JP2007188844A - Superconducting cable - Google Patents

Superconducting cable Download PDF

Info

Publication number
JP2007188844A
JP2007188844A JP2006007960A JP2006007960A JP2007188844A JP 2007188844 A JP2007188844 A JP 2007188844A JP 2006007960 A JP2006007960 A JP 2006007960A JP 2006007960 A JP2006007960 A JP 2006007960A JP 2007188844 A JP2007188844 A JP 2007188844A
Authority
JP
Japan
Prior art keywords
superconducting
thin film
superconducting thin
wire
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007960A
Other languages
Japanese (ja)
Other versions
JP5115778B2 (en
Inventor
Hiroyasu Yumura
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006007960A priority Critical patent/JP5115778B2/en
Priority to PCT/JP2006/326091 priority patent/WO2007080794A1/en
Priority to TW096101222A priority patent/TW200735128A/en
Publication of JP2007188844A publication Critical patent/JP2007188844A/en
Application granted granted Critical
Publication of JP5115778B2 publication Critical patent/JP5115778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting cable capable of reducing resistance of connecting parts. <P>SOLUTION: The superconducting cable includes a core and a conductor layer 22 structured by a superconducting thin-film wire material 3 wound around the core. The superconducting thin-film wire material 3 includes a metal base board and an RE system superconducting thin film formed on only one side of the board. The wire material 3 is wound to make a surface with the RE system superconducting thin film formed face outward to the core. Since the surface of a superconducting thin film side with small resistance can be positioned at an outer peripheral side of the cable, when a connecting member is inserted into an outer periphery of the superconducting thin-film wire material 3 for connection, a connection resistance of connection parts can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超電導ケーブルに関するものである。特に、RE(希土類(レアアース))系超電導薄膜線材を用いた超電導ケーブルに関するものである。   The present invention relates to a superconducting cable. In particular, the present invention relates to a superconducting cable using RE (rare earth) superconducting thin film wire.

超電導線材として、BSCCO(Bi-Sr-Ca-Cu-O)テープ線材に代表されるBi系超電導線材が実用化されつつある。BSCCOテープ線材は、例えばBi2223相からなる複数本の超電導フィラメントを銀などの安定化材中に埋設した構造のテープ線材である。このBi系超電導線材は、線材への加工が行いやすい利点を有し、超電導ケーブル、超電導モータ、超電導変圧器などへの適用が提案されているものの、より一層の臨界電流密度(Jc)の向上が望まれている。   Bi-based superconducting wires represented by BSCCO (Bi-Sr-Ca-Cu-O) tape wires are being put into practical use as superconducting wires. The BSCCO tape wire is a tape wire having a structure in which a plurality of superconducting filaments made of, for example, a Bi2223 phase are embedded in a stabilizing material such as silver. This Bi-based superconducting wire has the advantage that it can be easily processed into a wire, and although it has been proposed to be applied to superconducting cables, superconducting motors, superconducting transformers, etc., it further improves the critical current density (Jc). Is desired.

一方、次世代超電導線材として、RE系超電導薄膜線材の開発が進められている(例えば特許文献1)。RE系超電導薄膜線材の代表的な構成を図6に示す。この線材3は、テープ状の金属基板31上に順次中間層32、超電導薄膜33、保護層34を積層したテープ線材である。具体例としては、金属基板31としてハステロイ(登録商標)、中間層32としてYSZ、超電導薄膜33としてY系123構造(YBa2Cu3Oy)薄膜、保護層34として銀が利用されている。通常、これら中間層32や超電導薄膜33はレーザ蒸着などにより基板31の片面のみに形成されている。 On the other hand, as a next-generation superconducting wire, development of an RE-based superconducting thin film wire is being advanced (for example, Patent Document 1). A typical configuration of the RE-based superconducting thin film wire is shown in FIG. The wire 3 is a tape wire in which an intermediate layer 32, a superconducting thin film 33, and a protective layer 34 are sequentially laminated on a tape-shaped metal substrate 31. As a specific example, Hastelloy (registered trademark) is used as the metal substrate 31, YSZ is used as the intermediate layer 32, a Y-based 123 (YBa 2 Cu 3 Oy) thin film is used as the superconducting thin film 33, and silver is used as the protective layer 34. Usually, the intermediate layer 32 and the superconducting thin film 33 are formed only on one side of the substrate 31 by laser vapor deposition or the like.

このようなRE系超電導薄膜線材は、Bi系超電導線材に比べて臨界電流密度(Jc)が高く、また磁場による臨界電流(Ic)の低下が少なく磁場特性に優れるため、Bi系超電導線材に続く次世代線材としての利用が期待されている。   Such RE-based superconducting thin film wires have higher critical current density (Jc) than Bi-based superconducting wires, and there is little decrease in critical current (Ic) due to magnetic field, and excellent magnetic field characteristics. Use as a next-generation wire is expected.

特開2001-31418号公報JP 2001-31418

しかし、上記のRE系超電導薄膜線材を超電導ケーブルに適用する場合、ケーブルの接続箇所で抵抗が大きくなるということが判明した。   However, it has been found that when the above RE-based superconducting thin film wire is applied to a superconducting cable, the resistance increases at the connection point of the cable.

一般に、超電導ケーブルは、断熱管内に1本以上のコアを収納した構造である。このコアは、心材と、心材の外周に巻回されて導体層を構成する超電導線材とを具備する。ここで、超電導線材として基板の片側に超電導薄膜を有するRE系超電導薄膜線材を巻回する場合、超電導薄膜を内側、つまり心材側となるように巻回を行っている。これは、超電導薄膜線材を巻回すると、曲げの内側では圧縮歪みが、外側では引張歪みが線材に発生するため、圧縮歪みに対するIcの低下程度が引張り歪みに対するそれよりも低い超電導薄膜を内側に配置した方が曲げ特性に優れるからである。   In general, a superconducting cable has a structure in which one or more cores are housed in a heat insulating tube. The core includes a core material and a superconducting wire wound around the outer periphery of the core material to form a conductor layer. Here, when a RE-based superconducting thin film wire having a superconducting thin film on one side of the substrate is wound as a superconducting wire, the superconducting thin film is wound on the inner side, that is, on the core material side. This is because when a superconducting thin film wire is wound, a compressive strain is generated inside the bend and a tensile strain is generated outside the bend, so that the Ic decrease with respect to the compressive strain is lower on the inside than the superconducting thin film. This is because the arrangement is superior in bending characteristics.

ところが、超電導ケーブルで線路を構築するには、ケーブル同士の接続箇所において導体層を接続する必要がある。通常、この接続は、突き合わせたケーブルの導体層の外側に銅スリーブなどの接続部材をはめ込み、導体層と接続部材との間を半田付けすることで行われる。その際、導体層を構成する超電導薄膜線材は、超電導薄膜を内側として巻回されているため、導体層の外側には基板側が位置することになる。本発明者らは、この状態での接続箇所の接続抵抗について後述するように試験・検討を行った結果、接続部材と超電導薄膜線材の基板側の面とが半田を介して接続される場合、接続抵抗が大きくなるとの知見を得た。   However, in order to construct a line with a superconducting cable, it is necessary to connect a conductor layer at a connection point between the cables. Usually, this connection is performed by fitting a connection member such as a copper sleeve on the outside of the conductor layer of the butted cable and soldering between the conductor layer and the connection member. At this time, since the superconducting thin film wire constituting the conductor layer is wound with the superconducting thin film inside, the substrate side is located outside the conductor layer. As a result of conducting tests and examinations as described later on the connection resistance of the connection portion in this state, the present inventors, as a result, when the connection member and the substrate-side surface of the superconducting thin film wire are connected via solder, The knowledge that connection resistance becomes large was obtained.

本発明は上記の事情に鑑みてなされたもので、その目的の一つは、接続箇所の抵抗を低減することができる超電導ケーブルを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a superconducting cable capable of reducing the resistance of a connection point.

本発明は、片面のみ超電導薄膜を有する超電導線材としてRE系超電導薄膜を用いる場合、その巻回の仕方に工夫を施すことで上記の目的を達成する。   The present invention achieves the above object by devising the winding method when using a RE-based superconducting thin film as a superconducting wire having a superconducting thin film only on one side.

本発明超電導ケーブルは、心材と、その上に巻回した超電導薄膜線材で構成される導体層とを具備する超電導ケーブルである。この超電導薄膜線材は、金属基板と、この基板の片面上のみに形成されたRE系超電導薄膜とを有する。そして、本発明は、この線材を、RE系超電導薄膜の形成された面が心材に対して外向きとなるように巻回していることを特徴とする。   The superconducting cable of the present invention is a superconducting cable comprising a core material and a conductor layer formed of a superconducting thin film wire wound thereon. This superconducting thin film wire has a metal substrate and an RE-based superconducting thin film formed only on one side of the substrate. The present invention is characterized in that the wire is wound so that the surface on which the RE-based superconducting thin film is formed faces outward with respect to the core material.

この構成により、抵抗の小さい超電導薄膜側の面がケーブルの外周側に位置するようにできるため、接続部材を超電導薄膜線材の外周にはめ込んで接続を行った場合、接続箇所の接続抵抗を低減することができる。   With this configuration, since the surface on the superconducting thin film side having a low resistance can be positioned on the outer peripheral side of the cable, when the connection member is fitted on the outer periphery of the superconducting thin film wire, the connection resistance at the connection point is reduced. be able to.

本発明ケーブルでは、超電導シールド層を有する構成としても良い。つまり、導体層の外側に順次絶縁層、超電導シールド層を具備し、この超電導シールド層には、金属基板と、この基板の片面上のみに形成されたRE系超電導薄膜とを有する超電導薄膜線材を用いる。そして、その超電導薄膜線材を、超電導薄膜の形成された面が絶縁層に対して外向きとなるように巻回する。   The cable of the present invention may have a structure having a superconducting shield layer. That is, an insulating layer and a superconducting shield layer are sequentially provided outside the conductor layer, and a superconducting thin film wire having a metal substrate and an RE-based superconducting thin film formed only on one surface of the substrate is provided on the superconducting shield layer. Use. Then, the superconducting thin film wire is wound so that the surface on which the superconducting thin film is formed faces outward with respect to the insulating layer.

この構成によれば、導体層に交流を流した場合に、超電導シールド層に逆方向の電流が誘導されて両層で生じる磁場がキャンセルされるため、交流ケーブルとして利用する場合に好ましい。また、突き合わせたケーブルにおける超電導シールド層同士の接続箇所における接続抵抗も低減することができる。   According to this configuration, when an alternating current is passed through the conductor layer, a current in the opposite direction is induced in the superconducting shield layer, and the magnetic field generated in both layers is canceled. Moreover, the connection resistance in the connection location of the superconducting shield layers in the butted cables can also be reduced.

本発明ケーブルで用いる超電導薄膜線材のRE系超電導薄膜は、Ho系超電導体またはY系超電導体で構成されることが好ましい。   The RE-based superconducting thin film of the superconducting thin-film wire used in the cable of the present invention is preferably composed of a Ho-based superconductor or a Y-based superconductor.

Ho系超電導体またはY系超電導体はいずれも高い電流密度を得ることができ、超電導ケーブルの導体層やシールド層を構成するのに適した材料である。特に、Ho系超電導体は水分による劣化に対してY系超電導体よりも高い耐久性を有する。   Both the Ho-based superconductor and the Y-based superconductor can obtain a high current density, and are suitable materials for constituting the conductor layer and shield layer of the superconducting cable. In particular, the Ho-based superconductor has higher durability against moisture degradation than the Y-based superconductor.

さらに本発明ケーブルにおいては、超電導ケーブルの端部に超電導薄膜線材と半田で電気的に接続される常電導接続部材を具備し、この常電導接続部材と超電導薄膜線材からなる導体層とのケーブル長手方向の接続長を20mm以上とすることも好ましい。   Furthermore, in the cable of the present invention, the end of the superconducting cable is provided with a normal conducting connection member electrically connected to the superconducting thin film wire by solder, and the cable length between the normal conducting connecting member and the conductor layer made of the superconducting thin film wire is provided. It is also preferable that the connection length in the direction is 20 mm or more.

この接続長を20mm以上とすることで、超電導薄膜線材と接続部材との接触長を確保でき、接続抵抗を十分に小さくすることができる。なお、接続長とは、超電導薄膜線材と常電導接続部材とが半田で電気的に接続される箇所におけるケーブル長手方向への長さのことである。   By setting the connection length to 20 mm or more, the contact length between the superconducting thin film wire and the connection member can be secured, and the connection resistance can be sufficiently reduced. The connection length is the length in the cable longitudinal direction at a location where the superconducting thin film wire and the normal conducting connecting member are electrically connected by solder.

本発明超電導ケーブルによれば、RE系超電導薄膜の形成された面が心材に対して外向きとなるように超電導薄膜線材を巻回することで、この薄膜側をケーブルの外周側に位置させることができる。それに伴い、導体層の外側に接続部材を配して接続構造を形成した場合の接続抵抗を低減することができる。   According to the superconducting cable of the present invention, the thin film side is positioned on the outer peripheral side of the cable by winding the superconducting thin film wire so that the surface on which the RE-based superconducting thin film is formed faces outward with respect to the core material. Can do. Accordingly, the connection resistance when a connection structure is formed by arranging a connection member on the outside of the conductor layer can be reduced.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明超電導ケーブルは、代表的には、図1に示すように、断熱管1内にコア2を収納した構造である。コア2は、図2に示すように、中心から順に、フォーマ21、超電導導体層22、絶縁層23、超電導シールド層24、外層25を具備する。そして、超電導導体層22、超電導シールド層24に超電導薄膜線材3が用いられる。   The superconducting cable of the present invention typically has a structure in which a core 2 is accommodated in a heat insulating tube 1 as shown in FIG. As shown in FIG. 2, the core 2 includes a former 21, a superconducting conductor layer 22, an insulating layer 23, a superconducting shield layer 24, and an outer layer 25 in order from the center. The superconducting thin film wire 3 is used for the superconducting conductor layer 22 and the superconducting shield layer 24.

