JP2015220417A - Electrode structure of superconducting coil - Google Patents

Electrode structure of superconducting coil Download PDF

Info

Publication number
JP2015220417A
JP2015220417A JP2014104985A JP2014104985A JP2015220417A JP 2015220417 A JP2015220417 A JP 2015220417A JP 2014104985 A JP2014104985 A JP 2014104985A JP 2014104985 A JP2014104985 A JP 2014104985A JP 2015220417 A JP2015220417 A JP 2015220417A
Authority
JP
Japan
Prior art keywords
superconducting
wire
coil
electrode
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014104985A
Other languages
Japanese (ja)
Other versions
JP6364235B2 (en
Inventor
智則 渡部
Tomonori Watabe
智則 渡部
長屋 重夫
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2014104985A priority Critical patent/JP6364235B2/en
Publication of JP2015220417A publication Critical patent/JP2015220417A/en
Application granted granted Critical
Publication of JP6364235B2 publication Critical patent/JP6364235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide the electrode structure of a superconducting coil capable of maintaining the superconducting characteristics, by suppressing impairment of a superconducting wire rod at the joint of the superconducting wire rod and an electrode.SOLUTION: A superconducting coil 10 is formed by winding a tape-like superconducting wire rod 11, and an electrode 12 is bonded to the termination 11a thereof. Between at least one side of a superconducting wire rod 11 located at the termination 11a of the superconducting coil 10 and an outer electrode 12a and an inner electrode 12b constituting the electrode 12, an outer protective wire rod 15a and an inner protective wire rod 15b are interposed as a protective wire rod 15 for protecting the superconducting wire rod 11. Under this state, the superconducting wire rod 11 and the electrode 12 are joined by solder.

Description

本発明は、テープ状の超電導線材を巻回して形成され、電力機器等に使用される超電導コイルの終端部における超電導線材に電極部を接合した超電導コイルの電極構造に関する。   The present invention relates to an electrode structure of a superconducting coil formed by winding a tape-shaped superconducting wire and joining an electrode portion to a superconducting wire at a terminal portion of a superconducting coil used for power equipment or the like.

超電導コイルを形成するテープ状の超電導線材としては、例えばニッケル合金による基板上に中間層を介して希土類系酸化物超電導体の超電導層が形成され、その上に銀、銅等の安定化層が形成されて構成されている。この超電導コイルの終端部における超電導線材には電極部が半田によって接合されている。   As a tape-shaped superconducting wire forming a superconducting coil, for example, a superconducting layer of a rare earth oxide superconductor is formed on a substrate made of a nickel alloy via an intermediate layer, and a stabilizing layer such as silver or copper is formed thereon. Formed and configured. An electrode portion is joined to the superconducting wire at the terminal portion of the superconducting coil by solder.

この種の超電導コイルが例えば特許文献1に開示されている。すなわち、超電導コイルは、基材、該基材上の超電導層及び該超電導層上の安定化層を備える超電導線材を、前記安定化層側を外側にして巻回したコイル体と、このコイル体における超電導線材の安定化層上に設けられた電極部とを備えている。   This type of superconducting coil is disclosed in Patent Document 1, for example. That is, a superconducting coil includes a coil body in which a superconducting wire having a base material, a superconducting layer on the base material, and a stabilizing layer on the superconducting layer is wound with the stabilizing layer side outward, and the coil body. And an electrode portion provided on the stabilization layer of the superconducting wire.

前記超電導線材の端部と電極部とがコイル体の周方向から径方向外側に向かって一体に折り曲げられ、電極部のコイル体周面に沿う周側部と、電極部のコイル体の外側に延出された延出部との両方が超電導線材の安定化層と電気的に接続されている。前記電極部の周側部はコイル体周面側の超電導線材の安定化層と半田付けされ、電極部の延出部はコイル体の径方向外側に延出された超電導線材の安定化層と半田付けされている。   The end portion of the superconducting wire and the electrode portion are integrally bent from the circumferential direction of the coil body toward the radially outer side, and the circumferential side portion along the circumferential surface of the coil body of the electrode portion and the outer side of the coil body of the electrode portion. Both the extended portion and the extended portion are electrically connected to the stabilization layer of the superconducting wire. A peripheral side portion of the electrode part is soldered to a stabilization layer of a superconducting wire on a coil body peripheral surface side, and an extension part of the electrode part is a stabilization layer of a superconducting wire extended radially outside the coil body. Soldered.

特開2012−164859号公報JP 2012-164859 A

ところで、超電導コイルを極低温に冷却すると、超電導線材と電極部との熱膨張率の相違に基づいて、超電導線材と電極部との接合部には熱応力が作用する。また、超電導コイルを励磁したり、消磁したりする際の電磁力により、超電導コイルに歪みが生じ、超電導線材と電極部との接合部に応力が作用する。   By the way, when the superconducting coil is cooled to a cryogenic temperature, thermal stress acts on the joint between the superconducting wire and the electrode portion based on the difference in thermal expansion coefficient between the superconducting wire and the electrode portion. In addition, the electromagnetic force generated when the superconducting coil is excited or demagnetized causes distortion in the superconducting coil, and stress acts on the joint between the superconducting wire and the electrode portion.

このため、前記特許文献1に記載されている従来構成の超電導コイルにおいては、超電導線材の周側部と電極部との間の半田付け部及び延出部と電極部との間の半田付け部には応力が集中し、超電導線材と電極部とが接続不良を生じたり、剥離したりするおそれがあった。従って、超電導線材と電極部との電気的な接続不良に起因して、超電導コイルの特性が低下するという問題があった。   For this reason, in the superconducting coil having the conventional configuration described in Patent Document 1, the soldering portion between the peripheral side portion of the superconducting wire and the electrode portion and the soldering portion between the extension portion and the electrode portion. There was a risk of stress concentration in the superconducting wire and the electrode part, resulting in poor connection or peeling. Therefore, there has been a problem that the characteristics of the superconducting coil deteriorate due to poor electrical connection between the superconducting wire and the electrode portion.

そこで、本発明の目的とするところは、超電導線材と電極部との接合部における超電導線材の損傷を抑制して、超電導特性を維持することができる超電導コイルの電極構造を提供することにある。   Accordingly, an object of the present invention is to provide an electrode structure of a superconducting coil that can suppress the damage of the superconducting wire at the joint between the superconducting wire and the electrode portion and maintain the superconducting characteristics.

上記の目的を達成するために、請求項1に記載の発明の超電導コイルの電極構造は、テープ状の超電導線材を巻回して形成された超電導コイルの終端部に電極部を接合した超電導コイルの電極構造であって、前記超電導コイルの終端部に位置する超電導線材と電極部との間には、超電導線材を保護する保護線材を介在させた状態で超電導線材と電極部とが接合されていることを特徴とする。   In order to achieve the above object, an electrode structure of a superconducting coil according to claim 1 is a superconducting coil in which an electrode portion is joined to a terminal portion of a superconducting coil formed by winding a tape-like superconducting wire. In the electrode structure, the superconducting wire and the electrode part are joined between the superconducting wire located at the terminal part of the superconducting coil and the electrode part with a protective wire protecting the superconducting wire interposed therebetween. It is characterized by that.

前記電極部は超電導線材の外周側に位置する外側電極部と超電導線材の内周側に位置する内側電極部とにより構成され、保護線材は超電導コイルの終端部に位置する超電導線材の外周面と外側電極部との間及び超電導線材の内周面と内側電極部との間に介在されていることが好ましい。   The electrode part is composed of an outer electrode part located on the outer peripheral side of the superconducting wire and an inner electrode part located on the inner peripheral side of the superconducting wire, and the protective wire is an outer peripheral surface of the superconducting wire located at the terminal part of the superconducting coil. It is preferably interposed between the outer electrode part and between the inner peripheral surface of the superconducting wire and the inner electrode part.

前記保護線材は、超電導コイルに沿って少なくとも1周回するように超電導線材に共巻きされていることが好ましい。
前記保護線材は、超電導コイルを形成する超電導線材で形成されていることが好ましい。
It is preferable that the protective wire is wound around the superconducting wire so as to make at least one turn along the superconducting coil.
The protective wire is preferably formed of a superconducting wire that forms a superconducting coil.

前記超電導線材は、基板上に中間層を介して希土類系酸化物超電導体の超電導層が形成され、その超電導層上に安定化層が形成されて構成されていることが好ましい。
前記保護線材は、超電導線材の超電導層側に配置されていることが好ましい。
It is preferable that the superconducting wire is formed by forming a superconducting layer of a rare earth oxide superconductor through an intermediate layer on a substrate and forming a stabilizing layer on the superconducting layer.
The protective wire is preferably disposed on the superconducting layer side of the superconducting wire.

前記外側電極部及び内側電極部には係合部を設けるとともに、超電導線材の両面に保護線材を配置した状態で外側電極部と内側電極部との間に介在させ、その状態で外側電極部の係合部と内側電極部の係合部を係合し、締結部材で一体的に締結することが好ましい。   The outer electrode portion and the inner electrode portion are provided with engaging portions, and are disposed between the outer electrode portion and the inner electrode portion in a state where protective wires are disposed on both surfaces of the superconducting wire, and in this state, the outer electrode portion It is preferable that the engaging portion and the engaging portion of the inner electrode portion are engaged and fastened integrally with a fastening member.

本発明の超電導コイルの電極構造によれば、超電導線材と電極との接合部における超電導線材の損傷を抑制して、超電導特性を維持することができるという効果を奏する。   According to the electrode structure of the superconducting coil of the present invention, it is possible to suppress the damage of the superconducting wire at the joint between the superconducting wire and the electrode and maintain the superconducting characteristics.

第1実施形態における超電導コイルを示す断面図であって、超電導コイルの端部における超電導線材に電極を接合した状態を示す断面図。It is sectional drawing which shows the superconducting coil in 1st Embodiment, Comprising: Sectional drawing which shows the state which joined the electrode to the superconducting wire in the edge part of a superconducting coil. 図1の部分拡大断面図。The partial expanded sectional view of FIG. テープ状の超電導線材を示す断面図。Sectional drawing which shows a tape-shaped superconducting wire. シングルパンケーキコイルの端部における超電導線材に電極を接合した状態を示す斜視図。The perspective view which shows the state which joined the electrode to the superconducting wire in the edge part of a single pancake coil. ダブルパンケーキコイルの端部における超電導線材に電極を接合した状態を示す斜視図。The perspective view which shows the state which joined the electrode to the superconducting wire in the edge part of a double pancake coil. ダブルパンケーキコイルの製造方法を示す斜視図。The perspective view which shows the manufacturing method of a double pancake coil. 超電導線材の両側に保護用超電導線材を配置した状態で電極を接合する状態を示す分解斜視図。The disassembled perspective view which shows the state which joins an electrode in the state which has arrange | positioned the superconducting wire for protection on the both sides of a superconducting wire. 図7とは別の方法で超電導線材の両側に短尺超電導線材を配置した状態で電極を接合する状態を示す断面図。Sectional drawing which shows the state which joins an electrode in the state which has arrange | positioned the short superconducting wire on both sides of a superconducting wire by the method different from FIG. 第1実施形態及び実施例1における超電導線材の両側に保護用超電導線材を配置した状態で電極を接合した状態を示す要部断面図。The principal part sectional drawing which shows the state which joined the electrode in the state which has arrange | positioned the superconducting wire for protection on both sides of the superconducting wire in 1st Embodiment and Example 1. FIG. 実施例1における超電導コイルの特性を表し、通電1回目の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in Example 1, and showing the relationship between the electric current and voltage of the 1st energization. 実施例1における超電導コイルの特性を表し、冷却サイクルの5回目後の電流と電圧との関係を示すグラフ。The graph which represents the characteristic of the superconducting coil in Example 1, and shows the relationship between the electric current and voltage after the 5th cooling cycle. 第2実施形態及び実施例2における超電導線材の両側に保護用超電導線材を配置した状態で電極を接合した状態を示す要部断面図。The principal part sectional drawing which shows the state which joined the electrode in the state which has arrange | positioned the superconducting wire for protection on both sides of the superconducting wire in 2nd Embodiment and Example 2. FIG. 実施例2における超電導コイルの特性を表し、通電1回目の電流と電圧との関係を示すグラフ。The graph which represents the characteristic of the superconducting coil in Example 2, and shows the relationship between the electric current of the 1st electricity supply, and a voltage. 実施例2における超電導コイルの特性を表し、冷却サイクルの5回目後の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in Example 2, and showing the relationship between the electric current and voltage after the 5th cooling cycle. 比較例1における超電導線材の両側に電極を接合した状態を示す断面図。Sectional drawing which shows the state which joined the electrode to the both sides of the superconducting wire in the comparative example 1. 比較例1における超電導コイルの特性を表し、通電1回目の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in the comparative example 1, and showing the relationship between the electric current and the voltage of the first energization. 比較例1における超電導コイルの特性を表し、冷却サイクルの3回目後の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in the comparative example 1, and showing the relationship between the electric current and voltage after the 3rd time of a cooling cycle. 比較例1における超電導コイルの特性を表し、冷却サイクルの4回目後の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in the comparative example 1, and showing the relationship between the electric current and voltage after the 4th cooling cycle. 比較例2における超電導線材の両側に電極を接合した状態を示す断面図。Sectional drawing which shows the state which joined the electrode to the both sides of the superconducting wire in the comparative example 2. 比較例2における超電導コイルの特性を表し、通電1回目の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in the comparative example 2, and showing the relationship between the electric current and the voltage of the first energization. 比較例2における超電導コイルの特性を表し、冷却サイクルの2回目後の電流と電圧との関係を示すグラフ。The graph which represents the characteristic of the superconducting coil in the comparative example 2, and shows the relationship between the electric current and voltage after the 2nd time of a cooling cycle. 比較例2における超電導コイルの特性を表し、冷却サイクルの3回目後の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in the comparative example 2, and showing the relationship between the electric current and voltage after the 3rd time of a cooling cycle. 第3実施形態及び実施例3における超電導線材の片側に保護用超電導線材を配置した状態で電極を接合した状態を示す要部断面図。The principal part sectional drawing which shows the state which joined the electrode in the state which has arrange | positioned the superconducting wire for protection in the one side of the superconducting wire in 3rd Embodiment and Example 3. FIG. 実施例3における超電導コイルの特性を表し、通電1回目の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in Example 3, and showing the relationship between the electric current and voltage of the 1st energization. 実施例3における超電導コイルの特性を表し、冷却サイクルの5回目後の電流と電圧との関係を示すグラフ。The graph showing the characteristic of the superconducting coil in Example 3, and showing the relationship between the electric current and voltage after the 5th cooling cycle.

(第1実施形態)
以下、本発明の第1実施形態を図1〜図9に基づいて詳細に説明する。
図1に示すように、超電導コイル10はテープ状の超電導線材11を巻回して形成され、超電導コイル10の終端部11aすなわち超電導線材11の終端部11aには電極部12が接合されている。図4に示すように、超電導コイル10としてのシングルパンケーキコイル10Aは、超電導線材11が1段に巻回されて構成され、内周側の終端部11a及び外周側の終端部11aに電極部12が接合されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS.
As shown in FIG. 1, the superconducting coil 10 is formed by winding a tape-shaped superconducting wire 11, and an electrode portion 12 is joined to the terminal end 11 a of the superconducting coil 10, that is, the terminal end 11 a of the superconducting wire 11. As shown in FIG. 4, a single pancake coil 10 </ b> A as the superconducting coil 10 is configured by winding a superconducting wire 11 in one stage, and an electrode portion is provided on the inner peripheral side terminal portion 11 a and the outer peripheral side terminal portion 11 a. 12 is joined.

図5に示すように、超電導コイル10としてのダブルパンケーキコイル10Bは、繊維強化樹脂(FRP)で形成された仕切枠材13を介して超電導線材11が上下2段に巻回されて構成され、外周側の上下2箇所の終端部11aに電極部12すなわち上部電極部12A及び下部電極部12Bが接合されている。   As shown in FIG. 5, the double pancake coil 10B as the superconducting coil 10 is configured by winding the superconducting wire 11 in two upper and lower stages through a partition frame member 13 formed of fiber reinforced resin (FRP). The electrode portion 12, that is, the upper electrode portion 12A and the lower electrode portion 12B are joined to the upper and lower end portions 11a on the outer peripheral side.

図6に示すように、ダブルパンケーキコイル10Bを製造する場合には、仕切枠材13が連結された内周枠14に対し、1本のテープ状をなす超電導線材11の中央部を中心にして上下2段に反対方向に巻き付ける。すなわち、上段のコイルは上方から見て反時計方向に巻回し、下段のコイルは上方から見て時計方向に巻回する。なお、仕切枠材13には図示しない貫通孔が設けられ、その貫通孔を超電導線材11が通るようになっている。また、内周枠14に対する超電導線材11の巻き付け方向は、上記とは逆方向であってもよい。   As shown in FIG. 6, when manufacturing the double pancake coil 10 </ b> B, the central portion of the superconducting wire 11 that forms a single tape is centered on the inner peripheral frame 14 to which the partition frame member 13 is connected. Wrap in the opposite direction on the top and bottom two steps. That is, the upper coil is wound counterclockwise when viewed from above, and the lower coil is wound clockwise when viewed from above. The partition frame member 13 is provided with a through-hole (not shown) through which the superconducting wire 11 passes. Further, the winding direction of the superconducting wire 11 around the inner peripheral frame 14 may be opposite to the above.

図1及び図2に示すように、前記終端部11aに位置する超電導線材11の内外周の両面と電極部12としての外側電極部12a及び内側電極部12bとの間には、それぞれ超電導線材11を機械的に保護する保護線材15としての外側保護線材15a及び内側保護線材15bが介在されている。前記電極部12は外側電極部12aと内側電極部12bに分岐され、両電極部12a、12bが連結されて図示しないリード線に接続されている。   As shown in FIGS. 1 and 2, the superconducting wire 11 is provided between the inner and outer peripheral surfaces of the superconducting wire 11 located at the terminal end 11a and the outer electrode portion 12a and the inner electrode portion 12b as the electrode portion 12, respectively. An outer protective wire 15a and an inner protective wire 15b are interposed as protective wire 15 for mechanically protecting the wire. The electrode part 12 is branched into an outer electrode part 12a and an inner electrode part 12b, and both electrode parts 12a and 12b are connected to each other and connected to a lead wire (not shown).

前記超電導線材11と外側電極部12a及び内側電極部12bとがそれぞれ外側保護線材15a及び内側保護線材15bを介して半田によりそれぞれ接合されている。この保護線材15は、超電導コイル10に沿ってほぼ1周回するように構成され、その外周側の端部が外側保護線材15aとなり、内周側の端部が内側保護線材15bとなっている。また、保護線材15は、前記超電導線材11と同じ超電導線材で形成され、ほぼ1周回するに足る長さの短尺に形成されている。   The superconducting wire 11 is joined to the outer electrode portion 12a and the inner electrode portion 12b by solder via the outer protective wire 15a and the inner protective wire 15b, respectively. The protective wire 15 is configured to circulate substantially along the superconducting coil 10, and an outer peripheral end thereof serves as an outer protective wire 15 a and an inner peripheral end serves as an inner protective wire 15 b. The protective wire 15 is formed of the same superconducting wire as the superconducting wire 11, and is formed in a short length that is sufficient for one round.

図3に示すように、前記超電導線材11は、基板16上に中間層17を介して超電導層18が形成され、その超電導層18上に安定化層19が設けられている。該安定化層19は、超電導層18上の第1安定化層19aと、外周を覆う第2安定化層19bとにより構成されている。   As shown in FIG. 3, in the superconducting wire 11, a superconducting layer 18 is formed on a substrate 16 via an intermediate layer 17, and a stabilization layer 19 is provided on the superconducting layer 18. The stabilization layer 19 includes a first stabilization layer 19a on the superconducting layer 18 and a second stabilization layer 19b covering the outer periphery.

前記基板16は、ニッケル合金(ハステロイ)、銀、銀合金等の金属により、例えば厚さ100μm、幅10mmに形成されている。中間層17は、ガドリニウム・ジルコニウム酸化物(Gd・Zr酸化物)、酸化マグネシウム(MgO)、イットリウム安定化ジルコニウム(YSZ)、バリウム・ジルコニウム酸化物(Ba・Zr酸化物)等の化合物により、例えば厚さ500nm、幅10mmに形成されている。   The substrate 16 is made of a metal such as nickel alloy (Hastelloy), silver, or silver alloy, and has a thickness of 100 μm and a width of 10 mm, for example. The intermediate layer 17 is made of a compound such as gadolinium / zirconium oxide (Gd / Zr oxide), magnesium oxide (MgO), yttrium-stabilized zirconium (YSZ), barium / zirconium oxide (Ba / Zr oxide), for example. It has a thickness of 500 nm and a width of 10 mm.

前記超電導層18は、希土類系酸化物超電導体のCVD法(化学蒸着法)により、例えば厚さ約1μm、幅10mmに形成されている。希土類元素としては、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、イットリウム(Y)、イッテルビウム(Yb)等が挙げられる。希土類系酸化物としては、RE・Ba・Cu・O等が挙げられる。但し、REは希土類元素を表す。この超電導層18として具体的には、イットリウム・バリウム・銅酸化物、ランタン・バリウム・銅酸化物(La・Ba・Cu酸化物)等が挙げられる。   The superconducting layer 18 is formed, for example, to a thickness of about 1 μm and a width of 10 mm by a rare earth oxide superconductor CVD method (chemical vapor deposition method). As rare earth elements, lanthanum (La), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Dy), holmium (Ho), erbium (Er), yttrium (Y), And ytterbium (Yb). Examples of rare earth oxides include RE, Ba, Cu, and O. However, RE represents a rare earth element. Specific examples of the superconducting layer 18 include yttrium / barium / copper oxide and lanthanum / barium / copper oxide (La / Ba / Cu oxide).

前記第1安定化層19aは、銀等の金属のスパッタリング等により、例えば厚さ約15μm、幅10mmに形成されている。第2安定化層19bは、銅等の金属のメッキ等により、例えば厚さ約50μmに形成されている。   The first stabilization layer 19a is formed to have a thickness of about 15 μm and a width of 10 mm, for example, by sputtering of a metal such as silver. The second stabilization layer 19b is formed to a thickness of about 50 μm, for example, by plating with a metal such as copper.

前記電極部12は、導電性の高い金属材料、例えば銀、銅、金、白金又はそれらの金属を含む合金等により形成されている。
図9に示すように、超電導線材11はその基板16が内周側、超電導層18が外周側に位置するように配置されている。また、外側保護線材15aはその超電導層18が内周側に位置するように配置され、その超電導層18が超電導線材11の超電導層18に対向している。このため、外側保護線材15aと超電導線材11との間の電気的な導通性が高められる。さらに、内側保護線材15bはその超電導層18が内周側に位置するように配置され、その超電導層18が内側電極部12bに対向している。このため、内側保護線材15bと内側電極部12bとの間の電気的な導通性が高められる。
The electrode portion 12 is formed of a highly conductive metal material such as silver, copper, gold, platinum, or an alloy containing these metals.
As shown in FIG. 9, the superconducting wire 11 is disposed such that the substrate 16 is located on the inner peripheral side and the superconducting layer 18 is located on the outer peripheral side. The outer protective wire 15a is arranged such that the superconducting layer 18 is located on the inner peripheral side, and the superconducting layer 18 faces the superconducting layer 18 of the superconducting wire 11. For this reason, the electrical continuity between the outer protective wire 15a and the superconducting wire 11 is enhanced. Further, the inner protective wire 15b is disposed such that the superconducting layer 18 is located on the inner peripheral side, and the superconducting layer 18 faces the inner electrode portion 12b. For this reason, electrical continuity between the inner protective wire 15b and the inner electrode portion 12b is enhanced.

このように、超電導線材11の内外周両面に保護線材15を介在させて外側電極部12a及び内側電極部12bに半田で接合したことから、超電導線材11は外側電極部12a及び内側電極部12bに直接接触することがなく、保護線材15によって遮蔽されて保護される。   Thus, since the protective wire 15 is interposed on both inner and outer peripheral surfaces of the superconducting wire 11 and joined to the outer electrode portion 12a and the inner electrode portion 12b with solder, the superconducting wire 11 is attached to the outer electrode portion 12a and the inner electrode portion 12b. There is no direct contact and it is shielded and protected by the protective wire 15.

図7に示すように、前記外側電極部12a内面の上端部及び下端部には複数の係合凸部20が設けられ、内側電極部12b外面の上端部及び下端部には前記係合凸部20が係合する複数の係合凹部21が設けられている。外側電極部12aの係合凸部20には締結部材としての雌ねじ孔22が形成され、内側電極部12bの係合凹部21には内側電極部12bを貫通する貫通孔23が形成され、締結部材としての雄ねじ24が内側電極部12bの貫通孔23を通って外側電極部12aの雌ねじ孔22に螺合されるようになっている。   As shown in FIG. 7, a plurality of engaging protrusions 20 are provided at the upper and lower ends of the inner surface of the outer electrode portion 12a, and the engaging protrusions are provided at the upper and lower ends of the outer surface of the inner electrode portion 12b. A plurality of engaging recesses 21 with which 20 is engaged are provided. A female screw hole 22 as a fastening member is formed in the engaging convex portion 20 of the outer electrode portion 12a, and a through hole 23 penetrating the inner electrode portion 12b is formed in the engaging concave portion 21 of the inner electrode portion 12b. The male screw 24 is threaded into the female screw hole 22 of the outer electrode portion 12a through the through hole 23 of the inner electrode portion 12b.

また、超電導線材11、外側保護線材15a及び内側保護線材15bの上端部及び下端部には、それぞれ複数の切欠き25が外側電極部12aの係合凸部20及び内側電極部12bの係合凹部21に対応する位置に形成されている。そして、超電導線材11の両面に外側保護線材15a及び内側保護線材15bを配置した状態で、係合凸部20を係合凹部21に係合させ、雄ねじ24を貫通孔23に通して雌ねじ孔22に螺合させることにより、超電導線材11を電極部12に連結させることができる。   In addition, a plurality of notches 25 are formed at the upper end and the lower end of the superconducting wire 11, the outer protective wire 15a, and the inner protective wire 15b, respectively, and the engaging convex portion 20 of the outer electrode portion 12a and the engaging concave portion of the inner electrode portion 12b. 21 is formed at a position corresponding to 21. Then, in a state where the outer protective wire 15a and the inner protective wire 15b are arranged on both surfaces of the superconducting wire 11, the engaging convex portion 20 is engaged with the engaging concave portion 21, the male screw 24 is passed through the through hole 23, and the female screw hole 22 is inserted. The superconducting wire 11 can be connected to the electrode portion 12 by being screwed to the electrode portion 12.

このようにして、超電導線材11を電極部12に連結させることにより、超電導線材11と電極部12との半田接合部の接合状態を強固に保持することができる。さらに、超電導線材11と電極部12との密着性を高め、接触抵抗を抑えることができ、電気的な導通性を向上させることができる。   In this way, by connecting the superconducting wire 11 to the electrode portion 12, the bonding state of the solder joint portion between the superconducting wire 11 and the electrode portion 12 can be firmly maintained. Furthermore, the adhesion between the superconducting wire 11 and the electrode part 12 can be increased, the contact resistance can be suppressed, and the electrical conductivity can be improved.

超電導線材11と電極部12との連結構造は、他の形態を採用することもできる。例えば、図8に示すように、外側電極部12aの内面に係合凹条26を形成するとともに、内側電極部12bの外面に係合凸条27を前記係合凹条26に係合するように形成する。外側電極部12aの係合凹条26には、超電導線材11の両面に外側保護線材15a及び内側保護線材15bを重ね合せて収容できるように構成する。前記内側電極部12b、内側保護線材15b、超電導線材11及び外側保護線材15aには挿通孔28を形成するとともに、外側電極部12aには締結部材としての雌ねじ孔部29を形成する。そして、締結部材としてのビス30を挿通孔28に通し、雌ねじ孔部29に螺合させることにより、超電導線材11を電極部12に連結させることができる。   The connection structure between the superconducting wire 11 and the electrode portion 12 can adopt other forms. For example, as shown in FIG. 8, the engaging groove 26 is formed on the inner surface of the outer electrode portion 12a, and the engaging protrusion 27 is engaged with the engaging groove 26 on the outer surface of the inner electrode portion 12b. To form. The engaging recess 26 of the outer electrode portion 12a is configured such that the outer protective wire 15a and the inner protective wire 15b can be accommodated on both surfaces of the superconducting wire 11 in an overlapping manner. The inner electrode portion 12b, the inner protective wire 15b, the superconducting wire 11 and the outer protective wire 15a are formed with insertion holes 28, and the outer electrode portion 12a is formed with a female screw hole portion 29 as a fastening member. Then, the superconducting wire 11 can be connected to the electrode portion 12 by passing a screw 30 as a fastening member through the insertion hole 28 and screwing it into the female screw hole portion 29.

次に、第1実施形態の超電導コイル10の電極構造について作用を説明する。
さて、図1に示すように、終端部11aに位置する超電導線材11には保護線材15がほぼ1周回共巻きされている。図2に示すように、電極部12においては、超電導線材11の外周面に外側保護線材15aを介して外側電極部12aが半田で接合されて電気的接続が図られるとともに、超電導線材11の内周面に内側保護線材15bを介して内側電極部12bが半田で接合されて電気的接続が図られている。
Next, an effect | action is demonstrated about the electrode structure of the superconducting coil 10 of 1st Embodiment.
Now, as shown in FIG. 1, a protective wire 15 is wound around the superconducting wire 11 located at the terminal end portion 11a almost once. As shown in FIG. 2, in the electrode portion 12, the outer electrode portion 12 a is joined to the outer peripheral surface of the superconducting wire 11 via the outer protective wire 15 a by soldering to achieve electrical connection. The inner electrode portion 12b is joined to the peripheral surface by soldering via the inner protective wire 15b to achieve electrical connection.

そして、超電導コイル10を例えば液体窒素により77Kまで冷却したときには、超電導コイル10が収縮して超電導線材11は内方への力を受ける。また、超電導コイル10に通電して励磁したときときには、超電導コイル10に電磁力(フープ力)が作用し、超電導線材11は外方への力を受け、通電を停止して消磁したときにはその電磁力が急に解除され、超電導線材11は衝撃力を受ける。このため、超電導線材11と外側電極部12a及び内側電極部12bとの接合部には両者を離間させようとする応力が働く。   When the superconducting coil 10 is cooled to 77K with, for example, liquid nitrogen, the superconducting coil 10 contracts and the superconducting wire 11 receives an inward force. Further, when the superconducting coil 10 is energized and excited, an electromagnetic force (hoop force) acts on the superconducting coil 10, and the superconducting wire 11 receives an outward force, and when the energization is stopped and demagnetized, the electromagnetic force is applied. The force is suddenly released, and the superconducting wire 11 receives an impact force. For this reason, the stress which tries to separate both acts on the junction part of the superconducting wire 11, the outer electrode part 12a, and the inner electrode part 12b.

しかしながら、第1実施形態の超電導コイル10では、超電導線材11と外側電極部12aとの間に外側保護線材15aが介在され、超電導線材11と内側電極部12bとの間に内側保護線材15bが介在されている。従って、前記応力は、主に外側保護線材15a及び内側保護線材15bに作用し、保護線材15間に挟着された超電導線材11には直接作用することが回避される。このため、終端部11aにおける超電導線材11は機械的に保護されるとともに、摩耗等が緩和される。また、超電導線材11が保護線材15から受ける応力も超電導コイル10の終端部の1周回に限られ、超電導コイル10全体から見れば超電導線材11には殆ど影響を与えない。従って、超電導コイル10は超電導特性を維持することができる。   However, in the superconducting coil 10 of the first embodiment, the outer protective wire 15a is interposed between the superconducting wire 11 and the outer electrode portion 12a, and the inner protective wire 15b is interposed between the superconducting wire 11 and the inner electrode portion 12b. Has been. Therefore, the stress mainly acts on the outer protective wire 15a and the inner protective wire 15b, and avoids acting directly on the superconducting wire 11 sandwiched between the protective wires 15. For this reason, the superconducting wire 11 at the end portion 11a is mechanically protected and wear and the like are alleviated. Further, the stress that the superconducting wire 11 receives from the protective wire 15 is also limited to one round of the terminal portion of the superconducting coil 10, and hardly affects the superconducting wire 11 when viewed from the whole superconducting coil 10. Therefore, the superconducting coil 10 can maintain superconducting characteristics.

以上詳述した第1実施形態によって得られる効果を以下にまとめて記載する。
(1)この第1実施形態の超電導コイル10では、その終端部11aに位置する超電導線材11の両面と電極部12との間には、保護線材15を介在させた状態で超電導線材11と電極部12とが半田接合されている。このため、冷却時における熱応力や通電時における電磁力が主に保護線材15に作用し、超電導線材11に及ぼす影響が緩和される。
The effects obtained by the first embodiment described in detail above are collectively described below.
(1) In the superconducting coil 10 of the first embodiment, the superconducting wire 11 and the electrode with the protective wire 15 interposed between both surfaces of the superconducting wire 11 located at the terminal end 11a and the electrode portion 12 are provided. The part 12 is soldered. For this reason, the thermal stress at the time of cooling and the electromagnetic force at the time of energization mainly act on the protective wire 15 and the influence on the superconducting wire 11 is mitigated.

従って、第1実施形態における超電導コイル10の電極構造によれば、超電導線材11と電極部12との接合部における超電導線材11の損傷を抑制して、超電導特性を維持することができるという効果を奏する。   Therefore, according to the electrode structure of the superconducting coil 10 in the first embodiment, it is possible to suppress the damage of the superconducting wire 11 at the joint portion between the superconducting wire 11 and the electrode portion 12 and maintain the superconducting characteristics. Play.

(2)前記保護線材15は、超電導コイル10に沿って少なくとも1周回するように超電導線材11に共巻きされている。このため、終端部11aにおいて超電導線材11の両面に保護線材15を容易に配置することができるとともに、超電導線材11の保護を効果的に行うことができる。   (2) The protective wire 15 is wound around the superconducting wire 11 so as to make at least one turn along the superconducting coil 10. For this reason, while being able to arrange | position the protection wire 15 easily on both surfaces of the superconducting wire 11 in the termination | terminus part 11a, the protection of the superconducting wire 11 can be performed effectively.

(3)前記保護線材15は、超電導コイル10を形成する超電導線材11で形成されている。そのため、保護線材15を簡単に調製することができるとともに、超電導線材11と熱膨張率を同じにして超電導線材11との密着性を保持でき、超電導線材11と保護線材15との間の電気的な導通性を向上させることができる。   (3) The protective wire 15 is formed of a superconducting wire 11 that forms the superconducting coil 10. Therefore, the protective wire 15 can be easily prepared, and the thermal expansion coefficient can be made the same as that of the superconducting wire 11 to maintain the adhesion between the superconducting wire 11 and the electrical connection between the superconducting wire 11 and the protective wire 15 can be maintained. Continuity can be improved.

(4)前記超電導線材11は、基板16上に中間層17を介して希土類系酸化物超電導体の超電導層18が形成され、その超電導層18上に安定化層19が形成されて構成されている。従って、臨界温度が高く、液体窒素冷却で使用でき、臨界電流密度の高い超電導線材11により、超電導コイル10の超電導特性を良好に発揮することができる。   (4) The superconducting wire 11 has a superconducting layer 18 of a rare earth oxide superconductor formed on a substrate 16 via an intermediate layer 17 and a stabilization layer 19 formed on the superconducting layer 18. Yes. Therefore, the superconducting properties of the superconducting coil 10 can be satisfactorily exhibited by the superconducting wire 11 having a high critical temperature and being usable for liquid nitrogen cooling and having a high critical current density.

(5)前記保護線材15は、超電導線材11の超電導層18と外側保護線材15aの超電導層18が対向するように配置されている。このため、超電導線材11と保護線材15との間の電気的な導通性を高め、超電導コイル10の超電導特性を安定して発揮させることができる。   (5) The protective wire 15 is disposed so that the superconducting layer 18 of the superconducting wire 11 and the superconducting layer 18 of the outer protective wire 15a face each other. For this reason, the electrical continuity between the superconducting wire 11 and the protective wire 15 can be enhanced, and the superconducting characteristics of the superconducting coil 10 can be exhibited stably.

(第2実施形態)
次に、本発明の第2実施形態を図12に基づいて説明する。なお、第2実施形態及び後述する第3実施形態では、主に第1実施形態と相違する部分について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment and the third embodiment to be described later, portions different from the first embodiment will be mainly described.

図12に示すように、超電導線材11はその基板16が外周側、超電導層18が内周側に位置するように配置されている。また、外側保護線材15aはその超電導層18が外周側に位置するように配置され、その超電導層18が外側電極部12aに対向している。このため、外側保護線材15aと外側電極部12aとの間の電気的な導通性が良好である。さらに、内側保護線材15bはその超電導層18が外周側に位置するように配置され、その超電導層18が超電導線材11の超電導層18に対向している。このため、内側保護線材15bと超電導線材11との間の電気的な導通性が良好である。   As shown in FIG. 12, the superconducting wire 11 is disposed such that the substrate 16 is located on the outer peripheral side and the superconducting layer 18 is located on the inner peripheral side. The outer protective wire 15a is arranged so that the superconducting layer 18 is positioned on the outer peripheral side, and the superconducting layer 18 faces the outer electrode portion 12a. For this reason, the electrical continuity between the outer protective wire 15a and the outer electrode portion 12a is good. Further, the inner protective wire 15b is arranged so that the superconducting layer 18 is located on the outer peripheral side, and the superconducting layer 18 faces the superconducting layer 18 of the superconducting wire 11. For this reason, the electrical continuity between the inner protective wire 15b and the superconducting wire 11 is good.

さて、冷却時における熱応力や通電時における電磁力に対し、終端部11aでは超電導線材11の両面が外側保護線材15a及び内側保護線材15bにより機械的に保護される。加えて、超電導線材11の超電導層18が内周側に配置されていることから、熱応力及び電磁力による影響を第1実施形態の場合より少なくすることができる。   Now, with respect to thermal stress during cooling and electromagnetic force during energization, both surfaces of the superconducting wire 11 are mechanically protected by the outer protective wire 15a and the inner protective wire 15b at the terminal portion 11a. In addition, since the superconducting layer 18 of the superconducting wire 11 is disposed on the inner peripheral side, the influence of thermal stress and electromagnetic force can be reduced compared to the case of the first embodiment.

従って、この第2実施形態によれば、超電導コイル10の超電導特性を一層良好に発揮することができる。
(第3実施形態)
次に、本発明の第3実施形態を図23に基づいて説明する。
Therefore, according to the second embodiment, the superconducting characteristics of the superconducting coil 10 can be further improved.
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG.

図23に示すように、超電導線材11はその基板16が外周側、超電導層18が内周側に位置するように配置され、超電導層18が電磁力等の影響を受け難くなっている。超電導線材11より内周側には内側保護線材15bが配置され、その内側保護線材15bは超電導層18が外周側に位置するように配置されている。このため、内側保護線材15bの超電導層18が超電導線材11の超電導層18に対向し、内側保護線材15bと超電導線材11との間の電気的な導通性が良好である。なお、この第3実施形態では、超電導線材11の外周側に外側保護線材15aは配置されていない。   As shown in FIG. 23, the superconducting wire 11 is disposed such that the substrate 16 is located on the outer peripheral side and the superconducting layer 18 is located on the inner peripheral side, and the superconducting layer 18 is hardly affected by electromagnetic force or the like. An inner protective wire 15b is disposed on the inner peripheral side of the superconducting wire 11, and the inner protective wire 15b is disposed such that the superconducting layer 18 is positioned on the outer peripheral side. For this reason, the superconducting layer 18 of the inner protective wire 15b faces the superconducting layer 18 of the superconducting wire 11, and the electrical continuity between the inner protective wire 15b and the superconducting wire 11 is good. In the third embodiment, the outer protective wire 15 a is not disposed on the outer peripheral side of the superconducting wire 11.

さて、冷却時における熱応力や通電時における電磁力に対し、終端部11aでは超電導線材11の内周面が内側保護線材15bにより機械的に保護される。このため、超電導線材11の超電導層18と内側電極部12bとの間の導通性が良好に維持される。   Now, against the thermal stress during cooling and the electromagnetic force during energization, the inner peripheral surface of the superconducting wire 11 is mechanically protected by the inner protective wire 15b at the end portion 11a. For this reason, the electrical conductivity between the superconducting layer 18 of the superconducting wire 11 and the inner electrode portion 12b is maintained well.

従って、この第3実施形態によれば、超電導コイル10の超電導特性を維持することができる。   Therefore, according to the third embodiment, the superconducting characteristics of the superconducting coil 10 can be maintained.

次に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
(実施例1)
この実施例1の超電導コイル10の電極構造は、前記第1実施形態で示した超電導コイル10の電極構造である。すなわち、長さ約100mの超電導線材11を用いてダブルパンケーキコイル10Bを作製した。超電導線材11を調製するために、幅4mm、厚さ100μmのニッケル合金(ハステロイ)製の基板16上に厚さ500nmのマグネシウム・ランタン・マンガン系酸化物の中間層17を介して厚さ1μmのイットリウム系の超電導物質による超電導層18を形成した。続いて、その超電導層18上に厚さ8μmの銀のスパッタリングによる第1安定化層19aを形成し、その外周に厚さ20μmの銅めっきによる第2安定化層19bを形成し、超電導線材11(液体窒素中、自己磁場での臨界電流140A)を作製した。
Next, the embodiment will be described more specifically with reference to examples and comparative examples.
Example 1
The electrode structure of the superconducting coil 10 of Example 1 is the electrode structure of the superconducting coil 10 shown in the first embodiment. That is, the double pancake coil 10B was produced using the superconducting wire 11 having a length of about 100 m. In order to prepare the superconducting wire 11, a 1 μm-thickness is formed on a nickel alloy (Hastelloy) substrate 16 having a width of 4 mm and a thickness of 100 μm through an intermediate layer 17 of a magnesium / lanthanum / manganese-based oxide having a thickness of 500 nm. A superconducting layer 18 made of an yttrium-based superconducting material was formed. Subsequently, a first stabilization layer 19a by sputtering of silver having a thickness of 8 μm is formed on the superconducting layer 18, and a second stabilization layer 19b by copper plating having a thickness of 20 μm is formed on the outer periphery thereof. (Critical current 140A in self-magnetic field in liquid nitrogen) was prepared.

次いで、FRP製の仕切枠材13を使用し、内周枠14の周りに超電導線材11を、絶縁テープを共巻し、常法に従って2段に巻回して、内径50mm、外径112mmのダブルパンケーキコイル10Bを製作した。このとき、図1及び図2に示すように、終端部11aにおける超電導線材11のほぼ1周回では、保護線材15を共巻して外側電極部12a及び内側電極部12bを半田で接合した。その結果、図9に示すように、超電導コイル10の終端部における超電導線材11の外周面には外側保護線材15aを介して外側電極部12aが接合され、超電導線材11の内周面には内側保護線材15bを介して内側電極部12bが接合された。   Next, the FRP partition frame member 13 is used, the superconducting wire 11 is wound around the inner peripheral frame 14, the insulating tape is wound together, and wound in two stages according to a conventional method, and a double having an inner diameter of 50 mm and an outer diameter of 112 mm. A pancake coil 10B was produced. At this time, as shown in FIG. 1 and FIG. 2, the outer electrode portion 12a and the inner electrode portion 12b were joined together by soldering the protective wire 15 around one turn of the superconducting wire 11 at the end portion 11a. As a result, as shown in FIG. 9, the outer electrode portion 12 a is joined to the outer peripheral surface of the superconducting wire 11 at the terminal portion of the superconducting coil 10 via the outer protective wire 15 a, and the inner peripheral surface of the superconducting wire 11 is inner. The inner electrode part 12b was joined via the protective wire 15b.

そして、実施例1のダブルパンケーキコイル10Bを液体窒素が収容された真空槽内に移し、伝導冷却により77Kまで冷却し、その温度において、外部磁場なしでダブルパンケーキコイル10Bに通電し、さらに複数回、液体窒素と室温との間で冷却サイクルを繰り返し、常法に従って電流(A)−電圧(μV)特性を測定した。通電1回目の電流−電圧特性を図10に示し、冷却サイクル5回後の電流−電圧特性を図11に示した。   Then, the double pancake coil 10B of Example 1 is transferred into a vacuum chamber containing liquid nitrogen, cooled to 77K by conduction cooling, and at that temperature, the double pancake coil 10B is energized without an external magnetic field, and further The cooling cycle was repeated several times between liquid nitrogen and room temperature, and the current (A) -voltage (μV) characteristics were measured according to a conventional method. The current-voltage characteristics at the first energization are shown in FIG. 10, and the current-voltage characteristics after 5 cooling cycles are shown in FIG.

電流−電圧特性の測定に際しては、上部電極部12Aとコイル巻線との間、コイル巻線自体及び下部電極部12Bとコイル巻線との間の電圧をそれぞれ測定した。
図10の結果より、実施例1の超電導コイル10では、電流値が45A程度でコイル巻線に電圧が発生するまでは、超電導状態が保持され、良好な超電導特性が発揮された。さらに、図11の結果より、冷却サイクルを5回繰り返しても、電流−電圧特性に殆ど変化は見られず、超電導特性が維持された。
When measuring the current-voltage characteristics, the voltage between the upper electrode portion 12A and the coil winding, the voltage between the coil winding itself and the lower electrode portion 12B and the coil winding were measured.
From the results shown in FIG. 10, in the superconducting coil 10 of Example 1, the superconducting state was maintained until a voltage was generated in the coil winding at a current value of about 45 A, and good superconducting characteristics were exhibited. Furthermore, from the result of FIG. 11, even when the cooling cycle was repeated five times, the current-voltage characteristics were hardly changed and the superconducting characteristics were maintained.

(実施例2)
この実施例2の超電導コイル10の電極構造は、前記第2実施形態で示した超電導コイル10の電極構造である。すなわち、実施例1と同じ超電導線材11を使用し、実施例1と同様の操作でダブルパンケーキコイル10Bを作製した。その結果、図12に示すように、終端部11aにおける超電導線材11の外周面には外側保護線材15aを介して外側電極部12aが接合され、超電導線材11の内周面には内側保護線材15bを介して内側電極部12bが接合された。
(Example 2)
The electrode structure of the superconducting coil 10 of Example 2 is the electrode structure of the superconducting coil 10 shown in the second embodiment. That is, using the same superconducting wire 11 as in Example 1, a double pancake coil 10B was produced in the same manner as in Example 1. As a result, as shown in FIG. 12, the outer electrode portion 12a is joined to the outer peripheral surface of the superconducting wire 11 at the terminal portion 11a via the outer protective wire 15a, and the inner protective wire 15b is connected to the inner peripheral surface of the superconducting wire 11. The inner electrode part 12b was joined via

そして、実施例1と同様にしてダブルパンケーキコイル10Bの電流(A)−電圧(μV)特性を測定した。通電1回目の電流−電圧特性を図13に示し、冷却サイクル5回後の電流−電圧特性を図14に示した。   Then, the current (A) -voltage (μV) characteristics of the double pancake coil 10B were measured in the same manner as in Example 1. FIG. 13 shows the current-voltage characteristics at the first energization, and FIG. 14 shows the current-voltage characteristics after 5 cooling cycles.

図13の結果より、実施例2の超電導コイル10では、電流値が45A程度でコイル巻線に電圧が発生までは、超電導状態が保持され、良好な超電導特性が発揮された。さらに、図14の結果より、冷却サイクルを5回繰り返しても、電流−電圧特性に殆ど変化は見られず、超電導特性が維持された。   From the results of FIG. 13, in the superconducting coil 10 of Example 2, the superconducting state was maintained until the voltage was generated in the coil winding at a current value of about 45 A, and good superconducting characteristics were exhibited. Furthermore, from the result of FIG. 14, even when the cooling cycle was repeated five times, the current-voltage characteristics were hardly changed, and the superconducting characteristics were maintained.

(比較例1)
比較例1の超電導コイル10の電極構造は、図15に示すように、前記実施例1において、外側保護線材15a及び内側保護線材15bを省略した構造である。そして、実施例1と同様にしてダブルパンケーキコイル10Bを作製した。その結果、図15に示すように、終端部11aでの超電導線材11の外周面には外側電極部12aが直接接合され、超電導線材11の内周面には内側電極部12bが直接接合された。
(Comparative Example 1)
As shown in FIG. 15, the electrode structure of the superconducting coil 10 of Comparative Example 1 is a structure in which the outer protective wire 15a and the inner protective wire 15b are omitted from the first embodiment. And the double pancake coil 10B was produced like Example 1. FIG. As a result, as shown in FIG. 15, the outer electrode portion 12a is directly joined to the outer peripheral surface of the superconducting wire 11 at the terminal end portion 11a, and the inner electrode portion 12b is directly joined to the inner peripheral surface of the superconducting wire 11. .

この比較例1のダブルパンケーキコイル10Bについて、実施例1と同様にして電流(A)−電圧(μV)特性を測定した。通電1回目の電流−電圧特性を図16に示し、冷却サイクル3回後の電流−電圧特性を図17に示し、冷却サイクル4回後の電流−電圧特性を図18に示した。   For the double pancake coil 10B of Comparative Example 1, the current (A) -voltage (μV) characteristics were measured in the same manner as in Example 1. FIG. 16 shows current-voltage characteristics at the first energization, FIG. 17 shows current-voltage characteristics after three cooling cycles, and FIG. 18 shows current-voltage characteristics after four cooling cycles.

図16の結果より、比較例1のダブルパンケーキコイル10Bにおいても、電流値が40A程度でコイル巻線に電圧が発生するまでは超電導状態が保持され、良好な超電導特性が発揮された。しかし、その後冷却サイクルを3回繰り返したときには、図17に示す結果より、上部電極部12Aの発生電圧が急に上昇したことから、超電導線材11と外側電極部12aとの接合部が損傷を受けて接触抵抗が上昇したものと考えられる。   From the result of FIG. 16, also in the double pancake coil 10B of Comparative Example 1, the superconducting state was maintained until a voltage was generated in the coil winding at a current value of about 40 A, and good superconducting characteristics were exhibited. However, when the cooling cycle was repeated three times thereafter, the generated voltage of the upper electrode portion 12A suddenly increased from the result shown in FIG. 17, and the junction between the superconducting wire 11 and the outer electrode portion 12a was damaged. It is thought that the contact resistance increased.

さらに、冷却サイクルを4回繰り返した後には、図18に示す結果より、コイル巻線部の電圧も急激に上昇した。電流−電圧特性の測定後に、超電導線材11と外側電極部12aの接合部を観察したところ、超電導線材11と外側電極部12aとがかい離している箇所が見られ、超電導線材11と外側電極部12aとが数箇所で接合されているに過ぎなかった。   Furthermore, after the cooling cycle was repeated four times, the voltage of the coil winding part also increased rapidly from the result shown in FIG. When the junction between the superconducting wire 11 and the outer electrode portion 12a was observed after the current-voltage characteristics were measured, a portion where the superconducting wire 11 and the outer electrode portion 12a were separated was seen, and the superconducting wire 11 and the outer electrode portion were observed. 12a was only joined at several points.

(比較例2)
比較例2の超電導コイル10の電極構造は、図19に示すように、前記比較例1において、超電導線材11の超電導層18が内周側に配置された構造である。そして、実施例1と同様にしてダブルパンケーキコイル10Bを作製した。その結果、図19に示すように、終端部11aにおける超電導線材11の外周面には外側電極部12aが直接接合され、超電導線材11の内周面には内側電極部12bが直接接合された。
(Comparative Example 2)
As shown in FIG. 19, the electrode structure of the superconducting coil 10 of Comparative Example 2 is a structure in which the superconducting layer 18 of the superconducting wire 11 is arranged on the inner peripheral side in Comparative Example 1. And the double pancake coil 10B was produced like Example 1. FIG. As a result, as shown in FIG. 19, the outer electrode portion 12 a was directly joined to the outer peripheral surface of the superconducting wire 11 at the terminal portion 11 a, and the inner electrode portion 12 b was directly joined to the inner peripheral surface of the superconducting wire 11.

この比較例2のダブルパンケーキコイル10Bについて、実施例1と同様にして電流(A)−電圧(μV)特性を測定した。通電1回目の電流−電圧特性を図20に示し、冷却サイクル2回後の電流−電圧特性を図21に示し、冷却サイクル3回後の電流−電圧特性を図22に示した。   With respect to the double pancake coil 10B of Comparative Example 2, the current (A) -voltage (μV) characteristics were measured in the same manner as in Example 1. FIG. 20 shows current-voltage characteristics at the first energization, FIG. 21 shows current-voltage characteristics after two cooling cycles, and FIG. 22 shows current-voltage characteristics after three cooling cycles.

図20の結果より、比較例2の超電導コイル10においては、上部電極部12A及び下部電極部12Bの発生電圧が高い傾向を示した。その後、冷却サイクルを2回繰り返したときには、図21の結果より、上部電極部12A及び下部電極部12Bの発生電圧が一層上昇した。さらに、冷却サイクルを3回繰り返した後には、図22に示す結果より、コイル巻線部の電圧上昇も見られた。電流−電圧特性の測定後に、超電導線材11と外側電極部12a及び内側電極部12bの接合部を観察したところ、外側電極部12a及び内側電極部12bの近傍で超電導線材11に傷が見られ、冷却時における超電導線材11の収縮等により超電導線材11が損傷を受けたものと考えられる。   From the result of FIG. 20, in the superconducting coil 10 of the comparative example 2, the generated voltage of the upper electrode part 12A and the lower electrode part 12B tended to be high. Thereafter, when the cooling cycle was repeated twice, the generated voltage of the upper electrode portion 12A and the lower electrode portion 12B further increased from the result of FIG. Furthermore, after the cooling cycle was repeated three times, a voltage increase in the coil winding portion was also observed from the result shown in FIG. After measurement of the current-voltage characteristics, the superconducting wire 11 and the outer electrode portion 12a and the inner electrode portion 12b were observed to be bonded, and the superconducting wire 11 was damaged in the vicinity of the outer electrode portion 12a and the inner electrode portion 12b. It is considered that the superconducting wire 11 was damaged due to shrinkage of the superconducting wire 11 during cooling.

(実施例3)
この実施例3の超電導コイル10の電極構造は、前記第3実施形態で示した超電導コイル10の電極構造である。すなわち、実施例1と同じ超電導線材11を使用し、実施例1と同様の操作でダブルパンケーキコイル10Bを作製した。その結果、図23に示すように、終端部11aにおける超電導線材11の内周面には内側保護線材15bを介して内側電極部12bが接合された。なお、内側保護線材15bは超電導線材11に対して十分に接触するように、超電導線材11よりも長く形成した。
(Example 3)
The electrode structure of the superconducting coil 10 of Example 3 is the electrode structure of the superconducting coil 10 shown in the third embodiment. That is, using the same superconducting wire 11 as in Example 1, a double pancake coil 10B was produced in the same manner as in Example 1. As a result, as shown in FIG. 23, the inner electrode portion 12b was joined to the inner peripheral surface of the superconducting wire 11 at the end portion 11a via the inner protective wire 15b. The inner protective wire 15b was formed longer than the superconducting wire 11 so as to be in sufficient contact with the superconducting wire 11.

そして、実施例1と同様にしてダブルパンケーキコイル10Bの電流(A)−電圧(μV)特性を測定した。通電1回目の電流−電圧特性を図24に示し、冷却サイクル5回後の電流−電圧特性を図25に示した。   Then, the current (A) -voltage (μV) characteristics of the double pancake coil 10B were measured in the same manner as in Example 1. The current-voltage characteristics at the first energization are shown in FIG. 24, and the current-voltage characteristics after 5 cooling cycles are shown in FIG.

図24の結果より、実施例3の超電導コイル10では、上部電極部12A及び下部電極部12Bの発生電圧が実施例1及び2に比べて若干高くなったが、電流値が45A程度でコイル巻線に電圧が発生するまでは、超電導状態が保持され、良好な超電導特性が発揮された。さらに、冷却サイクルを5回繰り返しても、図25の結果より、上部電極部12A及び下部電極部12Bの発生電圧は高くなったが、コイル巻線の電圧上昇はなく、電流−電圧特性に殆ど変化は見られず、超電導特性が維持された。   From the result of FIG. 24, in the superconducting coil 10 of Example 3, the generated voltage of the upper electrode part 12A and the lower electrode part 12B was slightly higher than that of Examples 1 and 2, but the current value was about 45 A and coil winding was performed. Until the voltage was generated on the wire, the superconducting state was maintained and good superconducting properties were exhibited. Further, even when the cooling cycle was repeated five times, the generated voltage of the upper electrode portion 12A and the lower electrode portion 12B increased from the result of FIG. 25, but the voltage of the coil winding did not increase, and the current-voltage characteristics were almost unchanged. No change was observed and the superconducting properties were maintained.

なお、前記実施形態を次のように変更して具体化することも可能である。
・前記テープ状の超電導線材11は、ビスマス系酸化物の超電導体等によって形成されるものであってもよい。このビスマス系酸化物の超電導体としては、ビスマス(Bi)を含む酸化物により形成される超電導物質であり、例えばBi2223すなわちBiSrCaCu10−α(αは0〜0.15)、Bi2212すなわちBiSrCaCu8−α(αは0〜0.15)等が用いられる。ビスマス系酸化物の超電導体が展伸性を有する金属材料のシース層中に分散されて構成されている。
It should be noted that the embodiment described above can be modified and embodied as follows.
The tape-shaped superconducting wire 11 may be formed of a bismuth oxide superconductor or the like. The superconductor of this bismuth-based oxide is a superconducting material formed of an oxide containing bismuth (Bi). For example, Bi2223, that is, Bi 2 Sr 2 Ca 2 Cu 3 O 10-α (α is 0 to 0. 15), Bi2212, that is, Bi 2 Sr 2 CaCu 2 O 8-α (α is 0 to 0.15) or the like is used. A superconductor of a bismuth oxide is dispersed in a sheath layer of a metal material having stretchability.

・前記第1実施形態及び第2実施形態において、保護線材15としては、超電導線材11と外側電極部12aとの間に介在される外側保護線材15aのみで構成してもよい。或いは、保護線材15を、超電導線材11と内側電極部12bとの間に介在される内側保護線材15bのみで構成してもよい。   In the first embodiment and the second embodiment, the protective wire 15 may be configured only by the outer protective wire 15a interposed between the superconducting wire 11 and the outer electrode portion 12a. Or you may comprise the protective wire 15 only with the inner side protective wire 15b interposed between the superconducting wire 11 and the inner side electrode part 12b.

・前記保護線材15は、超電導線材11の終端部11aにおいて1周回共巻きすることなく、電極部12に対向する部分のみに配置してもよい。
・前記電極部12を外側電極部12a及び内側電極部12bのいずれか一方で構成してもよい。その場合、いずれか一方の電極部12と超電導線材11との間に保護線材15が介装される。
The protective wire 15 may be disposed only in a portion facing the electrode portion 12 without being wound once around the terminal portion 11 a of the superconducting wire 11.
-You may comprise the said electrode part 12 in either the outer side electrode part 12a or the inner side electrode part 12b. In that case, a protective wire 15 is interposed between any one of the electrode portions 12 and the superconducting wire 11.

・前記外側電極部12aに係合凹部21を設け、内側電極部12bに係合凸部20を設けてもよい。また、超電導線材11、外側保護線材15a及び内側保護線材15bの切欠き25を、貫通用の孔に変更してもよい。   The engagement recess 21 may be provided on the outer electrode portion 12a, and the engagement protrusion 20 may be provided on the inner electrode portion 12b. Moreover, you may change the notch 25 of the superconducting wire 11, the outer side protection wire 15a, and the inner side protection wire 15b into the hole for penetration.

10…超電導コイル、10A…シングルパンケーキコイル、10B…ダブルパンケーキコイル、11…超電導線材、11a…終端部、12…電極部、12a…外側電極部、12b…内側電極部、15…保護線材、15a…外側保護線材、15b…内側保護線材、16…基板、17…中間層、18…超電導層、19…安定化層、19a…第1安定化層、19b…第2安定化層、20…係合部としての係合凸部、21…係合部としての係合凹部、22…締結部材としての雌ねじ孔、24…締結部材としての雄ねじ、29…締結部材としての雌ねじ孔部、30…締結部材としてのビス。   DESCRIPTION OF SYMBOLS 10 ... Superconducting coil, 10A ... Single pancake coil, 10B ... Double pancake coil, 11 ... Superconducting wire, 11a ... Terminal part, 12 ... Electrode part, 12a ... Outer electrode part, 12b ... Inner electrode part, 15 ... Protective wire 15a ... outer protective wire, 15b ... inner protective wire, 16 ... substrate, 17 ... intermediate layer, 18 ... superconducting layer, 19 ... stabilizing layer, 19a ... first stabilizing layer, 19b ... second stabilizing layer, 20 ... Engaging convex portion as an engaging portion, 21... Engaging concave portion as an engaging portion, 22... Female screw hole as a fastening member, 24... Male screw as a fastening member, 29. ... Screws as fastening members.

Claims (7)

テープ状の超電導線材を巻回して形成された超電導コイルの終端部に電極部を接合した超電導コイルの電極構造であって、
前記超電導コイルの終端部に位置する超電導線材と電極部との間には、超電導線材を保護する保護線材を介在させた状態で超電導線材と電極部とが接合されていることを特徴とする超電導コイルの電極構造。
An electrode structure of a superconducting coil in which an electrode portion is joined to a terminal portion of a superconducting coil formed by winding a tape-shaped superconducting wire,
A superconducting wire and an electrode part are joined between a superconducting wire located at a terminal part of the superconducting coil and the electrode part with a protective wire protecting the superconducting wire interposed therebetween. Coil electrode structure.
前記電極部は超電導線材の外周側に位置する外側電極部と超電導線材の内周側に位置する内側電極部とにより構成され、保護線材は超電導コイルの終端部に位置する超電導線材の外周面と外側電極部との間及び超電導線材の内周面と内側電極部との間に介在されていることを特徴とする請求項1に記載の超電導コイルの電極構造。 The electrode part is composed of an outer electrode part located on the outer peripheral side of the superconducting wire and an inner electrode part located on the inner peripheral side of the superconducting wire, and the protective wire is an outer peripheral surface of the superconducting wire located at the terminal part of the superconducting coil. 2. The superconducting coil electrode structure according to claim 1, wherein the electrode structure is interposed between the outer electrode portion and between the inner peripheral surface of the superconducting wire and the inner electrode portion. 前記保護線材は、超電導コイルに沿って少なくとも1周回するように超電導線材に共巻きされていることを特徴とする請求項1又は請求項2に記載の超電導コイルの電極構造。 The electrode structure for a superconducting coil according to claim 1 or 2, wherein the protective wire is wound around the superconducting wire so as to make at least one turn along the superconducting coil. 前記保護線材は、超電導コイルを形成する超電導線材で形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の超電導コイルの電極構造。 The superconducting coil electrode structure according to any one of claims 1 to 3, wherein the protective wire is formed of a superconducting wire that forms a superconducting coil. 前記超電導線材は、基板上に中間層を介して希土類系酸化物超電導体の超電導層が形成され、その超電導層上に安定化層が形成されて構成されていることを特徴とする請求項1から請求項4のいずれか1項に記載の超電導コイルの電極構造。 2. The superconducting wire comprises a superconducting layer of a rare earth oxide superconductor formed on a substrate via an intermediate layer, and a stabilization layer formed on the superconducting layer. The electrode structure of the superconducting coil according to claim 1. 前記保護線材は、超電導線材の超電導層側に配置されていることを特徴とする請求項5に記載の超電導コイルの電極構造。 The superconducting coil electrode structure according to claim 5, wherein the protective wire is disposed on a superconducting layer side of the superconducting wire. 前記外側電極部及び内側電極部には係合部を設けるとともに、超電導線材の両面に保護線材を配置した状態で外側電極部と内側電極部との間に介在させ、その状態で外側電極部の係合部と内側電極部の係合部を係合し、締結部材で一体的に締結することを特徴とする請求項2から請求項6のいずれか1項に記載の超電導コイルの電極構造。 The outer electrode portion and the inner electrode portion are provided with engaging portions, and are disposed between the outer electrode portion and the inner electrode portion in a state where protective wires are disposed on both surfaces of the superconducting wire, and in this state, the outer electrode portion The electrode structure for a superconducting coil according to any one of claims 2 to 6, wherein the engaging portion and the engaging portion of the inner electrode portion are engaged and integrally fastened by a fastening member.
JP2014104985A 2014-05-21 2014-05-21 Superconducting coil electrode structure Active JP6364235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104985A JP6364235B2 (en) 2014-05-21 2014-05-21 Superconducting coil electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104985A JP6364235B2 (en) 2014-05-21 2014-05-21 Superconducting coil electrode structure

Publications (2)

Publication Number Publication Date
JP2015220417A true JP2015220417A (en) 2015-12-07
JP6364235B2 JP6364235B2 (en) 2018-07-25

Family

ID=54779543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104985A Active JP6364235B2 (en) 2014-05-21 2014-05-21 Superconducting coil electrode structure

Country Status (1)

Country Link
JP (1) JP6364235B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016685A (en) * 2017-07-06 2019-01-31 株式会社東芝 Connection structure of superconducting tape and electrode, and superconducting coil
JP2022021490A (en) * 2020-07-22 2022-02-03 株式会社東芝 Superconducting coil and superconducting coil device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod
JP2008140930A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2009188109A (en) * 2008-02-05 2009-08-20 Chubu Electric Power Co Inc Superconductive coil and manufacturing method thereof
JP2011018536A (en) * 2009-07-08 2011-01-27 Toshiba Corp Connection structure of superconducting wire rod and superconducting coil device
JP2012248744A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266149A (en) * 2006-03-28 2007-10-11 Toshiba Corp Method of connecting superconductive wire rod, and superconductive wire rod
JP2008140930A (en) * 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd Superconductive coil
JP2009188109A (en) * 2008-02-05 2009-08-20 Chubu Electric Power Co Inc Superconductive coil and manufacturing method thereof
JP2011018536A (en) * 2009-07-08 2011-01-27 Toshiba Corp Connection structure of superconducting wire rod and superconducting coil device
JP2012248744A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016685A (en) * 2017-07-06 2019-01-31 株式会社東芝 Connection structure of superconducting tape and electrode, and superconducting coil
JP2022021490A (en) * 2020-07-22 2022-02-03 株式会社東芝 Superconducting coil and superconducting coil device
JP7404187B2 (en) 2020-07-22 2023-12-25 株式会社東芝 Superconducting coils and superconducting coil devices

Also Published As

Publication number Publication date
JP6364235B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP5421170B2 (en) Superconducting current lead
KR102098005B1 (en) Superconducting coil device comprising coil winding and contacts
WO2017061563A1 (en) Superconducting coil
US11289640B2 (en) Second generation superconducting filaments and cable
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP2015028912A (en) Superconductive wire rod and superconductive coil using the same
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP2007188844A (en) Superconducting cable
JP6364235B2 (en) Superconducting coil electrode structure
JP2012256744A (en) Superconductive coil
US10614941B2 (en) Persistent current switch and superconducting coil
JP2009230913A (en) Oxide superconductive current lead
JP2008117734A (en) High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method
JP2013246881A (en) Insulation coating structure of superconducting wire rod
JP5693798B2 (en) Oxide superconducting wire
JP2013122822A (en) Oxide superconductive wiring material
JP2007227771A (en) Superconductive coil device
EP3511953B1 (en) Low-temperature superconducting wire rod having low stabilizing matrix ratio, and superconducting coil having same
JP2009230912A (en) Oxide superconductive current lead
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material
JP6721100B2 (en) Superconducting wire and superconducting coil
JP6058577B2 (en) High temperature superconducting wire and high temperature superconducting coil
JP4634954B2 (en) Superconducting device
JP6125350B2 (en) Superconducting wire connection and superconducting current lead
JP5925827B2 (en) Superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250