the detour path 19, when local flux flow resistance occurs due to normal conduction transition in a part of the thin film wire 20, the current Ia ( (hereinafter referred to as a "detour current") can detour to the thin film wire 20 of another adjacent turn via the detour path 19.

ここで、コイル周方向に流れる通電電流はIからI-Iaに減少する。このとき、迂回路19の抵抗をRa、フラックスフロー抵抗をRとすると、コイル径方向に迂回する迂回電流Iaは、R/(R+Ra)に比例する。 Here, the current flowing in the circumferential direction of the coil decreases from I to I-Ia. At this time, when the resistance of the detour path 19 is Ra and the flux flow resistance is R, the detour current Ia detouring in the coil radial direction is proportional to R/(R+Ra).

したがって、フラックスフロー抵抗Rが増大するにつれて、より多くの迂回電流Iaがコイル径方向に迂回することになる。これにより、局所的に常電導状態に転移した常電導箇所に多量の通電電流Iが流れるのを未然に防止することができるため、熱暴走等の発生を抑制することができる。 Therefore, as the flux flow resistance R increases, more of the detour current Ia will detour in the coil radial direction. As a result, it is possible to prevent a large amount of current I from flowing into a normally conductive portion that has locally transitioned to a normally conductive state, thereby suppressing the occurrence of thermal runaway or the like.

なお、コイルターン間を、迂回路19を介して電気的に接続すると、フラックスフロー抵抗Rが発生したときだけでなく、超電導コイル10を非通電状態から定格電流値まで励磁する際にも、誘導電圧により電源から供給される通電電流Iの一部の迂回電流Iaが、迂回路19を介して他のターンの薄膜線材20に、コイル径方向へ迂回してしまう。また、励磁完了後は誘導電圧が発生しないため、迂回路19に流れた迂回電流Iaは徐々にコイル周方向に流れ込むこととなり、設計した磁場の値に到達するまでの時間を要する。したがって、コイルターン間の抵抗を低くすればするほど、より多くの電流が励磁中に迂回してしまい、不要に励磁時間が長くなってしまう恐れがある。 Note that if the coil turns are electrically connected via the detour 19, induction will occur not only when the flux flow resistance R occurs, but also when the superconducting coil 10 is energized from a non-energized state to the rated current value. A part of the detour current Ia of the energizing current I supplied from the power source due to the voltage detours through the detour path 19 to the thin film wire 20 of another turn in the coil radial direction. Moreover, since no induced voltage is generated after excitation is completed, the detour current Ia flowing through the detour path 19 gradually flows in the circumferential direction of the coil, and it takes time to reach the designed magnetic field value. Therefore, the lower the resistance between the coil turns, the more current will be diverted during excitation, which may unnecessarily lengthen the excitation time.

そのため、迂回路19の抵抗Raはフラックスフロー抵抗Rの発生時に十分な量の電流が迂回路19へ転流できる程度に小さな抵抗で、かつ、超電導コイル10を非通電状態から定格電流値まで励磁する際に不要に励磁時間が長くならないほどに大きな抵抗となるように設定することが好ましい。 Therefore, the resistance Ra of the detour path 19 is small enough to allow a sufficient amount of current to be commutated to the detour path 19 when the flux flow resistance R occurs, and the superconducting coil 10 is excited from the de-energized state to the rated current value. It is preferable to set the resistance so large that the excitation time does not become unnecessarily long.

(絶縁板)
図4に示すように、超電導コイル10の側面には絶縁板16が設けられており、迂回路19や巻線部12を隣り合う他の超電導コイル10等から絶縁する。絶縁板16としてはエポキシ樹脂や繊維強化プラスチックが好適に用いられる。
(insulating board)
As shown in FIG. 4, an insulating plate 16 is provided on the side surface of the superconducting coil 10 to insulate the detour 19 and the winding portion 12 from other adjacent superconducting coils 10 and the like. As the insulating plate 16, epoxy resin or fiber-reinforced plastic is suitably used.

(電極)
一般的に、上述した超電導コイル10に通電を行うために、図7(a)に示すように、巻線部12の最外周ターンの薄膜線材20に外側電極40a、最内周ターンの薄膜線材20に内側電極40bが設けられる。外側電極40a、内側電極40bは薄膜線材20にはんだ付けなどにより電気的に接続されて、超電導コイル10を通流する通電電流Iを流入又は流出させる。外側電極40a、内側電極40bは、例えば銅、銀、金、インジウムやこれらの合金で構成される。
(electrode)
Generally, in order to energize the superconducting coil 10 described above, as shown in FIG. 20 is provided with an inner electrode 40b. The outer electrode 40a and the inner electrode 40b are electrically connected to the thin film wire 20 by soldering or the like, and allow the current I flowing through the superconducting coil 10 to flow in or out. The outer electrode 40a and the inner electrode 40b are made of, for example, copper, silver, gold, indium, or an alloy thereof.

図7(a)は外側電極40a、内側電極40bが取付けられた従来の超電導コイル10の概観図、図7(b)は超電導コイル10を巻回軸方向Cから見たときの模式図で、従来の電極取付け構成図である。 FIG. 7(a) is an overview diagram of a conventional superconducting coil 10 to which an outer electrode 40a and an inner electrode 40b are attached, and FIG. 7(b) is a schematic diagram of the superconducting coil 10 when viewed from the winding axis direction C. FIG. 3 is a configuration diagram of a conventional electrode attachment.

ここで、巻線部12と外側電極40a、内側電極40bの位置関係を説明すると、巻線部12の最外周ターンの薄膜線材20に外側電極40aを取付ける際は、図7(b)に示すように巻回方向へ向かって、巻線部12の外周側の末端部51Aまでの非通電領域52Aができる限り小さくなるように決定する。 Here, to explain the positional relationship between the winding part 12, the outer electrode 40a, and the inner electrode 40b, when attaching the outer electrode 40a to the thin film wire 20 at the outermost turn of the winding part 12, The non-current carrying area 52A up to the outer peripheral end portion 51A of the winding portion 12 is determined to be as small as possible in the winding direction.

同様に、巻線部12の最内周ターンの薄膜線材20に内側電極40bを取付ける際は、図7(b)に示すように電極取付け位置から反巻回方向へ向かって、薄膜線材20の内周側の末端部51Bまでの非通電領域52Bができる限り小さくなるように決定する。 Similarly, when attaching the inner electrode 40b to the thin film wire 20 at the innermost turn of the winding portion 12, as shown in FIG. 7(b), the thin film wire 20 is It is determined so that the non-current-carrying region 52B up to the end portion 51B on the inner peripheral side is as small as possible.

巻線部12の内周側から外周側に電流を流す場合、通電電流Iが流れることができる通電領域53は、最内周ターンの内側電極取付け位置から最外周ターンの外側電極取付け位置までの区間である。すなわち、最内周側の末端部51Bから内側電極取付け位置までの区間である非通電領域52Bと、最外周側の末端部51Aから外側電極取付け位置までの区間である非通電領域52Aには通電電流Iは流れず、超電導コイル10の磁場形成に寄与しない。 When a current is passed from the inner circumferential side to the outer circumferential side of the winding portion 12, the current-carrying region 53 in which the current I can flow is from the inner electrode attachment position of the innermost circumference turn to the outer electrode attachment position of the outermost circumference turn. It is an interval. That is, the non-energized area 52B, which is the area from the innermost end 51B to the inner electrode attachment position, and the non-energized area 52A, which is the area from the outermost end 51A to the outer electrode attachment position, are energized. Current I does not flow and does not contribute to the formation of the magnetic field of superconducting coil 10.

以下の説明では、巻線部12の最内周とは、巻線部12の最内周側の末端部51Bを基準に巻回方向に1ターン分の区間、すなわち反巻回方向端部57Bから巻回方向端部58Bまでの区間を指す。一方、通電領域53の最内周とは、最内周側の電極取付け位置を基準に巻回方向に1ターン分の区間を指す。単に最内周と表記した場合は巻線部12の最内周を指す。 In the following description, the innermost circumference of the winding portion 12 refers to a section corresponding to one turn in the winding direction based on the innermost end portion 51B of the winding portion 12, that is, the opposite end portion 57B in the winding direction. It refers to the section from the winding direction end portion 58B. On the other hand, the innermost circumference of the current-carrying region 53 refers to a section corresponding to one turn in the winding direction based on the electrode attachment position on the innermost circumference side. When simply written as the innermost circumference, it refers to the innermost circumference of the winding portion 12.

同様に、巻線部12の最外周とは、巻線部12の最外周側の末端部51Aを基準に反巻回方向に1ターン分の区間、すなわち巻回方向端部58Aから反巻回方向端部57Aまでの区間を指す。一方、通電領域53の最外周とは、最外周側の電極取付け位置を基準に反巻回方向に1ターン分の区間を指す。単に最外周と表記した場合は巻線部12の最外周を指す。 Similarly, the outermost periphery of the winding portion 12 refers to a section corresponding to one turn in the counter-winding direction based on the outermost end portion 51A of the winding portion 12, that is, from the end portion 58A in the winding direction to the counter-winding direction. It refers to the section up to the direction end 57A. On the other hand, the outermost periphery of the current-carrying region 53 refers to a section corresponding to one turn in the counter-winding direction based on the electrode attachment position on the outermost periphery side. When simply written as the outermost periphery, it refers to the outermost periphery of the winding portion 12.

(超電導コイル装置)
超電導コイル装置100は、図8に示すように、超電導コイル10を巻回軸方向に同心円状に複数積層して構成される。超電導コイル装置100は、そのように積み重ねられた複数の超電導コイル10のうち、隣接する2つの超電導コイル10に架設され、電極として機能する金属板41(外側金属板41a、内側金属板41b)を有する。
(Superconducting coil device)
As shown in FIG. 8, the superconducting coil device 100 is constructed by laminating a plurality of superconducting coils 10 concentrically in the direction of the winding axis. The superconducting coil device 100 includes metal plates 41 (outer metal plate 41a, inner metal plate 41b) that are installed between two adjacent superconducting coils 10 and function as electrodes among the plurality of superconducting coils 10 stacked in this way. have

外側金属板41aは薄膜線材20にはんだ付け等により電気的に接続されて、架設される2つの超電導コイル10の内、一方の超電導コイル10から流出した通電電流Iを他方の超電導コイル10に流入させる。金属板41は例えば銅、銀、金、インジウムやこれらの合金で好適に構成される。 The outer metal plate 41a is electrically connected to the thin film wire 20 by soldering or the like, and allows the current I flowing out from one of the two superconducting coils 10 to flow into the other superconducting coil 10. let The metal plate 41 is preferably made of copper, silver, gold, indium, or an alloy thereof, for example.

なお、外側金属板41aは薄膜線材20にはんだ71などで直接接合することができるが、図8に示すように、薄膜線材20に補強用の導電性テープ27を貼着し、導電性テープ27に外側金属板41aを接合してもよい。導電性テープ27としては、インジウム、金、銀、銅などの低抵抗金属や超電導線材を用いることができる。内側金属板41bについても同様である。 Note that the outer metal plate 41a can be directly joined to the thin film wire 20 with solder 71 or the like, but as shown in FIG. The outer metal plate 41a may be joined to the outer metal plate 41a. As the conductive tape 27, a low resistance metal such as indium, gold, silver, or copper, or a superconducting wire can be used. The same applies to the inner metal plate 41b.

巻線部12の最外周ターンの薄膜線材20に外側金属板41aを取付ける際の取付け位置は、超電導コイル10に外側電極40a、内側電極40bを取付けるときと同様に、図7(b)に示すように金属板取付け位置から巻回方向へ向かって、巻線部12の外周側の末端部51Aまでの非通電領域52Aができる限り小さくなるように決定する。 The attachment position when attaching the outer metal plate 41a to the thin film wire 20 at the outermost turn of the winding part 12 is shown in FIG. The non-current carrying area 52A from the metal plate attachment position to the outer peripheral end portion 51A of the winding portion 12 in the winding direction is determined to be as small as possible.

同様に、巻線部12の最内周ターンの薄膜線材20に内側金属板41bを取付ける際の金属板取付け位置は、図7(b)に示すように金属板取付け位置から反巻回方向へ向かって、薄膜線材20の内周側の末端部51Bまでの非通電領域52Bができる限り小さくなるように決定する。これにより、磁場形成に寄与しない非通電領域52A、52Bを短くし、磁場形成に寄与する通電領域53を長くする。 Similarly, when attaching the inner metal plate 41b to the thin film wire 20 at the innermost turn of the winding section 12, the metal plate attachment position is from the metal plate attachment position to the counter-winding direction as shown in FIG. 7(b). On the other hand, the non-current-carrying region 52B up to the end portion 51B on the inner peripheral side of the thin film wire 20 is determined to be as small as possible. Thereby, the non-current-carrying regions 52A and 52B that do not contribute to magnetic field formation are shortened, and the current-carrying region 53 that contributes to magnetic field formation is lengthened.

(薄膜線材の主面)
ここで、薄膜線材20と外側電極40a、内側電極40b又は外側金属板41a、内側金属板41bを接合する際の、薄膜線材20の二つの主面60の向きについて説明する。
図1に示すように、薄膜線材20には二つの主面60があり、より超電導層25に近い主面60を近位面60a、遠い主面60を遠位面60bと呼ぶ。
(Main surface of thin film wire)
Here, the orientation of the two main surfaces 60 of the thin film wire 20 when joining the thin film wire 20 to the outer electrode 40a, inner electrode 40b, outer metal plate 41a, or inner metal plate 41b will be described.
As shown in FIG. 1, the thin film wire 20 has two main surfaces 60, the main surface 60 closer to the superconducting layer 25 is called a proximal surface 60a, and the main surface 60 farther away is called a distal surface 60b.

薄膜線材20と外側電極40a、内側電極40b又は外側金属板41a、内側金属板41bを接合する際は、近位面60aが外側電極40a、内側電極40b又は外側金属板41a、内側金属板41bと対向するように配置することが好ましい。すなわち、超電導層25と外側電極40a、内側電極40b又は外側金属板41a、内側金属板41bとの距離を短くすることにより、接合部での電気抵抗を小さくすることができる。 When joining the thin film wire 20 and the outer electrode 40a, the inner electrode 40b, or the outer metal plate 41a, or the inner metal plate 41b, the proximal surface 60a is connected to the outer electrode 40a, the inner electrode 40b, or the outer metal plate 41a, or the inner metal plate 41b. It is preferable to arrange them so as to face each other. That is, by shortening the distance between the superconducting layer 25 and the outer electrode 40a, inner electrode 40b, outer metal plate 41a, or inner metal plate 41b, the electrical resistance at the joint can be reduced.

特に、図1に示すように、遠位面60Bと超電導層25の間にニッケル基合金やステンレス等の高抵抗金属からなる基板22が設けられている場合、遠位面60bと外側電極40a、内側電極40b又は外側金属板41a、内側金属板41bを対向させて接合すると、接合部の抵抗が大きくなってしまう恐れがある。 In particular, as shown in FIG. 1, when the substrate 22 made of a high resistance metal such as a nickel-based alloy or stainless steel is provided between the distal surface 60B and the superconducting layer 25, the distal surface 60b and the outer electrode 40a, If the inner electrode 40b or the outer metal plate 41a and the inner metal plate 41b are joined so as to face each other, there is a possibility that the resistance of the joint portion becomes large.

したがって、通電領域53の最外周では薄膜線材20の近位面60aがコイル径方向外側を向くように巻線部12を形成し、通電領域53の最内周では薄膜線材20の近位面60aがコイル径方向内側を向くように超電導コイル10を構成することが好ましい。 Therefore, the winding portion 12 is formed such that the proximal surface 60a of the thin film wire 20 faces outward in the coil radial direction at the outermost periphery of the energizing region 53, and the proximal surface 60a of the thin film wire 20 at the innermost periphery of the energizing region 53. It is preferable that the superconducting coil 10 is configured such that the coil faces inward in the coil radial direction.

[第1の実施形態]
以下、第1の実施形態に係る超電導コイルを図9、図10(a)~(c)を用いて説明する。
[First embodiment]
The superconducting coil according to the first embodiment will be described below with reference to FIG. 9 and FIGS. 10(a) to (c).

(構成)
図9は第1の実施形態に係る超電導コイル10を巻回軸方向Cから見た外側電極取付け構成図で、巻線部12と外側電極40aの位置関係を示したものである。
(composition)
FIG. 9 is an outer electrode attachment configuration diagram of the superconducting coil 10 according to the first embodiment viewed from the winding axis direction C, showing the positional relationship between the winding portion 12 and the outer electrode 40a.

外側電極40aは、巻線部12の最外周ターンの巻回方向端部58Aと、同じく最外周ターンの反巻回方向端部57Aとの両方に跨って電気的に接続されるとともに、当該巻回方向端部58Aと反巻回方向端部57Aの径方向外側に配置される。 The outer electrode 40a is electrically connected across both the winding direction end 58A of the outermost turn of the winding portion 12 and the opposite winding direction end 57A of the outermost turn, and It is arranged radially outward of the winding direction end 58A and the anti-winding direction end 57A.

これにより、第1の実施形態では、図7(a)で示した従来の超電導コイル10と比較して、約1ターン分内周側の薄膜線材20に外側電極40aが電気的に接続されることになる。
このように外側電極40aを巻線部12の最外周ターンの反巻回方向端部57Aに電気的に接続することで、非通電領域52Aが1ターン以上確保される。
As a result, in the first embodiment, compared to the conventional superconducting coil 10 shown in FIG. 7A, the outer electrode 40a is electrically connected to the thin film wire 20 on the inner peripheral side by about one turn. It turns out.
By electrically connecting the outer electrode 40a to the counter-winding direction end 57A of the outermost turn of the winding portion 12 in this manner, one or more turns of the non-current carrying region 52A are secured.

外側電極40aは薄膜線材20にはんだ71等で直接接合することができるが、図8に示すように薄膜線材20に補強用の導電性テープ27を貼着し、導電性テープ27に外側電極40aを接合してもよい。導電性テープ27としては、インジウム、金、銀、銅などの低抵抗金属や超電導線材を用いることができる。 The outer electrode 40a can be directly joined to the thin film wire 20 with solder 71 or the like, but as shown in FIG. may be joined. As the conductive tape 27, a low resistance metal such as indium, gold, silver, or copper, or a superconducting wire can be used.

(作用)
上記のように構成された超電導コイル10の作用について、図10(a)~(c)を用いて説明する。
ここで、図10(a)、(b)は図7(a)、(b)に示す従来の電極取付け構成において、常電導箇所15が発生した場合の迂回電流Iaの流れを示す図で、図7(b)の領域R2の拡大図である。
(effect)
The operation of the superconducting coil 10 configured as described above will be explained using FIGS. 10(a) to 10(c).
Here, FIGS. 10(a) and 10(b) are diagrams showing the flow of detour current Ia when a normal conduction point 15 occurs in the conventional electrode mounting configuration shown in FIGS. 7(a) and 7(b). FIG. 7B is an enlarged view of region R2 in FIG. 7(b).

また。図10(c)は第1の実施形態に係る超電導コイル10において、常電導箇所15が発生した場合の迂回電流Iaの流れを示す図で、図9に示す領域R3の拡大図である。 Also. FIG. 10(c) is a diagram showing the flow of detour current Ia when a normal conduction point 15 occurs in the superconducting coil 10 according to the first embodiment, and is an enlarged view of region R3 shown in FIG.

(従来の電極取付け構成の作用)
まず、図10(a)に示すように、通電領域53の最外周と最内周以外のターンの薄膜線材20で常電導箇所15が生じた場合を考える。
(Effect of conventional electrode mounting configuration)
First, as shown in FIG. 10(a), consider a case where a normally conductive point 15 occurs in the thin film wire 20 in turns other than the outermost and innermost peripheries of the current-carrying region 53.

ここで、通電電流Iは超電導コイル10の内周側から外周側に流れるものとするが、電流の向きが逆であったとしても同様の作用効果を得られる。通常の超電導コイル10では、通電領域53の最外周、最内周と巻線部12の最外周、最内周は概ね一致している。 Here, it is assumed that the energizing current I flows from the inner circumferential side to the outer circumferential side of the superconducting coil 10, but the same effect can be obtained even if the direction of the current is reversed. In the normal superconducting coil 10, the outermost and innermost peripheries of the current-carrying region 53 and the outermost and innermost peripheries of the winding portion 12 generally match.

図10(a)において、隣り合う薄膜線材20は迂回路19により電気的に接続されているため、通電電流Iの一部の迂回電流Iaが常電導箇所15を避けるように迂回路19へ流れ込む。迂回電流Iaが迂回路19をコイル径方向に流れる際の抵抗及び迂回電流Iaが迂回路19へ転流する際の接触抵抗は迂回電流Iaが流れる方向に垂直な方向の断面積に比例する。 In FIG. 10A, since the adjacent thin film wires 20 are electrically connected by the detour 19, a part of the detour current Ia of the energizing current I flows into the detour 19 so as to avoid the normally conducting portion 15. . The resistance when the detour current Ia flows in the coil radial direction through the detour path 19 and the contact resistance when the detour current Ia is commutated to the detour path 19 are proportional to the cross-sectional area in the direction perpendicular to the direction in which the detour current Ia flows.

迂回路19の厚みが一定であるとすると、その断面積は常電導転移が生じたターンにおける円周長に比例する。常電導転移が生じたターンのコイル径方向位置により円周長の大きさは多少変わるものの、少なくとも円周長分の断面積を通って迂回電流Iaが流れることができる。 Assuming that the thickness of the detour path 19 is constant, its cross-sectional area is proportional to the circumferential length of the turn in which the normal conduction transition occurs. Although the circumferential length varies somewhat depending on the coil radial position of the turn where the normal conduction transition occurs, the detour current Ia can flow through a cross-sectional area at least equal to the circumferential length.

次に、図10(b)のように常電導箇所15が通電領域53の最外周の薄膜線材20に生じた場合を考える。
通電電流I及び迂回電流Iaは薄膜線材20の末端部51A付近に取付けられた外側電極40aに流出するように流れるが、通電領域53の最外周のさらに外側には薄膜線材20が存在しないため、迂回電流Iaが流れることができる断面積が図10(a)の場合と比較して小さくなり、これにより、迂回電流Iaが迂回路19を通流する際の抵抗が大きくなってしまう。
したがって、迂回電流Iaが十分でないために、多量の電流が常電導箇所15に流れ込み、クエンチを引き起こす恐れがある。
Next, a case will be considered in which a normally conductive portion 15 occurs in the thin film wire 20 at the outermost periphery of the current-carrying region 53 as shown in FIG. 10(b).
The energizing current I and the bypass current Ia flow to the outer electrode 40a attached near the end portion 51A of the thin film wire 20, but since the thin film wire 20 does not exist further outside the outermost periphery of the energizing region 53, The cross-sectional area through which the detour current Ia can flow becomes smaller than in the case of FIG. 10(a), which increases the resistance when the detour current Ia flows through the detour path 19.
Therefore, since the detour current Ia is not sufficient, a large amount of current may flow into the normally conducting portion 15, causing quenching.

(第1の実施例形態の電極取付け構成の作用)
一方、図10(c)のように外側電極40aが巻回方向端部58Aと反巻回方向端部57Aの両方に跨って電気的に接続されている場合、通電領域53の最外周のさらに外側に、非通電領域52Aとして巻線部12の最外周のターンの薄膜線材20が巻回されている。
これにより、迂回電流Iaが円周長分の断面積56を通って迂回することができる。
(Function of the electrode mounting structure of the first embodiment)
On the other hand, when the outer electrode 40a is electrically connected across both the winding direction end 58A and the anti-winding direction end 57A as shown in FIG. The outermost turn of the thin film wire 20 of the winding portion 12 is wound on the outside as a non-current-carrying region 52A.
This allows the detour current Ia to detour through the cross-sectional area 56 corresponding to the circumferential length.

このように、図10(c)において迂回電流Iaが迂回路19を通流する際の電気抵抗は、常電導箇所15がコイル中央部に生じた場合に迂回電流Iaが迂回路19を通流する際の電気抵抗と同程度まで低減することができるため、外側電極40aが巻線部12の最外周の薄膜線材20の末端部51A付近に取付けられている場合に比して(図10(a)、(b)参照)大きな抵抗値とはならない。 In this way, the electrical resistance when the detour current Ia flows through the detour path 19 in FIG. Since the electrical resistance can be reduced to the same level as the electrical resistance when (See a) and (b)) The resistance value will not be large.

さらに、図10(c)の電極取付け構成では、薄膜線材20の巻回方向端部58Aが外側電極40aに電気的に接続されているので、巻線部12の最外周の薄膜線材20に迂回した迂回電流Iaが最外周の1ターン内の薄膜線材20を経由して外側電極40aへ流入する経路に加えて、最外周の1ターン内の薄膜線材20へ戻ることなく外側電極40aに直接流出する経路が形成されるため、迂回電流Iaが外側電極40aへ流れる経路が増えることとなり、迂回電流Iaによる発熱量が低減される。 Furthermore, in the electrode mounting configuration of FIG. 10(c), since the end portion 58A of the thin film wire 20 in the winding direction is electrically connected to the outer electrode 40a, the winding direction end portion 58A of the thin film wire 20 is electrically connected to the outermost thin film wire 20 of the winding portion 12. In addition to the path in which the detour current Ia flows into the outer electrode 40a via the thin film wire 20 within one turn of the outermost circumference, it flows directly into the outer electrode 40a without returning to the thin film wire 20 within one turn of the outermost circumference. Therefore, the number of paths through which the detour current Ia flows to the outer electrode 40a increases, and the amount of heat generated by the detour current Ia is reduced.

以上のように、第1の実施形態では、コイル径方向に隣接する薄膜線材20同士を迂回路19で電気的に接続した超電導コイル10において、外側電極40aを巻回方向端部58Aと反巻回方向端部57Aの両方に跨って電気的に接続することで、通電領域53の最外周のターンに常電導箇所15が生じたとしても、通電領域53の最外周のさらに外側を覆う非通電領域52Aに通電電流Iの一部の迂回電流Iaを迂回させることができる。 As described above, in the first embodiment, in the superconducting coil 10 in which the thin film wires 20 adjacent to each other in the coil radial direction are electrically connected by the detour 19, the outer electrode 40a is counter-wound with the winding direction end 58A. By electrically connecting both of the turning direction ends 57A, even if a normally conductive spot 15 occurs at the outermost turn of the energized area 53, a non-energized area that covers the outermost part of the energized area 53 A part of the detour current Ia of the current I can be detoured to the region 52A.

なお、超電導線材20の上に設けられた電極の少なくとも一部を覆うようにカバー用超電導テープを設け、これらを互いに電気的に接続した従来の電極取付け構成の場合、すなわち、外側電極40aを巻回方向端部58Aと反巻回方向端部57Aの間に設けた電極取付け構成の場合は(特許文献3参照)、薄膜線材20が外側電極40aの径方向外側を覆う領域において、超電導コイル10の冷却時の熱収縮による集中応力が生じ、外側電極40aのエッジと薄膜線材20が接する部分で薄膜線材20の劣化が生じる恐れがある。 Note that in the case of a conventional electrode mounting configuration in which a cover superconducting tape is provided to cover at least a portion of the electrode provided on the superconducting wire 20 and these are electrically connected to each other, in other words, the outer electrode 40a is In the case of an electrode mounting configuration provided between the winding direction end 58A and the anti-winding direction end 57A (see Patent Document 3), the superconducting coil 10 Concentrated stress occurs due to thermal contraction during cooling, and there is a risk that the thin film wire 20 may deteriorate at the portion where the edge of the outer electrode 40a and the thin film wire 20 are in contact.

しかしながら、本第1の実施形態の電極取付け構成では、外側電極40aは巻回方向端部58Aと反巻回方向端部57Aの径方向外側に設けられるため、冷却時の熱収縮による劣化の恐れがない。 However, in the electrode mounting configuration of the first embodiment, since the outer electrode 40a is provided radially outward of the winding direction end 58A and the counter-winding direction end 57A, there is a risk of deterioration due to thermal contraction during cooling. There is no.

なお、巻線部12の最外周ターンを設ける代わりに、カバー用超電導テープを巻線部12の全周に亘って取付ける構造も考えられるが、この場合は、巻線部12の全周に亘ってはんだ付けを行う必要があり、はんだごての熱で薄膜線材20を劣化させるリスクが増大してしまう。 Note that instead of providing the outermost turn of the winding section 12, a structure in which the superconducting tape for the cover is attached over the entire circumference of the winding section 12 can be considered; Therefore, the risk of deteriorating the thin film wire 20 due to the heat of the soldering iron increases.

さらに、外側電極40aを巻回方向端部58Aと反巻回方向端部57Aの間に設ける場合は、巻回方向端部58A付近の薄膜線材20を外側電極40aにはんだ等を介して径方向外側から電気的に接続する必要がさらに生じる。 Furthermore, when the outer electrode 40a is provided between the winding direction end 58A and the counter-winding direction end 57A, the thin film wire 20 near the winding direction end 58A is connected to the outer electrode 40a in the radial direction through solder or the like. A further need arises for electrical connections from the outside.

しかしながら、本第1の実施形態の電極取付け構成では、巻線部12の最外周ターンの薄膜線材20は最外周1ターン前の薄膜線材20と迂回路19を介して径方向に電気的に接続されているため、薄膜線材20同士をはんだ付けする必要がない。すなわち、外側電極40aを巻回方向端部58Aと反巻回方向端部57Aの両方に跨って取付ければよく、はんだ付け作業を行う回数と領域は、従来の超電導コイル10に外側電極40aを取付ける際と同様である。 However, in the electrode attachment configuration of the first embodiment, the thin film wire 20 at the outermost turn of the winding portion 12 is electrically connected in the radial direction to the thin film wire 20 at the outermost turn one turn earlier via the detour 19. Therefore, there is no need to solder the thin film wires 20 together. That is, it is sufficient to attach the outer electrode 40a across both the winding direction end 58A and the anti-winding direction end 57A, and the number and area of soldering work is similar to that of the conventional superconducting coil 10 when the outer electrode 40a is attached to the superconducting coil 10. The same applies when installing.

(効果)
以上説明したように、本第1の実施形態によれば、十分な量の迂回電流Iaを、常電導箇所15が生じていない他の薄膜線材20へ転流させることができるため、超電導コイル10の熱暴走またはクエンチの発生を抑制することが可能である。
なお、上述した作用効果は内側電極40bの取付け構成でも同様である。
(effect)
As explained above, according to the first embodiment, a sufficient amount of detour current Ia can be commutated to other thin film wires 20 in which the normal conductive portion 15 is not generated, so that the superconducting coil 10 It is possible to suppress the occurrence of thermal runaway or quenching.
Note that the above-mentioned effects are the same for the mounting configuration of the inner electrode 40b.

[第2の実施形態]
第2の実施形態に係る超電導コイルを図11、図12を用いて説明する。なお、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Second embodiment]
A superconducting coil according to a second embodiment will be explained using FIGS. 11 and 12. Note that the same components as in the first embodiment are given the same reference numerals, and overlapping explanations will be omitted.

(構成)
第2の実施形態に係る超電導コイル10では、内側電極40bは、巻線部12の最内周のターンの反巻回方向端部57Bと、同じく最外周のターンの巻回方向端部58Bの両方に跨って電気的に接続されるとともに、当該巻回方向端部58Bと反巻回方向端部57Bの径方向内側に配置される。
(composition)
In the superconducting coil 10 according to the second embodiment, the inner electrode 40b has an opposite winding direction end 57B of the innermost turn of the winding portion 12 and a winding direction end 58B of the outermost turn. It is electrically connected across both, and is arranged radially inside of the winding direction end portion 58B and the counter-winding direction end portion 57B.

図11に示した第2の実施形態に係る超電導コイル10は、図7(b)で示した従来の超電導コイル10と比較して、約1ターン分外周側の薄膜線材20に内側電極40bが取付けられることとなる。このように、内側電極40bを巻線部12の最内周の巻回方向端部58Bに電気的に接続することで、非通電領域52Bが1ターン以上確保される。 The superconducting coil 10 according to the second embodiment shown in FIG. 11 has an inner electrode 40b on the thin film wire 20 on the outer peripheral side by about one turn, compared to the conventional superconducting coil 10 shown in FIG. 7(b). It will be installed. In this way, by electrically connecting the inner electrode 40b to the innermost winding direction end 58B of the winding portion 12, one turn or more of the non-current-carrying region 52B is secured.

(作用)
図12を用いて第2の実施形態の作用を説明する。
図12は図11に示した超電導コイル10の領域R4の拡大断面図で、迂回電流の流れを示す図である。
(effect)
The operation of the second embodiment will be explained using FIG. 12.
FIG. 12 is an enlarged sectional view of region R4 of superconducting coil 10 shown in FIG. 11, and is a diagram showing the flow of detour current.

本第2の実施形態においても、第1の実施形態と同様に、通電領域53の最内周のさらに内側に、非通電領域52Bとして巻線部12の最内周ターンの薄膜線材20が巻き回されているため、図12に示すように、仮に常電導箇所15が通電領域53の最内周の薄膜線材20に生じた場合でも、迂回電流Iaが迂回路19を通流する際の電気抵抗を低減することができる。 In the second embodiment, as in the first embodiment, the thin film wire 20 of the innermost turn of the winding part 12 is wound further inside the innermost circumference of the energized area 53 as a non-energized area 52B. As shown in FIG. Resistance can be reduced.

さらに、薄膜線材20の末端部51Bが内側電極40bに電気的に接続されているので、巻線部12の最内周の薄膜線材20に迂回した迂回電流Iaが最内周の1ターン外の薄膜線材20を経由して内側電極40bへ流入する経路に加えて、最内周の1ターン前の薄膜線材20へ戻ることなく内側電極40bに直接流出する経路が形成されるため、迂回電流Iaが内側電極40bへ流れる経路が増えることとなり、迂回電流Iaによる発熱量が低減されることも実施例1と同様である。 Furthermore, since the end portion 51B of the thin film wire 20 is electrically connected to the inner electrode 40b, the detour current Ia detoured to the thin film wire 20 on the innermost circumference of the winding portion 12 is transferred to the one turn outside the innermost circumference. In addition to the path flowing into the inner electrode 40b via the thin film wire 20, a path is formed that flows directly into the inner electrode 40b without returning to the thin film wire 20 one turn before the innermost circumference, so that the detour current Ia Similarly to the first embodiment, the number of paths through which the current flows to the inner electrode 40b increases, and the amount of heat generated by the detour current Ia is reduced.

(効果)
以上説明したように、第2の実施形態によれば、十分な量の迂回電流Iaが迂回路19に転流することができるため、超電導コイル10の熱暴走またはクエンチの発生を抑制することが可能である。
(effect)
As explained above, according to the second embodiment, a sufficient amount of detour current Ia can be commutated to the detour path 19, so that thermal runaway or quenching of the superconducting coil 10 can be suppressed. It is possible.

[第3の実施形態]
第3の実施形態に係る超電導コイルを図13(a)、(b)を用いて説明する。ここで、図13(a)は巻線部12の最外周部分の部分断面図で、図9の領域R3の拡大断面図であり、図13(b)は巻線部12の最内周部分の部分断面図で、図11の領域R4の拡大断面図である。
なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Third embodiment]
A superconducting coil according to the third embodiment will be described using FIGS. 13(a) and 13(b). Here, FIG. 13(a) is a partial sectional view of the outermost peripheral portion of the winding portion 12, and is an enlarged sectional view of region R3 in FIG. 9, and FIG. 13(b) is a partial sectional view of the outermost peripheral portion of the winding portion 12. FIG. 12 is a partial sectional view of FIG. 12 and an enlarged sectional view of region R4 in FIG.
Note that the same components as those in the above embodiment are denoted by the same reference numerals, and overlapping explanations will be omitted.

(構成)
第3の実施形態に係る超電導コイル10では、巻線部12の最外周のターンの少なくとも一部において、薄膜線材20同士を接続する接続部70を有する構成としている。
(composition)
In the superconducting coil 10 according to the third embodiment, at least a part of the outermost turns of the winding part 12 has a connecting part 70 that connects the thin film wires 20 to each other.

上述したとおり、薄膜線材20の通電領域53の最外周のターンでは薄膜線材20の近位面60aがコイル径方向内側を向いているため、図13(a)に示すように、巻線部12の最外周のターンにて薄膜線材20の近位面60a同士を対向させて接続する(図1参照)。 As described above, since the proximal surface 60a of the thin film wire 20 faces inward in the coil radial direction at the outermost turn of the current-carrying region 53 of the thin film wire 20, as shown in FIG. The proximal surfaces 60a of the thin film wire 20 are connected to each other at the outermost turn of the thin film wire 20 so as to face each other (see FIG. 1).

これにより、通電領域53のさらに外側の非通電領域52Aでは薄膜線材20の近位面60aがコイル径方向内側を向いて配置される。ここで、薄膜線材20と接続される線材として、ビスマス系の超電導線材を用いてもよい。 As a result, in the non-energized region 52A located further outside the energized region 53, the proximal surface 60a of the thin film wire 20 is arranged to face inward in the coil radial direction. Here, as the wire connected to the thin film wire 20, a bismuth-based superconducting wire may be used.

なお、上述した薄膜線材20の近位面60a同士の接続部70は、その巻回周方向の一部が巻線部12の最外周ターンに含まれていればよく、特に、図13(a)のように電極取付け位置50Aと巻回周方向に関して共通の領域を含んでもよい。この場合、接続部70と外側電極40aの間の空隙ははんだ71などで埋めることで、機械的に固着させるとともに、電気的に接続することができる。 Note that the connecting portion 70 between the proximal surfaces 60a of the thin film wire 20 described above only needs to have a part of the connecting portion 70 in the winding circumferential direction included in the outermost turn of the winding portion 12. In particular, as shown in FIG. ) may include a common area with respect to the electrode mounting position 50A and the winding circumferential direction. In this case, by filling the gap between the connecting portion 70 and the outer electrode 40a with solder 71 or the like, it is possible to mechanically fix them and to electrically connect them.

同様に、第3実施形態に係る超電導コイル10では、巻線部12の最内周の少なくとも一部において、薄膜線材20同士の接続部70を有する構成としている。 Similarly, the superconducting coil 10 according to the third embodiment has a connecting portion 70 between the thin film wires 20 at least in a portion of the innermost circumference of the winding portion 12.

上述したとおり、薄膜線材20の通電領域53の最内周では薄膜線材20の近位面60aがコイル径方向外側を向いており、図13(b)に示すように、巻線部12の最内周にて薄膜線材20の近位面60a同士を対向させて接続する。これにより、通電領域53のさらに内側の非通電領域52Bでは薄膜線材20の近位面60aがコイル径方向外側を向いて配置される。 As described above, the proximal surface 60a of the thin film wire 20 faces outward in the coil radial direction at the innermost periphery of the current-carrying region 53 of the thin film wire 20, and as shown in FIG. The proximal surfaces 60a of the thin film wires 20 are connected to each other while facing each other at the inner periphery. As a result, in the non-energized region 52B located further inside the energized region 53, the proximal surface 60a of the thin film wire 20 is arranged facing outward in the coil radial direction.

なお、上述した薄膜線材20の近位面60a同士の接続部70は、少なくともその一部が巻線部12の最内周のターンに含まれていればよく、特に、図13(b)のように電極取付け位置50Bと巻回周方向に関して共通の領域を含んでもよい。 Note that the connection portion 70 between the proximal surfaces 60a of the thin film wire 20 described above only needs to be at least partially included in the innermost turn of the winding portion 12, and in particular, as shown in FIG. It may include a common area with respect to the electrode mounting position 50B and the winding circumferential direction.

(作用)
本第3の実施形態においては、上記第1及び第2の実施形態の作用に加え、巻線部12の最内周ターンもしくは最外周ターンにて隣り合う薄膜線材20近位面60a同士が対向するため、これらの薄膜線材20同士の間の電気抵抗が低減される。
(effect)
In the third embodiment, in addition to the effects of the first and second embodiments, the proximal surfaces 60a of adjacent thin film wires 20 face each other at the innermost turn or the outermost turn of the winding portion 12. Therefore, the electrical resistance between these thin film wires 20 is reduced.

したがって、図13(a)、(b)に示すように、仮に常電導箇所15が通電領域53の最内周や最外周に位置する薄膜線材20に生じた場合でも、迂回電流Iaが迂回路19を通流する際の電気抵抗をさらに低減することができる。 Therefore, as shown in FIGS. 13(a) and 13(b), even if the normally conductive portion 15 occurs in the thin film wire 20 located at the innermost or outermost periphery of the current-carrying area 53, the detour current Ia It is possible to further reduce the electrical resistance when flowing through 19.

(効果)
以上説明したように、第3の実施形態によれば、十分な量の迂回電流Iaが迂回路19に転流することができるため、超電導コイル10の熱暴走またはクエンチの発生を抑制することが可能である。
(effect)
As explained above, according to the third embodiment, a sufficient amount of detour current Ia can be commutated to the detour path 19, so that thermal runaway or quenching of the superconducting coil 10 can be suppressed. It is possible.

[第4の実施形態]
第4の実施形態に係る超電導コイル装置を説明する。なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Fourth embodiment]
A superconducting coil device according to a fourth embodiment will be described. Note that the same components as those in the above embodiment are denoted by the same reference numerals, and overlapping explanations will be omitted.

(構成)
図8に示すように超電導コイル装置100は、超電導コイル10を巻回軸方向に同心円状に複数積層して構成される。超電導コイル装置100は、そのように積層された複数の超電導コイル10のうち、隣接する2つの超電導コイル10に架設され、電極として機能する金属板41(外側金属板41a、内側金属板41b)を有する。
(composition)
As shown in FIG. 8, the superconducting coil device 100 is constructed by laminating a plurality of superconducting coils 10 concentrically in the direction of the winding axis. The superconducting coil device 100 includes metal plates 41 (outer metal plate 41a, inner metal plate 41b) that are installed between two adjacent superconducting coils 10 and function as electrodes among the plurality of superconducting coils 10 stacked in this way. have

外側金属板41aは薄膜線材20にはんだ付け等により電気的に接続されて、架設される2つの超電導コイル10の内、一方の超電導コイル10から流出した通電電流Iを他方の超電導コイル10に流入させる。金属板41は例えば銅、銀、金、インジウムやこれらの合金で好適に構成される。 The outer metal plate 41a is electrically connected to the thin film wire 20 by soldering or the like, and allows the current I flowing out from one of the two superconducting coils 10 to flow into the other superconducting coil 10. let The metal plate 41 is preferably made of copper, silver, gold, indium, or an alloy thereof, for example.

なお、外側金属板41aは薄膜線材20にはんだ71等で直接接合することができるが、薄膜線材20に補強用の導電性テープ27を貼着し、導電性テープ27に外側金属板41aを接合してもよい。導電性テープ27としては、インジウム、金、銀、銅などの低抵抗金属や超電導線材を用いることができる。内側金属板41bについても同様である。 Note that the outer metal plate 41 a can be directly joined to the thin film wire 20 with solder 71 or the like, but it is also possible to attach a reinforcing conductive tape 27 to the thin film wire 20 and then join the outer metal plate 41 a to the conductive tape 27 . You may. As the conductive tape 27, a low resistance metal such as indium, gold, silver, or copper, or a superconducting wire can be used. The same applies to the inner metal plate 41b.

外側金属板41aは、第1の実施形態の電極取付け構成と同様に(図10(c)参照)、1つの超電導コイル10の巻線部12の最外周のターンの巻回方向端部58Aの径方向外側に配置されて巻回方向端部58Aと反巻回方向端部57Aの両方に跨って電気的に接続される。 As in the electrode attachment configuration of the first embodiment (see FIG. 10(c)), the outer metal plate 41a is located at the end 58A in the winding direction of the outermost turn of the winding portion 12 of one superconducting coil 10. It is arranged on the outside in the radial direction and is electrically connected across both the winding direction end 58A and the counter-winding direction end 57A.

これにより、通電領域53の最外周のさらに外側に非通電領域52Aを約1ターン分確保することができる。外側金属板41aは薄膜線材20にはんだ71等で直接接合することができる。 Thereby, about one turn of the non-current area 52A can be secured further outside the outermost periphery of the current-carrying area 53. The outer metal plate 41a can be directly joined to the thin film wire 20 with solder 71 or the like.

(作用)
本第4の実施形態においても、第1の実施形態と同様に、通電領域53の最外周のさらに外側に、非通電領域52Aとして巻線部12の最外周ターンの薄膜線材20が巻回されているため、仮に常電導箇所15が通電領域53の最外周の薄膜線材20に生じた場合でも、迂回電流Iaが迂回路19を通流する際の電気抵抗を低減することができる。
(effect)
In the fourth embodiment, as in the first embodiment, the thin film wire 20 of the outermost turn of the winding portion 12 is wound further outside the outermost circumference of the energized region 53 as a non-energized region 52A. Therefore, even if the normally conductive portion 15 occurs in the thin film wire 20 at the outermost periphery of the current-carrying region 53, the electrical resistance when the detour current Ia flows through the detour path 19 can be reduced.

さらに、図10(c)に示すように、薄膜線材20の巻回方向端部58Aが外側金属板41aに電気的に接続されているので、巻線部12の最外周の薄膜線材20に迂回した迂回電流Iaが最外周の1ターン内の薄膜線材20を経由して外側金属板41aへ流入する経路に加えて、最外周の1ターン内の薄膜線材20へ戻ることなく外側金属板41aに直接流出する経路が形成されるため、迂回電流Iaが外側金属板41aへ流れる経路が増えることとなり、迂回電流Iaによる発熱量が低減される。 Furthermore, as shown in FIG. 10(c), since the end portion 58A of the thin film wire 20 in the winding direction is electrically connected to the outer metal plate 41a, a detour is made to the thin film wire 20 on the outermost periphery of the winding portion 12. In addition to the path in which the detour current Ia flows into the outer metal plate 41a via the thin film wire 20 within one turn of the outermost circumference, it also flows into the outer metal plate 41a without returning to the thin film wire 20 within one turn of the outermost circumference. Since a direct outflow path is formed, the number of paths through which the detour current Ia flows to the outer metal plate 41a increases, and the amount of heat generated by the detour current Ia is reduced.

このように、コイル径方向に隣接する薄膜線材20同士を迂回路19で電気的に接続した超電導コイル装置100において、外側金属板41aを巻線部12の最外周ターンよりも1ターン内の薄膜線材20の表面54Aに配置することで、通電領域53の最外周ターンに常電導箇所15が生じたとしても、通電領域53の最外周のさらに外側を覆う非通電領域52Aに通電電流Iの一部の迂回電流Iaを迂回させることができる。 In this way, in the superconducting coil device 100 in which the thin film wires 20 adjacent to each other in the coil radial direction are electrically connected by the detour 19, the outer metal plate 41a is connected to the thin film wire 20 within one turn from the outermost turn of the winding portion 12. By disposing it on the surface 54A of the wire 20, even if a normally conductive spot 15 occurs at the outermost turn of the energized region 53, a part of the energized current I is transferred to the non-energized region 52A covering the outermost periphery of the energized region 53. The detour current Ia of the section can be detoured.

(効果)
以上説明したように、第4の実施形態によれば、十分な量の迂回電流Iaが迂回路19に転流することができるため、超電導コイル装置100の熱暴走またはクエンチの発生を抑制することが可能である。
(effect)
As explained above, according to the fourth embodiment, a sufficient amount of detour current Ia can be commutated to the detour path 19, so that thermal runaway or quenching of the superconducting coil device 100 can be suppressed. is possible.

[第5の実施形態]
第5の実施形態に係る超電導コイル装置を説明する。なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Fifth embodiment]
A superconducting coil device according to a fifth embodiment will be described. Note that the same components as those in the above embodiment are denoted by the same reference numerals, and overlapping explanations will be omitted.

(構成)
第5実施形態に係る超電導コイル装置100では、図12に示す内側電極40bを薄膜線材20に接続する場合と同様に、電極として機能する内側金属板41bが巻線部12の最内周のターンの反巻回方向端部57Bの径方向内側に配置されて巻回方向端部58Bと反巻回方向端部57Bの両方に跨って電気的に接続される。これにより、通電領域53の最内周のさらに内側に非通電領域52Bを約1ターン分確保することができる。
なお、超電導コイル装置100には外部から通電電流Iを流入又は流出させるための外側電極40a、内側電極40bを取付けることもできる。
(composition)
In the superconducting coil device 100 according to the fifth embodiment, as in the case where the inner electrode 40b shown in FIG. 12 is connected to the thin film wire 20, the inner metal plate 41b functioning as an electrode It is arranged radially inside the counter-winding direction end 57B and is electrically connected across both the winding direction end 58B and the counter-winding direction end 57B. Thereby, about one turn of non-current area 52B can be secured further inside the innermost circumference of energized area 53.
Note that an outer electrode 40a and an inner electrode 40b can be attached to the superconducting coil device 100 to allow the current I to flow in or out from the outside.

好適な例としては、超電導コイル装置100の巻回軸方向Cの端部の超電導コイル10として、第1~第3の実施形態に基づき電極40a、40bを取付けた超電導コイル10を組込み、さらに隣接する超電導コイル10同士は、第4又は第5の実施形態に基づき外側金属板41a、内側金属板41bを架設して電気的に接続することで、通電電流Iが超電導コイル装置100を構成する複数の超電導コイル10を順に流れる直列回路を形成することができる。 As a preferred example, the superconducting coil 10 to which the electrodes 40a and 40b are attached based on the first to third embodiments is incorporated as the superconducting coil 10 at the end in the winding axis direction C of the superconducting coil device 100, and The superconducting coils 10 are electrically connected to each other by constructing the outer metal plate 41a and the inner metal plate 41b based on the fourth or fifth embodiment, so that the energizing current I can be applied to the plurality of superconducting coil devices 100 that constitute the superconducting coil device 100. A series circuit can be formed in which the current flows through the superconducting coils 10 in sequence.

(作用)
本第5の実施形態においても、第2の実施形態と同様に、各超電導コイル10では、通電領域53の最内周のさらに内側に、非通電領域52Bとして巻線部12の最内周ターンの薄膜線材20が巻回されているため、仮に常電導箇所15が通電領域53の最内周の薄膜線材20に生じた場合でも、迂回電流Iaが迂回路19を通流する際の電気抵抗を低減することができる。
なお、最内周の薄膜線材20と金属板41を電気的に接続してあるので、巻線部12の最内周の薄膜線材20に迂回電流Iaが金属板41から直接流入することができる。
(effect)
In the fifth embodiment as well, similarly to the second embodiment, in each superconducting coil 10, the innermost turn of the winding portion 12 is further inside the innermost circumference of the energized region 53 as a non-energized region 52B. Since the thin film wire 20 is wound around the thin film wire 20, even if the normal conduction point 15 occurs in the thin film wire 20 on the innermost periphery of the current carrying area 53, the electrical resistance when the detour current Ia flows through the detour path 19 is small. can be reduced.
Note that since the thin film wire 20 on the innermost circumference and the metal plate 41 are electrically connected, the detour current Ia can directly flow from the metal plate 41 into the thin film wire 20 on the innermost circumference of the winding portion 12. .

(効果)
以上説明したように、第5の実施形態によれば、十分な量の迂回電流Iaが迂回路19に転流することができるため、超電導コイル装置100の熱暴走またはクエンチの発生を抑制することが可能である。
(effect)
As described above, according to the fifth embodiment, a sufficient amount of detour current Ia can be commutated to the detour path 19, so that thermal runaway or quenching of the superconducting coil device 100 can be suppressed. is possible.

[第6の実施形態]
第6の実施形態に係る超電導コイル装置を説明する。なお、上記実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Sixth embodiment]
A superconducting coil device according to a sixth embodiment will be described. Note that the same components as those in the above embodiment are denoted by the same reference numerals, and overlapping explanations will be omitted.

(構成)
第6の実施形態に係る超電導コイル装置100は、第3の実施形態に係る超電導コイル10と同様に、巻線部12の最外周の少なくとも一部において、薄膜線材20同士の接続部70を有する。具体的には、第3実施形態に係る図13(a)に示したのと同様に、巻線部12の最外周にて薄膜線材20の近位面60a同士を対向させて接続することで、通電領域53のさらに外側の非通電領域52Aでは薄膜線材20の近位面60aがコイル径方向内側を向いて配置される。
(composition)
Similar to the superconducting coil 10 according to the third embodiment, the superconducting coil device 100 according to the sixth embodiment has a connection section 70 between the thin film wires 20 in at least a part of the outermost periphery of the winding section 12. . Specifically, as shown in FIG. 13(a) according to the third embodiment, by connecting the proximal surfaces 60a of the thin film wire 20 to face each other at the outermost periphery of the winding portion 12. In a non-current-carrying region 52A located further outside the current-carrying region 53, the proximal surface 60a of the thin film wire 20 is arranged facing inward in the coil radial direction.

薄膜線材20と接続される線材として、ビスマス系の超電導線材を用いてもよい。図13(b)のように電極取付け位置50Aと巻回周方向に関して共通の領域を含んでもよい。 As the wire connected to the thin film wire 20, a bismuth-based superconducting wire may be used. As shown in FIG. 13(b), it may include a common area with respect to the electrode attachment position 50A and the winding circumferential direction.

同様に、第6の実施形態に係る超電導コイル装置100で、第3実施形態に係る超電導コイル10と同様に、巻線部12の最内周の少なくとも一部において、薄膜線材20同士の接続部70を有する。 Similarly, in the superconducting coil device 100 according to the sixth embodiment, like the superconducting coil 10 according to the third embodiment, in at least a part of the innermost periphery of the winding part 12, the connection portion between the thin film wires 20 is It has 70.

薄膜線材20の近位面60a同士を対向させて接続する点、及び図13(b)のように電極取付け位置50Bと巻回周方向に関して共通の領域を含んでもよい点は、上記第3の実施形態と同様である。 The point where the proximal surfaces 60a of the thin film wire 20 are connected to each other while facing each other, and the point where the electrode mounting position 50B may include a common area in the winding circumferential direction as shown in FIG. This is similar to the embodiment.

(作用)
本第6の実施形態においても、第4及び第5の実施形態の作用に加え、第3の実施形態と同様に、巻線部12の最内周ターン又は最外周ターンにて隣り合う薄膜線材20近位面60a同士が対向するため、これらの薄膜線材20同士の間の電気抵抗が低減される。
(effect)
Also in the sixth embodiment, in addition to the effects of the fourth and fifth embodiments, similar to the third embodiment, the thin film wires adjacent to each other at the innermost turn or the outermost turn of the winding portion 12 Since the proximal surfaces 60a of the thin film wires 20 face each other, the electrical resistance between the thin film wires 20 is reduced.

(効果)
以上説明したように、第6の実施形態によれば、十分な量の迂回電流Iaが迂回路19に転流することができるため、超電導コイル装置100の熱暴走またはクエンチの発生を抑制することが可能である。
(effect)
As explained above, according to the sixth embodiment, a sufficient amount of detour current Ia can be commutated to the detour path 19, so that thermal runaway or quenching of the superconducting coil device 100 can be suppressed. is possible.

以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, changes, and combinations can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.

例えば、迂回路、導電性部材及び絶縁材が設けられた巻線部の形状として、いわゆるパンケーキ形状の超電導コイルを例示した。しかし、適用できる巻線部は、パンケーキ形状のものに限定されない。また、レーストラック型、鞍型、楕円型などの非円形形状コイルなどにも適用することができる。 For example, a so-called pancake-shaped superconducting coil is exemplified as the shape of the winding section provided with the detour, the conductive member, and the insulating material. However, the applicable winding portion is not limited to a pancake shape. It can also be applied to non-circular coils such as racetrack type, saddle type, and elliptical type.

10…超電導コイル、12…巻線部、14…巻枠、15…常電導箇所、16…絶縁板、18…巻線側面部、19…迂回路、20…超電導線材(薄膜線材)、21…安定化層、22…基板、23…配向層、24…中間層、25…高温超電導層、26…保護層、27…導電性テープ、33…絶縁性部材、35…導電性粉末、36…導電性樹脂、40…電極、40a…外側電極、40b…内側電極、41…金属板、41a…外側金属板、41b…内側金属板、51A、51B…末端部、52A、52B…非通電領域、53…通電領域、57A、57B…反巻回方向端部、58A、58B…巻回方向端部、60…主面、60a…近位面、60b…遠位面、70…接続部、71…はんだ、100…超電導コイル装置
DESCRIPTION OF SYMBOLS 10... Superconducting coil, 12... Winding part, 14... Winding frame, 15... Normal conducting part, 16... Insulating plate, 18... Winding side part, 19... Detour, 20... Superconducting wire (thin film wire), 21... Stabilizing layer, 22... Substrate, 23... Orientation layer, 24... Intermediate layer, 25... High temperature superconducting layer, 26... Protective layer, 27... Conductive tape, 33... Insulating member, 35... Conductive powder, 36... Conductive 40... Electrode, 40a... Outer electrode, 40b... Inner electrode, 41... Metal plate, 41a... Outer metal plate, 41b... Inner metal plate, 51A, 51B... End portion, 52A, 52B... Non-current carrying area, 53 ...Electrification area, 57A, 57B... End in counter-winding direction, 58A, 58B... End in winding direction, 60... Main surface, 60a... Proximal surface, 60b... Distal surface, 70... Connection portion, 71... Solder , 100...Superconducting coil device

Claims (12)

超電導線材が巻回されてなる巻線部と、径方向に隣り合う前記超電導線材同士を電気的に接続する迂回路と、前記巻線部に電気的に接続される外側電極及び内側電極と、を備えた超電導コイルであって、
前記外側電極は前記巻線部の最外周ターンの巻回方向端部と反巻回方向端部との両方に跨って、及び/又は前記内側電極は前記巻線部の最内周ターンの巻回方向端部と反巻回方向端部との両方に跨って、電気的に接続されることを特徴とする超電導コイル。
A winding portion formed by winding a superconducting wire, a detour electrically connecting the radially adjacent superconducting wires, and an outer electrode and an inner electrode electrically connected to the winding portion, A superconducting coil comprising:
The outer electrode spans both the winding direction end and the counter-winding direction end of the outermost turn of the winding section, and/or the inner electrode spans the winding end of the outermost turn of the winding section. A superconducting coil characterized in that it is electrically connected across both a winding direction end and a counterwinding direction end.
前記外側電極は、前記巻線部の最外周ターンの巻回方向端部と反巻回方向端部よりも径方向外側に設けられ、及び/又は前記内側電極は、前記巻線部の最内周ターンの巻回方向端部と反巻回方向端部よりも径方向内側に設けられていることを特徴とする請求項1記載の超電導コイル。 The outer electrode is provided radially outward from the winding direction end and the counter-winding direction end of the outermost turn of the winding portion, and/or the inner electrode is provided at the innermost end of the winding portion. 2. The superconducting coil according to claim 1, wherein the superconducting coil is provided radially inward from an end in a winding direction and an end in a counter-winding direction of the circumferential turn. 前記超電導線材は少なくとも高温超電導層を含むテープ状の積層体で構成され、当該超電導線材は前記高温超電導層に近い近位面と、前記高温超電導層から遠い遠位面とを有し、
前記巻線部の最外周ターンの超電導線材は近位面がコイル径方向内側を向いており、当該最外周ターンの少なくとも一部において前記超電導線材の近位面同士が接続される接続部を有することを特徴とする請求項1又は2記載の超電導コイル。
The superconducting wire is composed of a tape-shaped laminate including at least a high-temperature superconducting layer, and the superconducting wire has a proximal surface close to the high-temperature superconducting layer and a distal surface far from the high-temperature superconducting layer,
The superconducting wire at the outermost turn of the winding section has a proximal surface facing inward in the coil radial direction, and has a connection section where the proximal surfaces of the superconducting wire are connected to each other at least in a part of the outermost turn. The superconducting coil according to claim 1 or 2, characterized in that:
前記超電導線材は少なくとも高温超電導層を含むテープ状の積層体で構成され、当該超電導線材は前記高温超電導層に近い近位面と、前記高温超電導層から遠い遠位面とを有し、
前記巻線部の最内周ターンの超電導線材は近位面がコイル径方向外側を向いており、当該最内周ターンの少なくとも一部において前記超電導線材の近位面同士が接続される接続部を有することを特徴とする請求項1乃至3のいずれかに記載の超電導コイル。
The superconducting wire is composed of a tape-shaped laminate including at least a high-temperature superconducting layer, and the superconducting wire has a proximal surface close to the high-temperature superconducting layer and a distal surface far from the high-temperature superconducting layer,
A proximal surface of the superconducting wire in the innermost turn of the winding portion faces outward in the coil radial direction, and a connection portion where the proximal surfaces of the superconducting wire are connected to each other in at least a portion of the innermost turn. The superconducting coil according to any one of claims 1 to 3, characterized in that it has:
前記迂回路は、前記巻線部の少なくとも1つの側面部に形成されたシート状、板状又は状の導電性部材であることを特徴とする請求項1乃至4のいずれかに記載の超電導コイル。 The superconductor according to any one of claims 1 to 4, wherein the detour is a sheet-like, plate-like, or foil- like conductive member formed on at least one side surface of the winding part. coil. 前記迂回路は、前記巻線部の巻回軸方向に垂直な側面に形成された導電性樹脂であることを特徴とする請求項1乃至4のいずれかに記載の超電導コイル。 5. The superconducting coil according to claim 1, wherein the detour is a conductive resin formed on a side surface of the winding portion perpendicular to the winding axis direction. 前記迂回路は、前記巻線部の少なくとも一部に含浸して形成された導電性樹脂であることを特徴とする請求項1乃至4のいずれかに記載の超電導コイル。 5. The superconducting coil according to claim 1, wherein the detour is formed by impregnating at least a portion of the winding portion with a conductive resin. 請求項1乃至7のいずれかに記載の超電導コイルを巻回軸方向に複数積層した超電導コイル装置であって、
前記積層した超電導コイルのうち隣接する2つの超電導コイルに架設され、電極として機能する外側金属板及び内側金属板を有し、
前記外側金属板は1つの超電導コイルの巻線部の最外周ターンの巻回方向端部と反巻回方向端部の両方に跨って、及び/又は前記内側金属板は1つの超電導コイルの巻線部の最内周ターンの巻回方向端部と反巻回方向端部の両方に跨って、電気的に接続されることを特徴とする超電導コイル装置。
A superconducting coil device comprising a plurality of superconducting coils according to any one of claims 1 to 7 stacked in the winding axis direction,
It has an outer metal plate and an inner metal plate that are installed between two adjacent superconducting coils among the laminated superconducting coils and function as electrodes,
The outer metal plate spans both the winding direction end and the opposite winding direction end of the outermost turn of the winding portion of one superconducting coil, and/or the inner metal plate spans the winding portion of one superconducting coil. A superconducting coil device characterized in that the wire portion is electrically connected across both the winding direction end and the counter-winding direction end of the innermost turn of the wire portion.
前記外側金属板は、前記超電導コイルの巻線部の最外周ターンの巻回方向端部と反巻回方向端部よりも径方向外側に設けられ、及び/又は前記内側金属板は、前記超電導コイルの巻線部の最内周ターンの巻回方向端部と反巻回方向端部よりも径方向内側に設けられていることを特徴とする請求項8記載の超電導コイル装置。 The outer metal plate is provided radially outward from the ends in the winding direction and the ends in the counter-winding direction of the outermost turn of the winding portion of the superconducting coil, and/or the inner metal plate is provided in the superconducting coil. 9. The superconducting coil device according to claim 8, wherein the superconducting coil device is provided radially inward from an end in a winding direction and an end in a counter-winding direction of the innermost turn of the winding portion of the coil. 前記超電導コイルに用いられる超電導線材は少なくとも高温超電導層を含むテープ状の積層体で構成され、当該超電導線材は前記高温超電導層に近い近位面と、前記高温超電導層から遠い遠位面とを有し、
巻線部の最外周のターンの超電導線材は近位面がコイル径方向内側を向いており、当該最外周のターンの少なくとも一部において前記超電導線材の近位面同士が接続される接続部を有することを特徴とする請求項8又は9記載の超電導コイル装置。
The superconducting wire used in the superconducting coil is composed of a tape-shaped laminate including at least a high-temperature superconducting layer, and the superconducting wire has a proximal surface close to the high-temperature superconducting layer and a distal surface far from the high-temperature superconducting layer. have,
The proximal surfaces of the superconducting wires in the outermost turns of the winding section face inward in the radial direction of the coil, and the proximal surfaces of the superconducting wires are connected to each other in at least a part of the outermost turns. The superconducting coil device according to claim 8 or 9, characterized in that it has a superconducting coil device.
前記超電導コイルに用いられる超電導線材は少なくとも高温超電導層を含むテープ状の積層体で構成され、当該超電導線材は前記高温超電導層に近い近位面と、前記高温超電導層から遠い遠位面とを有し、
巻線部の最内周のターンの超電導線材は近位面がコイル径方向外側を向いており、当該最内周のターンの少なくとも一部において前記超電導線材の近位面同士が接続される接続部を有することを特徴とする請求項8又は9記載の超電導コイル装置。
The superconducting wire used in the superconducting coil is composed of a tape-shaped laminate including at least a high-temperature superconducting layer, and the superconducting wire has a proximal surface close to the high-temperature superconducting layer and a distal surface far from the high-temperature superconducting layer. have,
A connection in which the proximal surfaces of the superconducting wires in the innermost turns of the winding section face outward in the coil radial direction, and the proximal surfaces of the superconducting wires are connected to each other in at least a part of the innermost turns. 10. The superconducting coil device according to claim 8, further comprising: a superconducting coil device.
前記外側金属板及び内側金属板は、前記超電導コイルの薄膜線材に直接接合されるか、又は当該薄膜線材に貼着された導電性テープに接合されることを特徴とする請求項8乃至11のいずれかに記載の超電導コイル装置。 12. The outer metal plate and the inner metal plate are bonded directly to the thin film wire of the superconducting coil or to a conductive tape attached to the thin film wire. The superconducting coil device according to any one of the above.
JP2020125079A 2020-07-22 2020-07-22 Superconducting coils and superconducting coil devices Active JP7404187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125079A JP7404187B2 (en) 2020-07-22 2020-07-22 Superconducting coils and superconducting coil devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125079A JP7404187B2 (en) 2020-07-22 2020-07-22 Superconducting coils and superconducting coil devices

Publications (2)

Publication Number Publication Date
JP2022021490A JP2022021490A (en) 2022-02-03
JP7404187B2 true JP7404187B2 (en) 2023-12-25

Family

ID=80220917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125079A Active JP7404187B2 (en) 2020-07-22 2020-07-22 Superconducting coils and superconducting coil devices

Country Status (1)

Country Link
JP (1) JP7404187B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089817A (en) 2011-10-19 2013-05-13 Toshiba Corp Multilayer superconducting coil device and superconducting coil device
JP2015220417A (en) 2014-05-21 2015-12-07 中部電力株式会社 Electrode structure of superconducting coil
JP2016163026A (en) 2015-03-05 2016-09-05 株式会社東芝 High-temperature superconducting coil
JP2017103352A (en) 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2017224654A (en) 2016-06-13 2017-12-21 株式会社東芝 High-temperature superconducting magnet device
JP2018129519A (en) 2018-03-02 2018-08-16 株式会社東芝 Superconducting coil and superconducting coil device
JP2019016685A (en) 2017-07-06 2019-01-31 株式会社東芝 Connection structure of superconducting tape and electrode, and superconducting coil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089817A (en) 2011-10-19 2013-05-13 Toshiba Corp Multilayer superconducting coil device and superconducting coil device
JP2015220417A (en) 2014-05-21 2015-12-07 中部電力株式会社 Electrode structure of superconducting coil
JP2016163026A (en) 2015-03-05 2016-09-05 株式会社東芝 High-temperature superconducting coil
JP2017103352A (en) 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2017224654A (en) 2016-06-13 2017-12-21 株式会社東芝 High-temperature superconducting magnet device
JP2019016685A (en) 2017-07-06 2019-01-31 株式会社東芝 Connection structure of superconducting tape and electrode, and superconducting coil
JP2018129519A (en) 2018-03-02 2018-08-16 株式会社東芝 Superconducting coil and superconducting coil device

Also Published As

Publication number Publication date
JP2022021490A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP6486817B2 (en) Superconducting coil and superconducting coil device
JP6490851B2 (en) Superconducting coil and superconducting coil device
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
CN112912973B (en) High temperature superconductor magnet
JP2018101465A (en) Superconducting coil, method for manufacturing superconducting coil, and superconducting coil device
JP7404187B2 (en) Superconducting coils and superconducting coil devices
JP2012038812A (en) Superconducting coil device
JP6678509B2 (en) Superconducting tape wire, superconducting current lead using superconducting tape, permanent current switch and superconducting coil
JP2001093721A (en) High-temperature superconducting magnet
JP5741094B2 (en) Superconducting coil
JP6873848B2 (en) Superconducting coil
JP7222622B2 (en) Superconducting coil and superconducting coil device
JP2020136637A (en) High-temperature superconducting magnet device
JP7247080B2 (en) Superconducting coil device
JP2022121041A (en) superconducting coil
JP2023044839A (en) Superconducting coil and superconducting coil device
JP5969418B2 (en) Permanent current switch
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2022174411A (en) Superconducting coil and method for manufacturing superconducting coil
JP2021015833A (en) Superconducting coil and superconducting coil unit
JP7438882B2 (en) Stacked high temperature superconducting coil device
JP2023092174A (en) High-temperature superconducting coil device and multilayer high-temperature superconducting coil device
JP2020150121A (en) Superconducting coil and superconducting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7404187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150