超電導薄膜線材3は、図3に示すように、基板31、中間層32、RE系超電導薄膜33、保護層34、安定化層35を有する。ここでは、基板31の上面側に順次中間層32、超電導薄膜33、保護層34を積層し、基板31の下面側にも保護層34を形成して、これら積層構造体の全体を安定化層35で被覆している。   As shown in FIG. 3, the superconducting thin film wire 3 includes a substrate 31, an intermediate layer 32, an RE-based superconducting thin film 33, a protective layer 34, and a stabilization layer 35. Here, the intermediate layer 32, the superconducting thin film 33, and the protective layer 34 are sequentially laminated on the upper surface side of the substrate 31, and the protective layer 34 is also formed on the lower surface side of the substrate 31, so that the entire laminated structure is stabilized. Covered with 35.

このような線材を、基板が内側、超電導薄膜が外側となるように心材上に巻回する。図2では、4層の超電導薄膜線材3で導体層22を構成し、2層の超電導薄膜線材3でシールド層24を構成した場合を示している。これらの超電導薄膜線材は螺旋状に多層に巻回し、各線材層の間には層間絶縁26を設けている。この線材3の巻回により、導体層22、シールド層24のいずれも、外周側に線材の超電導薄膜側が位置することになる。そのため、超電導ケーブル同士を接続する場合、あるいは超電導ケーブルと他の機器とを接続する場合、ケーブル端部の導体層22やシールド層24の外側に接続部材(図示せず)をはめ込み、接続部材と導体層22(シールド層24)の間に半田を流し込んで接続することで、接続抵抗の小さな接続部を形成することができる。接続部材には、導体層22の接続の場合、Cuスリーブなどが利用され、シールド層24の接続にはCu編組材やCuスリーブなどが利用される。   Such a wire is wound around the core so that the substrate is on the inside and the superconducting thin film is on the outside. FIG. 2 shows a case where the conductor layer 22 is composed of four layers of superconducting thin film wire 3 and the shield layer 24 is composed of two layers of superconducting thin film wire 3. These superconducting thin film wires are spirally wound in multiple layers, and an interlayer insulation 26 is provided between the wire layers. By winding the wire 3, the conductor layer 22 and the shield layer 24 both have the superconducting thin film side of the wire positioned on the outer peripheral side. Therefore, when connecting the superconducting cables or when connecting the superconducting cable and another device, a connection member (not shown) is fitted outside the conductor layer 22 or the shield layer 24 at the end of the cable, A connection portion having a small connection resistance can be formed by flowing solder between the conductor layers 22 (shield layers 24). For connection of the conductor layer 22, a Cu sleeve or the like is used for the connection member, and for the connection of the shield layer 24, a Cu braided material or a Cu sleeve is used.

以下、本発明超電導ケーブルの各構成部について好ましい構成を説明する。   Hereinafter, a preferable structure is demonstrated about each structure part of this invention superconducting cable.

まず、超電導薄膜線材3についてであるが、基板31は金属材料で構成される(図3)。好ましい金属として、ニッケル合金(ハステロイ(登録商標))、ステンレス、ニッケルなどを挙げることができる。この基板31は、単一の材料からなるものであってもよく、複合材料からなるものであってもよい。複合材料からなる基板31として、ステンレス箔上に銀箔を積層したものが挙げられる。また、基板31の形態としては、テープ材が好適に用いられる。   First, regarding the superconducting thin film wire 3, the substrate 31 is made of a metal material (FIG. 3). Preferred metals include nickel alloys (Hastelloy (registered trademark)), stainless steel, nickel and the like. The substrate 31 may be made of a single material or a composite material. Examples of the substrate 31 made of a composite material include those obtained by laminating a silver foil on a stainless steel foil. Further, as a form of the substrate 31, a tape material is preferably used.

中間層32は、基板31中の成分が超電導薄膜33に拡散して超電導特性の劣化を防ぐ役割を果たしているが必須の構成ではない。中間層32を省略することもできる。この中間層32には、酸化セリウム、イットリア安定化ジルコニア(YSZ)、酸化マグネシウム、酸化イットリウム、酸化イッテルビウム、バリウムジルコニアなどが利用できる。特に、この中間層32の結晶に配向性を付与することで高特性の超電導線材を得ることができる。中間層32の形成方法としては、レーザ蒸着法などが好適に利用できる。   The intermediate layer 32 plays a role of preventing deterioration of the superconducting characteristics by diffusing components in the substrate 31 into the superconducting thin film 33, but is not an essential configuration. The intermediate layer 32 can be omitted. For the intermediate layer 32, cerium oxide, yttria stabilized zirconia (YSZ), magnesium oxide, yttrium oxide, ytterbium oxide, barium zirconia, or the like can be used. In particular, a high-conductivity superconducting wire can be obtained by imparting orientation to the crystals of the intermediate layer 32. As a method for forming the intermediate layer 32, a laser vapor deposition method or the like can be suitably used.

超電導薄膜33はRE系とする。代表的には、RExBayCuzOの構造を有する酸化物超電導体の薄膜とする。ここでの「RE」は希土類元素である。希土類元素としては、例えばイットリウム(Y)、ネオジム(Nd)、ガドリニウム(Gd)、ホルミウム(Ho)、サマリウム(Sm)などが含まれる。この超電導薄膜33の具体例としては、RE123系、つまりYBa2Cu3O7や、HoBa2Cu3O7などが挙げられる。この超電導薄膜33は、基板31の表裏のうち、一方の面にのみ形成されている。超電導薄膜33の形成方法としては、レーザ蒸着法などが好適に利用できる。 The superconducting thin film 33 is an RE system. Typically, a thin film of oxide superconductor having a structure of RE x Ba y Cu z O. “RE” here is a rare earth element. Examples of rare earth elements include yttrium (Y), neodymium (Nd), gadolinium (Gd), holmium (Ho), and samarium (Sm). Specific examples of the superconducting thin film 33 include RE123 series, that is, YBa 2 Cu 3 O 7 and HoBa 2 Cu 3 O 7 . The superconducting thin film 33 is formed only on one surface of the front and back surfaces of the substrate 31. As a method for forming the superconducting thin film 33, a laser vapor deposition method or the like can be suitably used.

保護層34は、例えばAgやAg合金が好適に用いられる。銀は超電導薄膜33との反応が少なく好ましい。   For the protective layer 34, for example, Ag or an Ag alloy is preferably used. Silver is preferable because it has little reaction with the superconducting thin film 33.

安定化層35は、CuやCu合金などが好適に利用できる。この安定化層35は、例えばめっきなどにより形成できる。   For the stabilization layer 35, Cu, Cu alloy, or the like can be suitably used. The stabilization layer 35 can be formed by plating, for example.

次に、コア2についてであるが(図2)、フォーマ21には、中空パイプや銅撚り線などが好適に利用できる。絶縁層23には、クラフト紙や、クラフト紙とポリオレフィンフィルムをラミネートした複合紙が利用できる。さらに、外層25は、シールド層24を保護すると共に断熱管1(図1)に対する絶縁を確保するもので、各種プラスチック、例えばポリエチレンが利用できる。   Next, as for the core 2 (FIG. 2), for the former 21, a hollow pipe or a copper stranded wire can be suitably used. For the insulating layer 23, kraft paper or composite paper obtained by laminating kraft paper and a polyolefin film can be used. Further, the outer layer 25 protects the shield layer 24 and ensures insulation against the heat insulating tube 1 (FIG. 1), and various plastics such as polyethylene can be used.

さらに、断熱管1は(図1)、二重管を用いた真空構造のものが好適に利用される。例えば、内管11と外管12との間を真空引きし、両管の間にスーパーインシュレーション(商品名)を配したものが断熱管1に用いられる。   Furthermore, as the heat insulating tube 1 (FIG. 1), a vacuum structure using a double tube is preferably used. For example, the heat insulating tube 1 is used in which a vacuum is drawn between the inner tube 11 and the outer tube 12 and a super insulation (trade name) is disposed between the two tubes.

(試験例)
<曲げ試験>
図3に示すRE系超電導薄膜線材を用いて曲げ試験を行い、Ic特性の変化を調べてみた。この試験では、特定の曲げ直径を有するFRP製の曲げジグに線材サンプルを沿わせ、常温で曲げ歪みを線材に加え、曲げ前後における液体窒素温度での臨界電流値(Ic)を測定する。そして、曲げ歪み印加後のIc保持率を求め、Icの劣化が起こらない曲げ直径を求めた。Ic劣化の定義としては、Icが曲げ前の初期値に比べ5%以上低下した場合とした。曲げ直径は50mmから5mm間隔で小さくした。この際、試験はRE系超電導薄膜線材におけるRE系超電導薄膜を曲げの内側にする場合と外側にする場合の各々について行った。
(Test example)
<Bending test>
A bending test was conducted using the RE-based superconducting thin film wire shown in FIG. 3 to examine changes in Ic characteristics. In this test, a wire sample is placed along an FRP bending jig having a specific bending diameter, bending strain is applied to the wire at room temperature, and the critical current value (Ic) at the liquid nitrogen temperature before and after bending is measured. Then, the Ic retention after applying the bending strain was determined, and the bending diameter at which Ic did not deteriorate was determined. The definition of Ic deterioration was that Ic decreased by 5% or more compared to the initial value before bending. The bending diameter was reduced from 50mm to 5mm. At this time, the test was performed for each of the case where the RE superconducting thin film in the RE superconducting thin film wire was placed inside and outside the bend.

試験に供した線材の仕様は次の通りである。
線材幅:約4mm、線材厚さ:約0.15mm
基板:ハステロイ(登録商標) 厚さ100μm
中間層:YSZ 厚さ3μm
超電導薄膜:YBCO 厚さ1μm
保護層:Ag 厚さ3μm
安定化層:Cu 厚さ20μm
The specifications of the wire used for the test are as follows.
Wire width: approx. 4mm, wire thickness: approx. 0.15mm
Substrate: Hastelloy (registered trademark) Thickness 100 μm
Intermediate layer: YSZ thickness 3μm
Superconducting thin film: YBCO thickness 1μm
Protective layer: Ag thickness 3μm
Stabilization layer: Cu thickness 20μm

その結果は次の通りである。
YBCOを曲げの内側:曲げ直径10mmまでIcの低下なし、5mmでIc低下
YBCOを曲げの外側:曲げ直径25mmまでIcの低下なし、20mmでIc低下
The results are as follows.
Inside of bending YBCO: No decrease in Ic up to 10mm bend diameter, Ic decrease at 5mm
Outside of bending YBCO: No decrease in Ic up to 25mm bend diameter, Ic decrease at 20mm

この結果から明らかなように、YBCOを曲げの内側となるように線材を巻回した場合、YBCOには圧縮歪みが加わり、逆向きに線材を巻回した場合に比べてIcが低下しにくいことがわかる。つまり、YBCOを曲げの内側にした場合は、逆向きの場合に比べて限界曲げ径を小さくすることができ、より小径の心材に短ピッチで線材を巻き付けることができる。   As is clear from this result, when the wire is wound so that YBCO is inside the bend, compression strain is applied to YBCO, and Ic is less likely to decrease than when the wire is wound in the opposite direction. I understand. That is, when YBCO is placed inside the bend, the limit bend diameter can be made smaller than in the reverse direction, and the wire can be wound around the core material having a smaller diameter at a short pitch.

<抵抗測定試験>
次に、図1、図2に示すような超電導ケーブルにおいて、導体層同士を接続部材を介して接続する場合を想定して、その接続抵抗を次の試験により測定した。
<Resistance measurement test>
Next, in the superconducting cable as shown in FIG. 1 and FIG. 2, the connection resistance was measured by the following test on the assumption that the conductor layers are connected to each other through a connecting member.

試験方法を図4に基づいて説明する。この試験では、前記曲げ試験で用いたRE系超電導薄膜線材3を用意し、この線材3の両端部において、YBCO側または基板側の面に接続部材を模擬した銅板41を半田42で接続しておく。そして、この銅板41に直流電源43を接続して通電し、銅板41と線材3との間の電圧を測定して抵抗を求めた。その際、半田付けが行われた箇所の線材長手方向の長さ(接続長相当分)を10、20、50mmと変えて抵抗の測定を行った。また、比較のため、RE系超電導薄膜線材の代わりにBSCCO超電導線材を用いて同様の抵抗測定を行った。ただし、BSCCO超電導線材は裏表がないため、どちらか一方の面に接続部材を接続した場合について測定を行っている。   The test method will be described with reference to FIG. In this test, the RE-based superconducting thin film wire 3 used in the bending test was prepared, and at both ends of the wire 3, a copper plate 41 simulating a connection member was connected to the surface on the YBCO side or the substrate side with solder 42. deep. Then, a direct current power source 43 was connected to the copper plate 41 and energized, and the voltage between the copper plate 41 and the wire 3 was measured to determine the resistance. At that time, the resistance was measured by changing the length (corresponding to the connection length) in the longitudinal direction of the wire at the soldered portion to 10, 20, and 50 mm. For comparison, the same resistance measurement was performed using a BSCCO superconducting wire instead of the RE-based superconducting thin film wire. However, since the BSCCO superconducting wire has no front and back, the measurement is performed when a connecting member is connected to either one of the surfaces.

その結果を図5のグラフに示す。このグラフから明らかなように、RE系超電導薄膜線材の超電導薄膜側に接続部材を半田付けした場合は、BSCCO超電導線材を用いた場合とほぼ同等の接続抵抗となっており、RE系超電導薄膜線材の基板側に接続部材を半田付けした場合に比べて、接続抵抗が約1/5になっていることがわかる。特に、接続長が20mm以上になると接続抵抗が小さくなっていることがわかる。   The results are shown in the graph of FIG. As is apparent from this graph, when the connection member is soldered to the superconducting thin film side of the RE superconducting thin film wire, the connection resistance is almost the same as when the BSCCO superconducting wire is used, and the RE superconducting thin film wire It can be seen that the connection resistance is about 1/5 that of the case where the connection member is soldered to the substrate side. In particular, it can be seen that the connection resistance decreases when the connection length is 20 mm or more.

<まとめ>
以上の曲げ試験および抵抗測定試験の結果をまとめると、曲げ歪みに伴うIcの低下の点を考慮すれば、RE系超電導薄膜線材は超電導薄膜を内側にして巻回することが好ましいが、超電導ケーブルの接続部を形成する場合の接続抵抗を考慮すれば、RE系超電導薄膜線材は超電導薄膜を外側にして巻回することが好ましい。これにより、接続部の接続抵抗を小さくでき、接続部での局所的な発熱を抑制することができる。
<Summary>
To summarize the results of the above bending test and resistance measurement test, it is preferable that the RE superconducting thin film wire is wound with the superconducting thin film inside, considering the decrease in Ic due to bending strain. In consideration of the connection resistance when forming the connecting portion, the RE superconducting thin film wire is preferably wound with the superconducting thin film facing outside. Thereby, the connection resistance of a connection part can be made small and the local heat_generation | fever in a connection part can be suppressed.

本発明超電導ケーブルは、電力輸送線路の構築に利用することができる。特に、ケーブル同士の接続箇所の接続抵抗を低減した線路の構築に好適に利用できる。   The superconducting cable of the present invention can be used to construct a power transport line. In particular, it can be suitably used for construction of a line in which the connection resistance at the connection point between the cables is reduced.

本発明超電導ケーブルの横断面図である。It is a cross-sectional view of the superconducting cable of the present invention. 本発明ケーブルのコアの端部を示す模式斜視図である。It is a model perspective view which shows the edge part of the core of this invention cable. 本発明ケーブルに用いるRE系超電導薄膜線材の横断面図である。It is a cross-sectional view of the RE-based superconducting thin film wire used for the cable of the present invention. 抵抗測定試験の試験方法を示す説明図である。It is explanatory drawing which shows the test method of a resistance measurement test. 抵抗測定試験の測定結果を示すグラフである。It is a graph which shows the measurement result of a resistance measurement test. RE系超電導薄膜線材の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of RE type | system | group superconducting thin film wire.

符号の説明Explanation of symbols

1 断熱管 11 内管 12 外管
2 コア
21 フォーマ 22 超電導導体層 23 絶縁層
24 超電導シールド層 25 外層 26 層間絶縁
3 RE系超電導薄膜線材
31 (金属)基板 32 中間層 33 超電導薄膜 34 保護層 35 安定化層
41 銅板 42 半田 43 直流電源
1 Insulated pipe 11 Inner pipe 12 Outer pipe
2 core
21 Former 22 Superconducting conductor layer 23 Insulating layer
24 Superconducting shield layer 25 Outer layer 26 Interlayer insulation
3 RE-based superconducting thin film wire
31 (Metal) substrate 32 Intermediate layer 33 Superconducting thin film 34 Protective layer 35 Stabilization layer
41 Copper plate 42 Solder 43 DC power supply

Claims (4)

心材と、その上に巻回した超電導薄膜線材で構成される導体層とを具備する超電導ケーブルであって、
前記超電導薄膜線材は、
金属基板と、この基板の片面上のみに形成されたRE系超電導薄膜とを有し、
この超電導薄膜の形成された面が心材に対して外向きとなるように巻回されていることを特徴とする超電導ケーブル。
A superconducting cable comprising a core material and a conductor layer composed of a superconducting thin film wire wound thereon,
The superconducting thin film wire is
It has a metal substrate and a RE-based superconducting thin film formed only on one side of this substrate,
A superconducting cable which is wound so that a surface on which the superconducting thin film is formed faces outward with respect to a core material.
さらに導体層の外側に順次絶縁層、超電導シールド層を具備し、
この超電導シールド層には、金属基板と、この基板の片面上のみに形成されたRE系超電導薄膜とを有する超電導薄膜線材が用いられ、
その超電導薄膜線材は、超電導薄膜の形成された面が絶縁層に対して外向きとなるように巻回されていることを特徴とする請求項1に記載の超電導ケーブル。
In addition, an insulating layer and a superconducting shield layer are sequentially provided outside the conductor layer.
For this superconducting shield layer, a superconducting thin film wire having a metal substrate and a RE-based superconducting thin film formed only on one side of the substrate is used.
The superconducting cable according to claim 1, wherein the superconducting thin film wire is wound so that a surface on which the superconducting thin film is formed faces outward with respect to the insulating layer.
前記超電導薄膜線材のRE系超電導薄膜が、Ho系超電導体またはY系超電導体で構成されることを特徴とする請求項1または2に記載の超電導ケーブル。   The superconducting cable according to claim 1 or 2, wherein the RE-based superconducting thin film of the superconducting thin-film wire is composed of a Ho-based superconductor or a Y-based superconductor. さらに前記超電導ケーブルの端部には、超電導薄膜線材と半田で電気的に接続される常電導接続部材を具備し、
この常電導接続部材と導体層とのケーブル長手方向の接続長が20mm以上であることを特徴とする請求項1〜3のいずれかに記載の超電導ケーブル。
Furthermore, the end portion of the superconducting cable comprises a normal conducting connecting member electrically connected to the superconducting thin film wire by solder,
The superconducting cable according to any one of claims 1 to 3, wherein a connection length in a cable longitudinal direction between the normal conductive connecting member and the conductor layer is 20 mm or more.
JP2006007960A 2006-01-16 2006-01-16 Superconducting cable Expired - Fee Related JP5115778B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006007960A JP5115778B2 (en) 2006-01-16 2006-01-16 Superconducting cable
PCT/JP2006/326091 WO2007080794A1 (en) 2006-01-16 2006-12-27 Superconducting cable
TW096101222A TW200735128A (en) 2006-01-16 2007-01-12 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007960A JP5115778B2 (en) 2006-01-16 2006-01-16 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2007188844A true JP2007188844A (en) 2007-07-26
JP5115778B2 JP5115778B2 (en) 2013-01-09

Family

ID=38256205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007960A Expired - Fee Related JP5115778B2 (en) 2006-01-16 2006-01-16 Superconducting cable

Country Status (3)

Country Link
JP (1) JP5115778B2 (en)
TW (1) TW200735128A (en)
WO (1) WO2007080794A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117734A (en) * 2006-11-08 2008-05-22 Toshiba Corp High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method
JP2009048792A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable
JP2009110668A (en) * 2007-10-26 2009-05-21 Furukawa Electric Co Ltd:The Superconductive wire and superconductor
JP2010161064A (en) * 2008-12-15 2010-07-22 Nexans Arrangement having superconducting cable
JP2010263699A (en) * 2009-05-07 2010-11-18 Sumitomo Electric Ind Ltd Terminal structure of super-conductive cable
JP2011076924A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Superconducting cable
JP2011159455A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Thin-film superconducting wire rod and method for manufacturing the same
WO2014141777A1 (en) * 2013-03-15 2014-09-18 古河電気工業株式会社 Method for manufacturing superconducting conductor and superconducting conductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138817A (en) * 1989-03-31 1991-06-13 Sumitomo Electric Ind Ltd Oxide superconductive wire, its manufacture, and goods using it
JP2003141946A (en) * 2001-11-02 2003-05-16 Sumitomo Electric Ind Ltd Superconducting cable
WO2005086306A1 (en) * 2004-03-04 2005-09-15 Sumitomo Electric Industries, Ltd. Terminal structure of polyphase superconducting cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138817A (en) * 1989-03-31 1991-06-13 Sumitomo Electric Ind Ltd Oxide superconductive wire, its manufacture, and goods using it
JP2003141946A (en) * 2001-11-02 2003-05-16 Sumitomo Electric Ind Ltd Superconducting cable
WO2005086306A1 (en) * 2004-03-04 2005-09-15 Sumitomo Electric Industries, Ltd. Terminal structure of polyphase superconducting cable

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117734A (en) * 2006-11-08 2008-05-22 Toshiba Corp High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method
JP2009048792A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable
JP2009110668A (en) * 2007-10-26 2009-05-21 Furukawa Electric Co Ltd:The Superconductive wire and superconductor
JP2010161064A (en) * 2008-12-15 2010-07-22 Nexans Arrangement having superconducting cable
JP2010263699A (en) * 2009-05-07 2010-11-18 Sumitomo Electric Ind Ltd Terminal structure of super-conductive cable
JP2011076924A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Superconducting cable
JP2011159455A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Thin-film superconducting wire rod and method for manufacturing the same
WO2014141777A1 (en) * 2013-03-15 2014-09-18 古河電気工業株式会社 Method for manufacturing superconducting conductor and superconducting conductor
US10096403B2 (en) 2013-03-15 2018-10-09 Furukawa Electric Co., Ltd. Method for producing superconductive conductor and superconductive conductor

Also Published As

Publication number Publication date
JP5115778B2 (en) 2013-01-09
WO2007080794A1 (en) 2007-07-19
TW200735128A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
JP5115778B2 (en) Superconducting cable
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
US11289640B2 (en) Second generation superconducting filaments and cable
JP4207223B2 (en) Superconducting cable and superconducting cable line using this superconducting cable
KR20150065694A (en) Superconductive coil device and production method
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP2006174546A (en) Connecting structure of magnesium diboride superconducting wire and its connecting method
JP2923988B2 (en) Superconducting conductor
JP2002352645A (en) Superconducting cable
JP2010123621A (en) Superconducting coil of induction apparatus
JP2012256744A (en) Superconductive coil
JP2009230913A (en) Oxide superconductive current lead
JP4838199B2 (en) Oxide superconducting current lead
JPH10214713A (en) Superconducting coil
WO2013077128A1 (en) Method for measuring critical current of superconductive cable
JP3283106B2 (en) Structure of current supply terminal for oxide superconducting conductor
JP6818578B2 (en) Superconducting cable connection
JP2009230912A (en) Oxide superconductive current lead
JP5604213B2 (en) Superconducting equipment
JP4634954B2 (en) Superconducting device
JP2009004794A (en) Persistent current switch
JP6163039B2 (en) Superconducting cable
JP5115245B2 (en) Superconducting current lead
JP2018186037A (en) Superconductive cable line
JP5041414B2 (en) Superconducting wire and superconducting conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees