JP4838199B2 - Oxide superconducting current lead - Google Patents

Oxide superconducting current lead Download PDF

Info

Publication number
JP4838199B2
JP4838199B2 JP2007154372A JP2007154372A JP4838199B2 JP 4838199 B2 JP4838199 B2 JP 4838199B2 JP 2007154372 A JP2007154372 A JP 2007154372A JP 2007154372 A JP2007154372 A JP 2007154372A JP 4838199 B2 JP4838199 B2 JP 4838199B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
current lead
support member
tape
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007154372A
Other languages
Japanese (ja)
Other versions
JP2008305765A (en
Inventor
淳一 西岡
康雄 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Cable Systems Co Ltd
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2007154372A priority Critical patent/JP4838199B2/en
Publication of JP2008305765A publication Critical patent/JP2008305765A/en
Application granted granted Critical
Publication of JP4838199B2 publication Critical patent/JP4838199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導を応用した低温機器、例えば、超電導マグネットに電源から電流を供給するための超電導電流リードに関する。   The present invention relates to a superconducting current lead for supplying a current from a power source to a low-temperature apparatus to which superconductivity is applied, for example, a superconducting magnet.

超電導応用機器、例えば、超電導マグネットを運転する場合、マグネットを超電導状態とするために極低温に冷却する必要があり、この冷却方法として2つの方式が知られている。即ち、液体ヘリウムや液体窒素等の冷媒に浸漬する方式(浸漬冷却方式)と冷凍機や冷媒からの熱伝導を利用する方式(伝導冷却方式)である。この冷却したマグネットを励磁するためには、超電導コイルに電流を流さなければならず、電源から電流を供給するための電流リードが必要である。この場合、電流リードは導電体であることが必要であるが、電気抵抗が小さくかつ熱伝導率の大きいCuやAlなどの金属を使用すると、電流リード自体のジュール発熱に加え外部からの熱侵入により超電導マグネットの冷却効率が悪くなり、超電導状態を維持するためには冷却コストが膨大になるという問題があった。特に、冷凍機を用いた伝導冷却方式の場合にこの傾向は顕著であり、冷却が不可能となる場合も生ずる。   When operating a superconducting application device, for example, a superconducting magnet, it is necessary to cool the magnet to a cryogenic temperature in order to bring the magnet into a superconducting state, and two methods are known as this cooling method. That is, a method of immersing in a refrigerant such as liquid helium or liquid nitrogen (immersion cooling method) and a method of utilizing heat conduction from a refrigerator or a refrigerant (conduction cooling method). In order to excite the cooled magnet, a current must be passed through the superconducting coil, and a current lead for supplying current from the power source is required. In this case, the current lead needs to be a conductor, but if a metal such as Cu or Al with low electrical resistance and high thermal conductivity is used, in addition to Joule heating of the current lead itself, external heat penetration As a result, the cooling efficiency of the superconducting magnet deteriorates, and there is a problem that the cooling cost becomes enormous in order to maintain the superconducting state. In particular, this tendency is remarkable in the case of a conduction cooling system using a refrigerator, and cooling may be impossible.

この問題を解決するためには、超電導マグネットに用いる電流リードとして、導電性と低熱伝導性を両立させる必要があり、超電導マグネットでは電流リード部分も液体窒素温度以下に冷却されるため、電気抵抗及び熱伝導率の小さい酸化物超電導体を電流リードとして使用することにより、電流を供給しつつ、熱侵入量を低く抑えることが可能となる。この場合、超電導電流リードに使用される超電導体として、Bi(2223)系あるいはBi(2212)系等のBi系とYBaCuに代表されるRe系酸化物超電導体のバルク体を棒状あるいは円筒状に成型したものや、超電導体部分の臨界電流密度(Jc)の高い銀あるいは銀合金により被覆された銀シース線材が用いられてきており、銀マトリックス中に超電導フィラメントの多数本を配置したテープ状の電流リードが知られている(例えば、特許文献1参照。)。 In order to solve this problem, it is necessary to achieve both conductivity and low thermal conductivity as the current lead used in the superconducting magnet. In the superconducting magnet, the current lead part is also cooled below the liquid nitrogen temperature. By using an oxide superconductor having a low thermal conductivity as a current lead, the amount of heat penetration can be suppressed while supplying current. In this case, as a superconductor used for the superconducting current lead, a Bi body such as Bi (2223) or Bi (2212) system and a bulk body of Re-based oxide superconductor represented by YBa 2 Cu 3 O x are used. Silver sheathed wires coated with silver or a silver alloy with a high critical current density (Jc) in the superconductor part have been used, and many superconducting filaments are used in a silver matrix. An arranged tape-like current lead is known (for example, see Patent Document 1).

前者の酸化物超電導体のバルク体を電流リードに使用した場合、バルク体が脆く、かつ機械的強度が小さいため、その製作及び使用上の間題を生ずる。即ち、バルク体自身には可撓性がなく一定以上の曲げ歪を与えると破損するという問題があり、そのため、電流リードの取り付け方向は直線方向に限られるほか、取り付け作業の際のハンドリングやマグネット運転時の振動による歪の印加を避けるために、平編み線を電極部分に設けるなど歪がバルク体に伝わらない構造とする必要があった。   When the former oxide superconductor bulk body is used for a current lead, the bulk body is brittle and its mechanical strength is low, which causes problems in its manufacture and use. That is, the bulk body itself is not flexible and has a problem that it is damaged when a bending strain of a certain level or more is applied. For this reason, the current lead is attached only in a linear direction, and handling and magnets during attachment work are also included. In order to avoid the application of strain due to vibration during operation, it has been necessary to provide a structure in which strain is not transmitted to the bulk body, such as by providing a flat knitted wire on the electrode portion.

また、後者の銀あるいは銀合金シース線材は、結晶の配向性を高めるためには圧延加工を施してテープ状に形成する必要があり、そのため、ある程度の厚さの銀あるいは銀合金シースが必要となり、シース材が熱伝導率の非常に高い銀あるいは銀合金であるため、電流リード自体の熱伝導率が大きくなる結果をもたらすという難点がある。   In addition, the latter silver or silver alloy sheath wire needs to be formed into a tape shape by rolling to increase the crystal orientation, and therefore a silver or silver alloy sheath with a certain thickness is required. Since the sheath material is made of silver or a silver alloy having a very high thermal conductivity, there is a drawback in that the thermal conductivity of the current lead itself is increased.

一方、電流リードとして、金属基板上に酸化物超電導層を設けたテープ状の超電導体を用いることが検討されており、酸化物超電導体と銀テープとを交互に積層したテープ状の超電導電流リードが知られている(例えば、特許文献2及び3参照。)。この場合においても、電流リード自体の熱伝導率が大きくなるという問題がある。   On the other hand, as a current lead, the use of a tape-shaped superconductor in which an oxide superconducting layer is provided on a metal substrate has been studied, and a tape-shaped superconducting current lead in which an oxide superconductor and a silver tape are alternately laminated. (For example, refer to Patent Documents 2 and 3). Even in this case, there is a problem that the thermal conductivity of the current lead itself increases.

さらに、金属基板上に形成された中間層と、中間層の上に形成された酸化物超電導層と、酸化物超電導層の上に形成された安定化層を有するテープ状酸化物超電導線材が知られており(例えば、特許文献4参照。)、このテープ状酸化物超電導線材は、高い臨界電流値を有する上、金属基板として通常使用されているNi基合金基板は、銀あるいは銀合金と比較すると、その熱伝導率は1/4程度と小さく、また、このNi基合金基板の機械的強度は非常に大きいこともあり、酸化物超電導電流リードへの適用に非常に適した線材であるといえる。   Further, a tape-shaped oxide superconducting wire having an intermediate layer formed on a metal substrate, an oxide superconducting layer formed on the intermediate layer, and a stabilization layer formed on the oxide superconducting layer is known. This tape-shaped oxide superconducting wire has a high critical current value, and a Ni-based alloy substrate usually used as a metal substrate is compared with silver or a silver alloy. Then, its thermal conductivity is as small as about 1/4, and the mechanical strength of this Ni-based alloy substrate is very large, so that it is a wire suitable for application to an oxide superconducting current lead. I can say that.

特開平9−115356号公報JP-A-9-115356 特開平5−243044号公報Japanese Patent Laid-Open No. 5-243044 特開平6−28930号公報JP-A-6-28930 特開2004−171841号公報JP 2004-171841 A

以上述べたように、テープ状酸化物超電導線材は、電流リードへの適用に非常に適した線材であるが、酸化物超電導体のJcを向上させるためには結晶粒のc軸を膜面(テープ面)に垂直に配向させる必要があり、このため、金属基板上に中間層を介して酸化物超電導体の薄層が形成されており、超電導マグネットへ大電流を供給するためには補強テープとの積層構造やフォーマー等の補強部材の外周に巻回する必要がある。この場合、前者の場合には製造工程が複雑となる上、電流リード自体の熱伝導率が大きくなり易いという問題があり、一方、後者の場合には、フォーマーの可撓性を向上させる必要がある上、フォーマー等の補強部材の外周に巻回されたテープ状酸化物超電導線材に印加される歪により超電導特性が低下し易いという問題がある。   As described above, the tape-shaped oxide superconducting wire is a wire that is very suitable for application to a current lead. However, in order to improve the Jc of the oxide superconductor, the c-axis of the crystal grain is formed on the film surface ( Therefore, a thin layer of an oxide superconductor is formed on a metal substrate via an intermediate layer, and a reinforcing tape is used to supply a large current to the superconducting magnet. It is necessary to wind around the outer periphery of a reinforcing member such as a laminated structure or a former. In this case, in the former case, there is a problem that the manufacturing process is complicated and the thermal conductivity of the current lead itself tends to increase. On the other hand, in the latter case, it is necessary to improve the flexibility of the former. In addition, there is a problem that the superconducting characteristics are likely to be deteriorated due to the strain applied to the tape-shaped oxide superconducting wire wound around the outer periphery of the reinforcing member such as a former.

本発明は、上記の問題点を解決するためになされたもので、可撓性及び機械的特性に優れ、熟伝導量を低減させるとともに超電導特性に優れた酸化物超電導電流リードを提供することをその目的としている。   The present invention has been made to solve the above-described problems, and provides an oxide superconducting current lead that is excellent in flexibility and mechanical properties, reduces the amount of maturation, and is excellent in superconducting properties. That is the purpose.

以上の問題を解決するために、本発明の酸化物超電導電流リードは、酸化物超電導機器と電力供給源とを接続するための電流リードであって、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、支持部材の外周に絶縁材を介して移動可能に巻回され、両電極に電気的に接続されたテープ状の酸化物超電導線材とを備え、テープ状の酸化物超電導線材のスパイラルピッチが支持部材の軸方向長さよりも小さくしたものである。   In order to solve the above problems, the oxide superconducting current lead of the present invention is a current lead for connecting an oxide superconducting device and a power supply source, and is a flexible pipe-like support member. An electrode connected to both sides via a low thermal conductive member made of an electrically insulating material, and a tape-like shape that is wound around the outer periphery of the support member via an insulating material and electrically connected to both electrodes And the spiral pitch of the tape-shaped oxide superconducting wire is smaller than the axial length of the support member.

上記の酸化物超電導電流リードは、電流リードに0.5%の曲げ歪が印加されたときに、臨界電流値の低下が5%以下であるか、及び/又は電流リードの通電電流が1000Aのときに、熱侵入量が0.5W以下となるように構成することが好ましい。   In the above oxide superconducting current lead, when 0.5% bending strain is applied to the current lead, the decrease in critical current value is 5% or less and / or the current carrying current is 1000A. Sometimes, it is preferable that the heat penetration amount is 0.5 W or less.

また、本発明においては、テープ状の酸化物超電導線材は、曲げ歪が印加されたときに超電導体の臨界電流値の低下を抑制するために、可撓性を有するパイプ状の支持部材の外周に絶縁材を介して移動可能に巻回されるが、この場合、テープ状の酸化物超電導線材の所定の複数本を並列に配置して支持部材の外周に巻回することにより、必要とする定格電流を容易に得ることができる。   Further, in the present invention, the tape-shaped oxide superconducting wire has an outer periphery of a flexible pipe-shaped support member in order to suppress a decrease in the critical current value of the superconductor when bending strain is applied. In this case, a predetermined plurality of tape-shaped oxide superconducting wires are arranged in parallel and wound around the outer periphery of the support member. The rated current can be easily obtained.

テープ状の酸化物超電導線材としては、ハステロイ等のNi系合金基板上に中間層を介して積層された超電導層を備えたReBaCu7−y系酸化物超電導線材材(ここでReは、Y、Gd、Sm、Nd、Ho、Dy、Eu、Tb、Er、Ybから選択されたいずれか1種又は2種以上の元素を示す。以下同じ。)を用いることができ、特にYBaCu7−y(YBCO)超電導体により形成することが好適する。 The tape-shaped oxide superconducting wire includes a ReBa 2 Cu 3 O 7-y- based oxide superconducting wire material (here, ReBa 2 Cu 3 O 7-y oxide superconductor layer laminated on an Ni-based alloy substrate such as Hastelloy via an intermediate layer). Represents any one or more elements selected from Y, Gd, Sm, Nd, Ho, Dy, Eu, Tb, Er, and Yb. The same shall apply hereinafter.) 2 Cu 3 O 7-y (YBCO) is preferably formed of a superconductor.

本発明の好ましい一実施態様としての酸化物超電導電流リードは、酸化物超電導機器と電力供給源とを接続するための電流リードであって、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、支持部材の外周に絶縁材を介して移動可能に複数本並列に巻回され、両電極に電気的に接続されたテープ状のRe系酸化物超電導線材とを備え、テープ状の酸化物超電導線材のスパイラルピッチを支持部材の軸方向長さよりも小さくするとともに、電流リードに0.5%の曲げ歪を印加したときに、臨界電流値の低下が5%以下であり、かつ、電流リードの通電電流が1000Aのときに、熱侵入量が0.5W以下であるようにしたものである。   An oxide superconducting current lead as a preferred embodiment of the present invention is a current lead for connecting an oxide superconducting device and a power supply source, on both sides of a flexible pipe-shaped support member, Each of the electrodes connected via a low thermal conductive member made of an electrically insulating material, and a plurality of tapes wound in parallel around the support member so as to be movable via an insulating material, and electrically connected to both electrodes When the spiral pitch of the tape-shaped oxide superconducting wire is made smaller than the axial length of the support member and a 0.5% bending strain is applied to the current lead The amount of heat penetration is 0.5 W or less when the decrease in critical current value is 5% or less and the current flowing through the current lead is 1000 A.

本発明によれば、テープ状の酸化物超電導線材が、両端に低熱伝導部材を配した可撓性を有するパイプ状の支持部材の外周に、移動可能に、かつ、そのスパイラルピッチが支持部材の軸方向長さよりも小さくなるように巻回されているため、可撓性及び機械的特性に優れ、熱侵入量を低減させるとともに電流容量の大きな電流リードを得ることができる。   According to the present invention, the tape-shaped oxide superconducting wire can be moved to the outer periphery of a flexible pipe-shaped support member having low thermal conductivity members disposed at both ends, and the spiral pitch of the support member is a spiral pitch. Since it is wound so as to be smaller than the length in the axial direction, it is possible to obtain a current lead having excellent flexibility and mechanical characteristics, reducing the amount of heat penetration, and having a large current capacity.

図1は、本発明の酸化物超電導電流リード1を示したもので、同図(a)はその平面図、同図(b)は正面図を示す。   1A and 1B show an oxide superconducting current lead 1 according to the present invention. FIG. 1A is a plan view and FIG. 1B is a front view.

電流リード1は、可撓性を有するパイプ状の支持部材(フォーマー)2の両側に、それぞれセラミック等の電気的絶縁材料からなる低熱伝導部材3a、3bを介して接続された電極4a、4bと、支持部材2の外周に巻回されたテープ状の酸化物超電導線材5とを備えている。同図においては、1本のテープ状の酸化物超電導線材5が支持部材2の外周に巻回された状態を示しているが、上述のように、必要とする定格電流を得るために、通常はテープ状の酸化物超電導線材5の複数本が並列に巻回される。   The current lead 1 includes electrodes 4a and 4b connected to both sides of a flexible pipe-like support member (former) 2 via low thermal conductive members 3a and 3b made of an electrically insulating material such as ceramic, respectively. And a tape-like oxide superconducting wire 5 wound around the outer periphery of the support member 2. In the figure, a state where one tape-shaped oxide superconducting wire 5 is wound around the outer periphery of the support member 2 is shown. In order to obtain the required rated current as described above, A plurality of tape-shaped oxide superconducting wires 5 are wound in parallel.

パイプ状の支持部材2は、77K(液体窒素温度)以下の環境で使用されることから、可撓性及び機械的強度を確保するために、断面円形のコルゲート管、スパイラルチューブ又は円筒状の網目構造のSUS、Cu、Al又はAg等の金属部材により形成され、短絡を防ぐため、外周がカプトンテープ等の絶縁テープ(図示せず)により絶縁されており、この絶縁テープの上にテープ状の酸化物超電導線材5が巻回される。テープ状の酸化物超電導線材5は、その両端部が電極4a、4bと電気的に接続されているが、絶縁テープ上で移動可能に、即ち、非接着状態(非固定状態)で巻回されている。支持部材2は、低熱伝導部材3a、3bに設けた円柱状の凸状部6a、6bと嵌合されており、一方、低熱伝導部材3a、3bに設けた円柱状の凸状部7a、7bは、両電極4a、4bの凹状部(図示せず)と嵌合されている。   Since the pipe-shaped support member 2 is used in an environment of 77K (liquid nitrogen temperature) or less, in order to ensure flexibility and mechanical strength, a corrugated tube having a circular cross section, a spiral tube, or a cylindrical mesh In order to prevent a short circuit, the outer periphery is insulated by an insulating tape (not shown) such as Kapton tape, and the tape-like shape is formed on the insulating tape. The oxide superconducting wire 5 is wound. Both ends of the tape-shaped oxide superconducting wire 5 are electrically connected to the electrodes 4a and 4b, but are movable on the insulating tape, that is, wound in a non-adhesive state (non-fixed state). ing. The support member 2 is fitted to the columnar convex portions 6a and 6b provided on the low heat conductive members 3a and 3b, while the columnar convex portions 7a and 7b provided on the low heat conductive members 3a and 3b. Is fitted with concave portions (not shown) of both electrodes 4a, 4b.

この場合、テープ状の酸化物超電導線材5の基板面を外側にして支持部材2の外周に巻回することにより、曲げ歪が印加されたときの超電導特性の低下を抑制することができる。   In this case, by winding the tape-shaped oxide superconducting wire 5 on the outer periphery of the support member 2 with the substrate surface facing outward, a decrease in superconducting characteristics when bending strain is applied can be suppressed.

図1に示すように、テープ状の酸化物超電導線材5は、そのスパイラルピッチPが支持部材2の軸方向長さLよりも小さくなるように支持部材2の外周に移動可能に巻回されており、これにより、電流リード1に曲げ歪が印加されたときの超電導層に付加される歪量を軽減することが可能となる。即ち、支持部材2に曲げ歪が加えられた場合、中心軸を中立軸として曲げの内側には圧縮歪が、外側には引張歪が印加される。従って、テープ状の酸化物超電導線材5が支持部材2上で移動不可能な場合には、支持部材2に巻回されたテープ状の酸化物超電導線材5も同様に圧縮及び引張歪が印加されることになり超電導特性の低下を招くことになる。これに対して、図1に示す電流リードにおいては、テープ状の酸化物超電導線材5は絶縁テープ上に移動可能に巻回されており、電流リード1に曲げ歪が印加されたときには、線材5は絶縁テープ上を滑ってスパイラルピッチP内で圧縮及び引張歪を相殺して吸収する。このためには、スパイラルピッチPを支持部材2の軸方向長さLよりも小さくする必要があり、L<Pの場合には、(圧縮及び引張歪側のテープ長さが同一であるような特殊な場合を除いて)圧縮及び引張歪を相殺して吸収することができず、線材5に残留歪が発生して超電導特性の低下を招く。   As shown in FIG. 1, the tape-shaped oxide superconducting wire 5 is movably wound around the outer periphery of the support member 2 so that the spiral pitch P is smaller than the axial length L of the support member 2. As a result, the amount of strain applied to the superconducting layer when bending strain is applied to the current lead 1 can be reduced. That is, when a bending strain is applied to the support member 2, a compressive strain is applied to the inner side of the bending and a tensile strain is applied to the outer side with the central axis as a neutral axis. Therefore, when the tape-shaped oxide superconducting wire 5 is not movable on the support member 2, the tape-shaped oxide superconducting wire 5 wound around the support member 2 is similarly subjected to compression and tensile strain. As a result, the superconducting characteristics are deteriorated. On the other hand, in the current lead shown in FIG. 1, the tape-shaped oxide superconducting wire 5 is wound so as to be movable on the insulating tape, and when bending strain is applied to the current lead 1, the wire 5 Slips on the insulating tape to absorb and absorb compression and tensile strain within the spiral pitch P. For this purpose, it is necessary to make the spiral pitch P smaller than the axial length L of the support member 2. When L <P, the tape length on the compression and tensile strain side is the same. The compressive and tensile strains cannot be offset and absorbed (except in special cases), and residual strains are generated in the wire 5 to cause deterioration of superconducting characteristics.

図2は、図1と同様の可撓性を有する断面円形の支持部材2と、この支持部材2より大径の円柱体(又は円筒体)からなる電極4cを、円錐台形状を有する電気的絶縁材料からなる低熱伝導部材3cにより、それぞれの外表面が接続するようにしたものである。図2では2本のテープ状の酸化物超電導線材5a、5bを、理解し易いように離間して図示しているが、このような端部構造とすることによって、隣接する線材5a、5bの端部の線間を広げ、半田付け作業を容易に行うことができる。   FIG. 2 is an electrical diagram in which a support member 2 having a circular cross section having the same flexibility as in FIG. 1 and an electrode 4c made of a cylindrical body (or a cylindrical body) larger in diameter than the support member 2 have a truncated cone shape. Each of the outer surfaces is connected by a low heat conductive member 3c made of an insulating material. In FIG. 2, the two tape-shaped oxide superconducting wires 5 a and 5 b are illustrated separately for easy understanding. However, by adopting such an end structure, the adjacent wire rods 5 a and 5 b are separated. It is possible to easily perform the soldering work by widening the gap between the ends.

実施例1
肉厚1.2mmのコルゲート管の両端部に、コルゲート管の外径と同径の小径を有し大径30.5mm、高さ30mmの円錐台状のスぺーサーを取り付け、これらのスペーサーに外径30.5mmのCu製の電極を取り付けた。上記のコルゲート管の外側にカプトンテープを貼り付けた所定長さのフォーマーの外周に、基板上に中間層を介して超電導層を設けた所定本数のテープ状の超電導線材を超電導層を内側にして所定のピッチでスパイラル状に並列に巻回し、その両端部の超電導層を電極に半田接合した。
Example 1
A frustoconical spacer having a small diameter equal to the outer diameter of the corrugated pipe and a large diameter of 30.5 mm and a height of 30 mm is attached to both ends of the corrugated pipe having a thickness of 1.2 mm. A Cu electrode having an outer diameter of 30.5 mm was attached. A predetermined number of tape-shaped superconducting wires provided with a superconducting layer on the substrate on the outer periphery of a predetermined length of a former with a Kapton tape attached to the outside of the corrugated tube with the superconducting layer inside. The coil was wound in parallel in a spiral shape at a predetermined pitch, and the superconducting layers at both ends thereof were soldered to the electrodes.

テープ状の超電導線材は、ハステロイ基板上に、第1中間層としてCe−Gd−O系酸化物層及び第2中間層としてCe−Zr−O系酸化物層をMOD法により、さらに、第3中間層としてCeO酸化物層をRFスパッタ法により成膜した3層構造の中間層の上に、YBCO超電導層をTFA−MOD法により成膜した厚さ0.15mmのものを使用した。この超電導線材の臨界電流値は、液体窒素中で90Aであった。 The tape-shaped superconducting wire comprises a Ce-Gd-O-based oxide layer as a first intermediate layer and a Ce-Zr-O-based oxide layer as a second intermediate layer on a Hastelloy substrate by a MOD method. As the intermediate layer, a 0.15 mm thick YBCO superconducting layer formed by the TFA-MOD method was used on the intermediate layer having a three-layer structure in which a CeO 2 oxide layer was formed by the RF sputtering method. The critical current value of this superconducting wire was 90 A in liquid nitrogen.

以上のようにして製造した酸化物超電導電流リードの液体窒素温度での臨界電流値(Ic)、0.5及び1.0%の曲げ歪を加えたときのIc及びその低下率、1000A通電時の熱侵入量を、超電導線の本数、フォーマーの材質、外径及び長さ、スパイラルピッチ並びにスペーサーの材質とともに表1に示す。   The critical current value (Ic) at the liquid nitrogen temperature of the oxide superconducting current lead produced as described above, Ic when 0.5 and 1.0% bending strain is applied, and its reduction rate, at 1000 A energization Table 1 shows the heat intrusion amount along with the number of superconducting wires, former material, outer diameter and length, spiral pitch, and spacer material.

Figure 0004838199
Figure 0004838199

実施例2
超電導線の本数、フォーマーの外径、スパイラルピッチを変更し、スペーサー及び電極の外径をフォーマーの外径と同径とした他は実施例1と同様にして
酸化物超電導電流リードを製造し、液体窒素温度での臨界電流値(Ic)、0.5及び1.0%の曲げ歪を加えたときのIc及びその低下率、1000A通電時の熱侵入量を測定した。結果を表1に示した。
実施例3
超電導線の本数、フォーマーの材質及び外径、スパイラルピッチ及びスペーサーの材質を変更し、スペーサー及び電極の外径をフォーマーの外径と同径とした他は実施例1と同様にして酸化物超電導電流リードを製造し、液体窒素温度での臨界電流値(Ic)、0.5及び1.0%の曲げ歪を加えたときのIc及びその低下率、1000A通電時の熱侵入量を測定した。結果を表1に示した。
実施例4
超電導線の幅及び本数、フォーマーの長さを変更した他は実施例1と同様にして酸化物超電導電流リードを製造し、液体窒素温度での臨界電流値(Ic)、0.5及び1.0%の曲げ歪を加えたときのIc及びその低下率、1000A通電時の熱侵入量を測定した。結果を表1に示した。
比較例1
スパイラルピッチをフォーマーの長さよりも長くした他は実施例1と同様にして酸化物超電導電流リードを製造し、液体窒素温度での臨界電流値(Ic)、0.5及び1.0%の曲げ歪を加えたときのIc及びその低下率、1000A通電時の熱侵入量を測定した。結果を表2に示す。
Example 2
The oxide superconducting current lead was manufactured in the same manner as in Example 1 except that the number of superconducting wires, the outer diameter of the former, and the spiral pitch were changed, and the outer diameter of the spacer and the electrode was the same as the outer diameter of the former. The critical current value (Ic) at the liquid nitrogen temperature, Ic when 0.5 and 1.0% of bending strain were applied, the rate of decrease thereof, and the amount of heat penetration at 1000 A energization were measured. The results are shown in Table 1.
Example 3
Oxide superconductivity in the same manner as in Example 1 except that the number of superconducting wires, former material and outer diameter, spiral pitch and spacer material were changed, and the outer diameter of the spacer and electrode was the same as the outer diameter of the former. A current lead was manufactured, and the critical current value (Ic) at liquid nitrogen temperature, Ic when 0.5 and 1.0% bending strain was applied, its reduction rate, and the amount of heat penetration at 1000 A energization were measured. . The results are shown in Table 1.
Example 4
An oxide superconducting current lead was manufactured in the same manner as in Example 1 except that the width and number of superconducting wires and the length of the former were changed, and the critical current value (Ic) at liquid nitrogen temperature, 0.5 and 1. Ic when 0% bending strain was applied, the rate of decrease thereof, and the amount of heat penetration during 1000 A energization were measured. The results are shown in Table 1.
Comparative Example 1
An oxide superconducting current lead was manufactured in the same manner as in Example 1 except that the spiral pitch was made longer than the length of the former, and the critical current value (Ic) at the liquid nitrogen temperature was bent at 0.5 and 1.0%. Ic and the rate of decrease when strain was applied, and the amount of heat penetration when energizing 1000 A were measured. The results are shown in Table 2.

Figure 0004838199
Figure 0004838199

比較例2
超電導線の本数、フォーマーの材質及び外径、スパイラルピッチ、スペーサーの材質を変更し、スペーサー及び電極の外径をフォーマーの外径と同径とした他は実施例1と同様にして酸化物超電導電流リードを製造し、液体窒素温度での臨界電流値(Ic)、0.5及び1.0%の曲げ歪を加えたときのIc及びその低下率、1000A通電時の熱侵入量を測定した。結果を表2に示した。
Comparative Example 2
Oxide superconductivity in the same manner as in Example 1, except that the number of superconducting wires, former material and outer diameter, spiral pitch, and spacer material were changed, and the outer diameter of the spacer and electrode was the same as the outer diameter of the former. A current lead was manufactured, and the critical current value (Ic) at liquid nitrogen temperature, Ic when 0.5 and 1.0% bending strain was applied, its reduction rate, and the amount of heat penetration at 1000 A energization were measured. . The results are shown in Table 2.

本発明による酸化物超電導電流リードは、電源から超電導応用機器へ電流を供給するための電流リードに使用することができる。   The oxide superconducting current lead according to the present invention can be used as a current lead for supplying a current from a power source to a superconducting application device.

本発明の酸化物超電導電流リードの一実施例を示す平面図(a)、正面図(b)である。It is the top view (a) and front view (b) which show one Example of the oxide superconducting current lead of this invention. 本発明の酸化物超電導電流リードの他の実施例の一部を示す正面図である。It is a front view which shows a part of other Example of the oxide superconducting current | flow lead of this invention.

符号の説明Explanation of symbols

1‥‥‥電流リード
2‥‥‥支持部材
3a、3b、3c‥‥‥低熱伝導部材
4a、4b、4c‥‥‥電極
5、5a、5b‥‥‥酸化物超電導線材
6a、6b‥‥‥凸状部
7a、7b‥‥‥凸状部
P‥‥‥スパイラルピッチ
L‥‥‥支持部材の軸方向長さ
DESCRIPTION OF SYMBOLS 1 ... Current lead 2 ... Support member 3a, 3b, 3c ... Low heat conduction member 4a, 4b, 4c ... Electrode 5, 5a, 5b ... Oxide superconducting wire 6a, 6b ... Convex part 7a, 7b ... Convex part P ... Spiral pitch L ... Length of supporting member in the axial direction

Claims (10)

酸化物超電導機器と電力供給源とを接続するための電流リードであって、前記電流リードは、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、前記支持部材の外周に絶縁材を介して移動可能に巻回され、前記両電極に電気的に接続されたテープ状の酸化物超電導線材とを備え、前記テープ状の酸化物超電導線材のスパイラルピッチが前記支持部材の軸方向長さよりも小さいことを特徴とする酸化物超電導電流リード。   A current lead for connecting an oxide superconducting device and a power supply source, wherein the current lead is provided with a low heat conduction member made of an electrically insulating material on each side of a flexible pipe-like support member. A tape-like oxide superconducting wire that is wound around an outer periphery of the support member via an insulating material and electrically connected to the electrodes. The oxide superconducting current lead is characterized in that the spiral pitch of the oxide superconducting wire is smaller than the axial length of the support member. 酸化物超電導機器と電力供給源とを接続するための電流リードであって、前記電流リードは、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、前記支持部材の外周に絶縁材を介して移動可能に巻回され、前記両電極に電気的に接続されたテープ状の酸化物超電導線材とを備え、前記テープ状の酸化物超電導線材のスパイラルピッチを前記支持部材の軸方向長さよりも小さくするとともに、前記電流リードに0.5%の曲げ歪を印加したときに、臨界電流値の低下が5%以下であることを特徴とする酸化物超電導電流リード。   A current lead for connecting an oxide superconducting device and a power supply source, wherein the current lead is provided with a low heat conduction member made of an electrically insulating material on each side of a flexible pipe-like support member. A tape-like oxide superconducting wire that is wound around an outer periphery of the support member via an insulating material and electrically connected to the electrodes. When the spiral pitch of the oxide superconducting wire is made smaller than the axial length of the support member and a bending strain of 0.5% is applied to the current lead, the critical current value decreases by 5% or less. An oxide superconducting current lead. 酸化物超電導機器と電力供給源とを接続するための電流リードであって、前記電流リードは、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、前記支持部材の外周に絶縁材を介して移動可能に巻回され、前記両電極に電気的に接続されたテープ状の酸化物超電導線材とを備え、前記テープ状の酸化物超電導線材のスパイラルピッチを前記支持部材の軸方向長さよりも小さくするとともに、前記電流リードの通電電流が1000Aのときに、熱侵入量が0.5W以下であることを特徴とする酸化物超電導電流リード。   A current lead for connecting an oxide superconducting device and a power supply source, wherein the current lead is provided with a low heat conduction member made of an electrically insulating material on each side of a flexible pipe-like support member. A tape-like oxide superconducting wire that is wound around an outer periphery of the support member via an insulating material and electrically connected to the electrodes. The oxide superconducting wire has a spiral pitch smaller than the axial length of the support member, and the amount of heat penetration is 0.5 W or less when the energizing current of the current lead is 1000 A. Superconducting current lead. テープ状の酸化物超電導線材は、可撓性を有するパイプ状の支持部材の外周に絶縁材を介して移動可能に複数本並列に巻回されていることを特徴とする請求項1乃至3いずれか1項記載の酸化物超電導電流リード。   4. A plurality of tape-shaped oxide superconducting wires are wound in parallel around an outer periphery of a flexible pipe-shaped support member via an insulating material. The oxide superconducting current lead according to claim 1. テープ状の酸化物超電導線材は、基板上に中間層を介して積層された超電導層を備えたReBaCu7−y系酸化物超電導線材材(ここでReは、Y、Gd、Sm、Nd、Ho、Dy、Eu、Tb、Er、Ybから選択されたいずれか1種又は2種以上の元素を示す。以下同じ。)であることを特徴とする請求項1乃至3いずれか1項記載の酸化物超電導電流リード。 The tape-shaped oxide superconducting wire is a ReBa 2 Cu 3 O 7-y- based oxide superconducting wire having a superconducting layer laminated on a substrate via an intermediate layer (where Re is Y, Gd, Sm). 1, Nd, Ho, Dy, Eu, Tb, Er, Yb, or any one or two or more elements, the same shall apply hereinafter). The oxide superconducting current lead according to the item. テープ状の酸化物超電導線材は、基板面を外側にして可撓性を有するパイプ状の支持部材の外周に絶縁材を介して移動可能に巻回されていることを特徴とする請求項5記載の酸化物超電導電流リード。   6. The tape-shaped oxide superconducting wire is wound around an outer periphery of a flexible pipe-shaped support member with the substrate surface facing outside via an insulating material. Oxide superconducting current lead. 可撓性を有するパイプ状の支持部材は、コルゲート管、スパイラルチューブ又は円筒状の網目構造のパイプ状の金属部材からなることを特徴とする請求項1乃至6いずれか1項記載の酸化物超電導電流リード。   7. The oxide superconductor according to claim 1, wherein the flexible pipe-shaped support member is formed of a corrugated tube, a spiral tube, or a pipe-shaped metal member having a cylindrical network structure. Current lead. 金属部材は、SUS、Cu、Al又はAgからなることを特徴とする請求項7記載の酸化物超電導電流リード。   8. The oxide superconducting current lead according to claim 7, wherein the metal member is made of SUS, Cu, Al, or Ag. 電極は、可撓性を有するパイプ状の支持部材より大径の円柱体又は円筒体からなり、前記電極及び支持部材の外周面とは、円錐台形状を有する電気的絶縁材料からなる低熱伝導部材の表面と接続していることを特徴とする請求項7又は8記載の酸化物超電導電流リード。   The electrode is made of a cylindrical body or cylindrical body having a diameter larger than that of the pipe-shaped support member having flexibility, and the outer peripheral surface of the electrode and the support member is made of an electrically insulating material having a truncated cone shape. 9. The oxide superconducting current lead according to claim 7, wherein the oxide superconducting current lead is connected to the surface of the oxide superconducting current lead. 酸化物超電導機器と電力供給源とを接続するための電流リードであって、前記電流リードは、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、前記支持部材の外周に絶縁材を介して移動可能に複数本並列に巻回され、前記両電極に電気的に接続されたテープ状のRe系酸化物超電導線材とを備え、前記テープ状の酸化物超電導線材のスパイラルピッチを前記支持部材の軸方向長さよりも小さくするとともに、前記電流リードに0.5%の曲げ歪を印加したときに、臨界電流値の低下が5%以下であり、かつ、前記電流リードの通電電流が1000Aのときに、熱侵入量が0.5W以下であることを特徴とする酸化物超電導電流リード。   A current lead for connecting an oxide superconducting device and a power supply source, wherein the current lead is provided with a low heat conduction member made of an electrically insulating material on each side of a flexible pipe-like support member. And a tape-like Re-based oxide superconducting wire wound in parallel on the outer periphery of the support member so as to be movable via an insulating material in parallel and electrically connected to the electrodes. When the spiral pitch of the tape-shaped oxide superconducting wire is made smaller than the axial length of the support member, and a 0.5% bending strain is applied to the current lead, the critical current value decreases The oxide superconducting current lead is characterized in that when the energizing current of the current lead is 1000 A, the heat penetration amount is 0.5 W or less.
JP2007154372A 2007-06-11 2007-06-11 Oxide superconducting current lead Expired - Fee Related JP4838199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154372A JP4838199B2 (en) 2007-06-11 2007-06-11 Oxide superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154372A JP4838199B2 (en) 2007-06-11 2007-06-11 Oxide superconducting current lead

Publications (2)

Publication Number Publication Date
JP2008305765A JP2008305765A (en) 2008-12-18
JP4838199B2 true JP4838199B2 (en) 2011-12-14

Family

ID=40234286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154372A Expired - Fee Related JP4838199B2 (en) 2007-06-11 2007-06-11 Oxide superconducting current lead

Country Status (1)

Country Link
JP (1) JP4838199B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266852B2 (en) * 2008-04-15 2013-08-21 富士電機株式会社 Superconducting current lead
JP5675232B2 (en) * 2010-09-07 2015-02-25 昭和電線ケーブルシステム株式会社 Superconducting current lead
JP5778064B2 (en) * 2011-09-08 2015-09-16 住友重機械工業株式会社 Superconducting current lead and superconducting magnet device using the superconducting current lead
JP6084490B2 (en) * 2013-03-19 2017-02-22 株式会社東芝 Superconducting device
JP2015162367A (en) * 2014-02-27 2015-09-07 昭和電線ケーブルシステム株式会社 Terminal structure of superconducting cable and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283678A (en) * 1990-03-30 1991-12-13 Fuji Electric Co Ltd Current lead of superconducting magnet apparatus
JPH0461208A (en) * 1990-06-29 1992-02-27 Furukawa Electric Co Ltd:The Conductor for electric-current lead use
JPH05335145A (en) * 1992-06-01 1993-12-17 Hitachi Cable Ltd Superconducting current lead
JPH09153407A (en) * 1995-11-30 1997-06-10 Hitachi Ltd Support structure of oxide superconducting current lead
JP4534276B2 (en) * 1999-10-01 2010-09-01 住友電気工業株式会社 Oxide superconducting wire connection method

Also Published As

Publication number Publication date
JP2008305765A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
JP4743150B2 (en) Superconducting coil and superconducting conductor used therefor
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP2012109309A (en) Superconducting coil
JP2007266149A (en) Method of connecting superconductive wire rod, and superconductive wire rod
JP2010267835A (en) Superconductive coil
JP4838199B2 (en) Oxide superconducting current lead
JP7377703B2 (en) Superconducting wire, superconducting wire manufacturing method, and MRI apparatus
JP4844458B2 (en) Superconducting coil and superconducting conductor used therefor
JP2010251713A (en) Current limiting device
JP5115778B2 (en) Superconducting cable
JP5022279B2 (en) Oxide superconducting current lead
JP4934497B2 (en) Nb3Sn superconducting wire, precursor therefor, and method for producing the precursor
JP5011181B2 (en) Oxide superconducting current lead
US6153825A (en) Superconducting current lead
JP2012256744A (en) Superconductive coil
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
JP6738720B2 (en) Superconducting wire connection structure
JP2010219532A (en) Superconductive current limiter with magnetic field triggering
JP2023041520A (en) MgB2 SUPERCONDUCTIVE WIRE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP6818578B2 (en) Superconducting cable connection
JP3701985B2 (en) Oxide superconducting current lead
JP3711159B2 (en) Oxide superconducting current lead
JP4901585B2 (en) Oxide superconducting current lead
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees