JPH05335145A - Superconducting current lead - Google Patents

Superconducting current lead

Info

Publication number
JPH05335145A
JPH05335145A JP4140521A JP14052192A JPH05335145A JP H05335145 A JPH05335145 A JP H05335145A JP 4140521 A JP4140521 A JP 4140521A JP 14052192 A JP14052192 A JP 14052192A JP H05335145 A JPH05335145 A JP H05335145A
Authority
JP
Japan
Prior art keywords
conductor
current lead
magnetic field
pipe
leakage magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4140521A
Other languages
Japanese (ja)
Inventor
Takaaki Sasaoka
高明 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4140521A priority Critical patent/JPH05335145A/en
Publication of JPH05335145A publication Critical patent/JPH05335145A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To lessen an effect due to a leakage magnetic field and to reduce the amount of intrusion of heat by a method wherein at least one part of an oxide superconducting conductor constituting the conductor of a current lead is formed into a solenoid coil- shaped conductor and the direction of turn of this coil-shaped conductor is turned in the direction to nagate the leakage magnetic field. CONSTITUTION:A high-temperature part 1a is formed into a structure, wherein aggregate conductors 4 formed by laminating ten sheets of silver sheathed tape-shaped wires made using an oxide superconductor as their main component are respectively creeped vertically along the outer periphery of a pipe, such as a stainless steel pipe 3, as a reinforcing material. Moreover, a low-temperature part 1b is formed into a structure, wherein a silver sheathed wire 6 made using an oxide superconductor as its main component is spirally wound on the periphery of the pipe 3 at a prescribed pitch in a direction to negate a leakage magnetic field front a superconducting magnet and is made to interlock on the pipe 3 by a bonding means, such as a bonding agent. Thereby, the deterioration of a magnetic field in the conducting current density of a current lead can be prevented and at the same time, the amount of intrusion of heat due to heat conduction can be reduced as the effect of the length of a conductor of the current lead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導を利用したマグ
ネットのような超電導機器に電流を供給するために用い
られる電流リードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead used for supplying a current to a superconducting device such as a magnet utilizing superconductivity.

【0002】[0002]

【従来の技術】超電導を利用したマグネット等は液体ヘ
リウム等により冷却した状態で用いられ、当該マグネッ
ト等への電流の供給は、電流リードを通じてなされる。
2. Description of the Related Art A magnet or the like using superconductivity is used in a state of being cooled with liquid helium or the like, and a current is supplied to the magnet or the like through a current lead.

【0003】この電流リード用導体には従来から銅材が
用いられているが、最近では酸化物超電導体を用いた電
流リードについても検討がなされている。
A copper material has been conventionally used for the current lead conductor, but recently, a current lead using an oxide superconductor has also been studied.

【0004】[0004]

【発明が解決しようとする課題】電流リードは、液体ヘ
リウム等の極低温から150K程度の温度勾配、並びに
超電導マグネットからの洩れ磁界による磁場勾配のある
環境で使われることが多い。従って、低温部から高温部
に至るまでの幅の広い使用環境に見合う導体とする必要
があるが、酸化物超電導体は高温になるほど磁場に弱
く、電流リードの設計においては導体断面積の増大を余
儀なくされる。
The current lead is often used in an environment having a temperature gradient from cryogenic temperature such as liquid helium to about 150 K and a magnetic field gradient due to a leakage magnetic field from a superconducting magnet. Therefore, it is necessary to make the conductor suitable for a wide range of usage environment from low temperature part to high temperature part, but the oxide superconductor is weaker to the magnetic field as the temperature becomes higher, and the conductor cross-section area is increased in the design of the current lead. To be forced.

【0005】また、酸化物超電導体を用いて電流リード
を設計すると、熱侵入量が最少となる最適導体長が銅材
を用いる場合に比べて長くなるという問題がある。
Further, when a current lead is designed by using an oxide superconductor, there is a problem that the optimum conductor length that minimizes the amount of heat penetration becomes longer than that when a copper material is used.

【0006】本発明は、かかる点に鑑み、洩れ磁場によ
る影響が少なく、熱侵入量も低減できる酸化物超電導体
を用いた電流リードを提供することにある。
In view of the above points, the present invention is to provide a current lead using an oxide superconductor which is less affected by the leakage magnetic field and which can reduce the amount of heat penetration.

【0007】[0007]

【課題を解決するための手段及び作用】本発明の要旨
は、電流リードの導体を構成する酸化物超電導導体の少
なくとも一部をソレノイドコイル状に形成し、このコイ
ル状導体の巻き方向を洩れ磁場を打ち消す方向とするこ
とで、電流リードの通電電流密度の磁場劣化を防止する
と共に、導体の長さの効果として熱伝導による熱侵入量
を低減させたものである。この場合、酸化物超電導体と
しては、Y−Ba−Cu−O等のY系、Bi−Sr−C
u−O、Bi−Sr−Ca−Cu−O等のBi系、Tl
−Ba−Cu−O、Tl−Ba−Ca−Cu−O、Tl
−Sr−Ca−Cu−O等のTl系、La−Na−Cu
−O、La−Ba−Cu−O、La−Sr−Cu−O等
のLa系等が使用でき、その形状としては、金属被覆付
きの線材、基材上に超電導体の層が存在する導体、それ
らの線材や導体を複数集合化した集合導体等があるが、
それらは低温側に向けて順次細くなっていたり、幅が狭
くなる構造であっても良い。導体断面積を変化させるこ
とにより導体断面積が必要以上に増大することを防止で
き、そのような導体を用いてソレノイドコイルを形成し
た場合、巻き密度が変化し、超電導マグネットからの洩
れ磁界を効果的に打消すことができる。
SUMMARY OF THE INVENTION The gist of the present invention is to form at least a part of an oxide superconducting conductor forming a conductor of a current lead into a solenoid coil shape, and to wind a leakage magnetic field in the winding direction of the coiled conductor. By making the direction of canceling out, the magnetic field deterioration of the energization current density of the current lead is prevented, and the amount of heat penetration due to heat conduction is reduced as an effect of the length of the conductor. In this case, the oxide superconductor may be a Y-based material such as Y-Ba-Cu-O or Bi-Sr-C.
u-O, Bi-based such as Bi-Sr-Ca-Cu-O, Tl
-Ba-Cu-O, Tl-Ba-Ca-Cu-O, Tl
Tl system such as -Sr-Ca-Cu-O, La-Na-Cu
La-based materials such as -O, La-Ba-Cu-O and La-Sr-Cu-O can be used, and the shape thereof is a wire rod with a metal coating, a conductor having a superconductor layer on a base material. , There are aggregate conductors in which a plurality of such wire rods and conductors are aggregated,
They may have a structure in which the width becomes narrower toward the low temperature side or the width becomes narrower. By changing the conductor cross-sectional area, it is possible to prevent the conductor cross-sectional area from unnecessarily increasing.When a solenoid coil is formed using such a conductor, the winding density changes and the leakage magnetic field from the superconducting magnet is effective. Can be canceled.

【0008】[0008]

【実施例】図1は、本発明に係る電流リードの一例を示
したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a current lead according to the present invention.

【0009】図示の電流リードは、液体ヘリウム中に浸
漬される低温部1bと、液体ヘリウムから露出する高温
部1aから構成され、高温部1a側の端部には電流リー
ド本体を電源に接続するための接続端子2が取付けら
れ、低温部1b側の銀シース線材6の端部には電流リー
ドと超電導マグネットを接続するための接続端子7が取
付けられている。
The illustrated current lead comprises a low temperature portion 1b immersed in liquid helium and a high temperature portion 1a exposed from the liquid helium. The current lead body is connected to a power source at the end portion on the high temperature portion 1a side. Connection terminal 2 for connecting the current lead and the superconducting magnet is connected to the end of the silver sheath wire 6 on the low temperature portion 1b side.

【0010】しかして高温部1aは酸化物超電導体、例
えば(Bi/Pb)2 Sr2 Ca2Cu3 X を主体と
する銀シーステープ状線材、例えば厚さ0.1mm、幅
5mmの線材を10枚積層してなる集合導体4の12本
を夫々図2にも示すように、補強材としてのパイプ、例
えば外径40mm、肉厚2mmのステンレスパイプ3の
外周に縦に沿わせた構造となっている。
However, the high temperature portion 1a is made of an oxide superconductor such as (Bi / Pb) 2 Sr 2 Ca 2 Cu 3 O x , and is a silver sheath tape-shaped wire, for example, a wire having a thickness of 0.1 mm and a width of 5 mm. As shown in FIG. 2, each of 12 assembly conductors 4 formed by stacking 10 is vertically arranged along the outer periphery of a pipe as a reinforcing material, for example, a stainless pipe 3 having an outer diameter of 40 mm and a wall thickness of 2 mm. Has become.

【0011】また、低温部1bは酸化物超電導体、例え
ばBi2 Sr2 CaCu2 X を主体とする、例えば直
径1mmの銀シース線材6がパイプ3の周囲に超電導マ
グネットからの洩れ磁場を打消す方向に所定のピッチで
螺旋状に巻付けられ、接着剤等の定着手段によりパイプ
3上に定着されている。
The low temperature portion 1b is mainly composed of an oxide superconductor, for example, Bi 2 Sr 2 CaCu 2 O X. For example, a silver sheath wire 6 having a diameter of 1 mm strikes a leakage magnetic field from the superconducting magnet around the pipe 3. It is spirally wound at a predetermined pitch in the erasing direction and is fixed on the pipe 3 by a fixing means such as an adhesive.

【0012】この場合、集合導体4と銀シース線材6と
の間は電気良導体からなる接続部材5を介して一体に接
続されている。補強材としてのステンレスパイプ3にも
電流が流れるように、接続端子2側と同様にパイブ3と
接続部材5の間をステンレス用のフラックスを用いて半
田付しておくことが望ましい。接続部材5は、必ずしも
常電導金属体である必要はなく、酸化物超電導体で構成
しても差し支えない。
In this case, the collective conductor 4 and the silver sheath wire 6 are integrally connected via the connecting member 5 made of a good electric conductor. It is desirable to solder between the pipe 3 and the connecting member 5 using a flux for stainless steel so that a current also flows through the stainless steel pipe 3 as a reinforcing material, as in the connection terminal 2 side. The connecting member 5 does not necessarily have to be a normally conductive metal body, and may be made of an oxide superconductor.

【0013】このような構成の電流リードにあっては、
低温部1b側の導体が超電導マグネットからの洩れ磁場
を打消す方向に巻かれているため、超電導マグネットを
励磁したとき電流リードに加わる磁場が低減され、超電
導体の運転電流密度を向上させることができるだけでな
く、コイル化されていることで高温端から低温端までの
導体長が実質的に長くなり、熱伝導による低温側への熱
侵入量を低減することができる。
In the current lead having such a structure,
Since the conductor on the low temperature portion 1b side is wound in a direction to cancel the leakage magnetic field from the superconducting magnet, the magnetic field applied to the current lead when the superconducting magnet is excited is reduced, and the operating current density of the superconductor can be improved. Not only that, but since it is coiled, the conductor length from the high temperature end to the low temperature end is substantially lengthened, and the amount of heat penetration into the low temperature side due to heat conduction can be reduced.

【0014】この侵入熱の低減については、線材6のシ
ース材料として室温より低い温度で熱伝導率が低い値を
示す材料、例えばAgまたはAuを主体とし、これにP
d、Pt、Mn、Mg、Zrの中の少なくとも1種類を
含む合金等を用いれば、熱伝達による侵入熱をより低減
させることができる。
Regarding the reduction of the invasion heat, the sheath material of the wire 6 is mainly made of a material having a low thermal conductivity at a temperature lower than room temperature, for example, Ag or Au, and P is added thereto.
By using an alloy containing at least one of d, Pt, Mn, Mg, and Zr, it is possible to further reduce the heat of penetration due to heat transfer.

【0015】超電導導体の磁化損失は超電導体の体積に
比例するが、この例では低温部側の導体が一本の線材6
で構成されているので、電流リードとしての損失低減が
可能であることは勿論である。
The magnetization loss of the superconducting conductor is proportional to the volume of the superconducting conductor, but in this example, the conductor on the low temperature side has one wire 6.
As a result, it is of course possible to reduce the loss as a current lead.

【0016】図3は、本発明に係る電流リードの別の例
における低温部を示すもので、この電流リードは、低温
側の導体を線材6でなくテープ材8で構成し、それを補
強材としてのステンレスパイプ3の周上にソレノイドに
巻付けて定着させている。
FIG. 3 shows a low temperature portion in another example of the current lead according to the present invention. In this current lead, the conductor on the low temperature side is constituted by the tape material 8 instead of the wire material 6 and the reinforcing material is used. The stainless steel pipe 3 is wound around a solenoid to be fixed.

【0017】この場合、テープ状の導体8は接続部材5
側の幅が広く、接続端子7側の幅が狭い銀テープ上に酸
化物超電導体、例えばBi2 Sr2 CaCu2 X の層
を銀テープの幅に合わせて形成したもので、これを所定
の間隔をおいてパイプ3に巻付け定着させることにで超
電導コイルに近い側の巻密度を蜜にした構造となってい
る。
In this case, the tape-shaped conductor 8 is the connecting member 5.
A layer of oxide superconductor, for example, Bi 2 Sr 2 CaCu 2 O X , is formed on a silver tape having a wide side and a narrow width on the connection terminal 7 side according to the width of the silver tape. By winding and fixing it on the pipe 3 at an interval of, the winding density on the side close to the superconducting coil has a structure.

【0018】このような構成の電流リードにあっては、
巻密度を一律にする場合に比べ、電流リードが受ける磁
場を少なくすることができる。
In the current lead having such a structure,
The magnetic field received by the current leads can be reduced as compared with the case where the winding density is uniform.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
の電流リードによれば、導体の一部をソレノイドコイル
状に形成し、このコイル状導体の巻き方向を洩れ磁場を
打ち消す方向としているので、電流リードの通電電流密
度の磁場劣化を防止すると共に、導体の長さの効果とし
て熱伝導による熱侵入量を低減させ、超電導機器運転の
エネルギー損失の低減に寄与することができる。
As is apparent from the above description, according to the current lead of the present invention, a part of the conductor is formed into a solenoid coil shape, and the winding direction of this coiled conductor is the direction to cancel the leakage magnetic field. Therefore, it is possible to prevent the magnetic field deterioration of the energization current density of the current lead, reduce the amount of heat intrusion due to heat conduction as an effect of the length of the conductor, and contribute to the reduction of energy loss during operation of the superconducting equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電流リードの一実施例の概要を示
す説明図。
FIG. 1 is an explanatory diagram showing an outline of one embodiment of a current lead according to the present invention.

【図2】高温部の軸直角断面を示す説明図。FIG. 2 is an explanatory view showing a cross section perpendicular to the axis of a high temperature portion.

【図3】本発明に係る電流リードの別の例における低温
部を示す説明図。
FIG. 3 is an explanatory view showing a low temperature part in another example of the current lead according to the present invention.

【符号の説明】[Explanation of symbols]

1a 高温部 1b 低温部 2及び7 接続端子 3 ステンレスパイプ 4 酸化物超電導導体の集合導体 5 接続部材 6 酸化物超電導導体の線材 8 酸化物超電導導体のテープ材 1a High temperature part 1b Low temperature part 2 and 7 Connection terminal 3 Stainless steel pipe 4 Assembly conductor of oxide superconducting conductor 5 Connection member 6 Wire material of oxide superconducting conductor 8 Tape material of oxide superconducting conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電流リードの導体を構成する酸化物超電導
体の少なくとも一部をソレノイドコイル状に形成し、こ
のコイル状導体の巻き方向を洩れ磁場を打消す方向とし
てなることを特徴とする超電導電流リード。
1. A superconductor characterized in that at least a part of an oxide superconductor forming a conductor of a current lead is formed in a solenoid coil shape, and a winding direction of the coil conductor is a direction for canceling a leakage magnetic field. Current lead.
【請求項2】低温部側の導体がソレノイドコイル状に形
成されている、請求項1に記載の超電導電流リード。
2. The superconducting current lead according to claim 1, wherein the conductor on the low temperature side is formed in a solenoid coil shape.
【請求項3】超電導コイルに近い側のコイルの巻き密度
が蜜になっている、請求項1又は請求項2に記載の超電
導電流リード。
3. The superconducting current lead according to claim 1, wherein the coil on the side closer to the superconducting coil has a tight winding density.
JP4140521A 1992-06-01 1992-06-01 Superconducting current lead Pending JPH05335145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4140521A JPH05335145A (en) 1992-06-01 1992-06-01 Superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4140521A JPH05335145A (en) 1992-06-01 1992-06-01 Superconducting current lead

Publications (1)

Publication Number Publication Date
JPH05335145A true JPH05335145A (en) 1993-12-17

Family

ID=15270598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4140521A Pending JPH05335145A (en) 1992-06-01 1992-06-01 Superconducting current lead

Country Status (1)

Country Link
JP (1) JPH05335145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153825A (en) * 1996-12-27 2000-11-28 Japan Atomic Energy Research Institute Superconducting current lead
GB2418070A (en) * 2004-09-11 2006-03-15 Bruker Biospin Gmbh Superconducting magnet with HTS and LTS windings
JP2008305765A (en) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009212028A (en) * 2008-03-06 2009-09-17 Fuji Electric Systems Co Ltd Superconductive current lead
JP2012028041A (en) * 2010-07-20 2012-02-09 Sumitomo Heavy Ind Ltd Superconducting current lead

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153825A (en) * 1996-12-27 2000-11-28 Japan Atomic Energy Research Institute Superconducting current lead
GB2418070A (en) * 2004-09-11 2006-03-15 Bruker Biospin Gmbh Superconducting magnet with HTS and LTS windings
US7310034B2 (en) 2004-09-11 2007-12-18 Bruker Biospin Gmbh Superconductor magnet coil configuration
GB2418070B (en) * 2004-09-11 2008-11-12 Bruker Biospin Gmbh Superconducting magnet employing high-temperature superconductor
JP2008305765A (en) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009212028A (en) * 2008-03-06 2009-09-17 Fuji Electric Systems Co Ltd Superconductive current lead
JP2012028041A (en) * 2010-07-20 2012-02-09 Sumitomo Heavy Ind Ltd Superconducting current lead

Similar Documents

Publication Publication Date Title
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
US5298679A (en) Current lead for cryostat using composite high temperature superconductors
AU727324B2 (en) Connection structure for superconducting conductors
EP0772208A2 (en) Oxide-superconducting coil and a method for manufacturing the same
JP5115778B2 (en) Superconducting cable
EP0412442B1 (en) Superconductive conductor
JP2012256744A (en) Superconductive coil
JPH05335145A (en) Superconducting current lead
JPH10214713A (en) Superconducting coil
JP3283106B2 (en) Structure of current supply terminal for oxide superconducting conductor
JP2929622B2 (en) How to use oxide superconductor
JP3501828B2 (en) Manufacturing method of oxide superconducting conductor
JPH1050153A (en) Oxide supreconductive wire for alternating current, and cable
Nomura et al. Construction of a solenoid magnet with a new aluminium stabilized superconductor
JP2913940B2 (en) Superconducting current lead
JPH0982446A (en) Superconductive connecting method for superconductive wire
JP2001283660A (en) Connection structure for superconducting wire
JPH05234741A (en) Superconducting magnet structure
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JP3020315B2 (en) Superconducting switch
JPS63266712A (en) Superconductive wire
JPH0652731A (en) Superconductive equipment and manufacture thereof
JP3363164B2 (en) Superconducting conductor
JP3088833B2 (en) Oxide superconductor for current leads
JP4016549B2 (en) Superconducting wire and superconducting coil device using the same