JPH05234741A - Superconducting magnet structure - Google Patents

Superconducting magnet structure

Info

Publication number
JPH05234741A
JPH05234741A JP4069413A JP6941392A JPH05234741A JP H05234741 A JPH05234741 A JP H05234741A JP 4069413 A JP4069413 A JP 4069413A JP 6941392 A JP6941392 A JP 6941392A JP H05234741 A JPH05234741 A JP H05234741A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
superconducting
tape
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4069413A
Other languages
Japanese (ja)
Inventor
Kazuyuki Shibuya
和幸 渋谷
Rikuro Ogawa
陸郎 小川
Seiji Hayashi
征治 林
Toshio Egi
俊雄 江木
Yoshio Masuda
喜男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4069413A priority Critical patent/JPH05234741A/en
Publication of JPH05234741A publication Critical patent/JPH05234741A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To generate a higher and uniform magnetic field without reducing a current density by incorporating a partly parallel component to a generated magnetic field direction of an entire magnet in an energizing direction to be energized by a stripelike member. CONSTITUTION:A silver tape (stripelike member) 1 has a parallel blind part (silver exposed part) for mounting a lead as indicated by hatching. The tape 1 also has a shape having displaced parts 2a-2c continued as steps in a direction crossing an extension line direction of the member. The tape 1 is wound in a coil state to form a four-continuous-layer pancake coil. After current leads 3a, 3b and potential leads 4a-4e are attached to the obtained composite coil, when it is energized in a magnetic field, a resistance of about 10<-13>OMEGA.m to be used as criteria of the coil at the time of energizing 182A is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導物質を表面にコ
ーティングした帯状部材を巻回または積層して構成さ
れ、高磁場の発生を利用して各種の物性測定装置、磁気
浮上列車、核融合装置等として用いられる超電導マグネ
ット構造体に関するものである。尚本発明で用いられる
超電導物質としては、希土類元素−アルカリ土類元素−
銅酸化物系を始めとする様々な酸化物超電導物質、或は
Nb3Ga やV3Ga等の超電導化合物等を挙げることができる
が、以下ではBi系酸化物超電導体を主体にして説明を
進める。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is constructed by winding or laminating a band-shaped member having a surface coated with a superconducting material, and utilizing the generation of a high magnetic field, various physical property measuring devices, magnetic levitation trains, nuclear fusion. The present invention relates to a superconducting magnet structure used as a device or the like. The superconducting material used in the present invention includes rare earth elements-alkaline earth elements-
Various oxide superconducting materials including copper oxide, or
Examples thereof include superconducting compounds such as Nb 3 Ga and V 3 Ga, but in the following description, the Bi-based oxide superconductor will be mainly described.

【0002】[0002]

【従来の技術】希土類元素−アルカリ土類元素−銅酸化
物系セラミックスが酸化物超電導体として注目を集める
様になって以来、幾多の複合酸化物について超電導現象
が検討されている。例えばBi系酸化物は、超電導遷移
温度(以下、単にTcと記す)が80K(低温相)或は11
0 K(高温相)等の高いTcを有する物質として有望視
されており、この酸化物は銀基板上で部分溶融後除冷を
行なうことによって容易に配向し、高磁場でも4.2 K近
傍では実用に十分な臨界電流密度(以下、Jcと記す)
を示すことが知られている。
2. Description of the Related Art Since rare earth element-alkaline earth element-copper oxide ceramics have been attracting attention as oxide superconductors, superconducting phenomena have been studied for many complex oxides. For example, a Bi-based oxide has a superconducting transition temperature (hereinafter simply referred to as Tc) of 80 K (low temperature phase) or 11
It is considered to be a promising substance with a high Tc such as 0 K (high temperature phase). This oxide is easily oriented by partially melting and then cooling on a silver substrate, and is practical even in a high magnetic field near 4.2 K. Sufficient critical current density (hereinafter referred to as Jc)
Is known to show.

【0003】超電導物質によって実現される永久電流現
象を利用し、電力を消費せずに大電流を流し、コイル状
にして強い磁場を発生させる超電導マグネットは、各種
の物性測定装置、磁気浮上列車、核融合装置等への応用
が進められている。
Superconducting magnets, which utilize a persistent current phenomenon realized by a superconducting material, generate a large magnetic field by flowing a large current without consuming electric power, are various physical property measuring devices, magnetic levitation trains, Applications to nuclear fusion devices and the like are being promoted.

【0004】超電導物質の超電導マグネットへの応用を
考える場合には、超電導物質の線状化や帯状化が不可欠
の要件である。例えばBi系酸化物超電導物質では、従
来から知られた銀シース法(渋谷和幸等,1991年春
季低温工学超電導学会講演概要集、P232)で伸線コ
イル化する他、銀テープ基板表面上にディップコート法
やドクタ−ブレード法によってコーティングした後コイ
ル化する方法(下山淳一等,1991年秋季低温工学超
電導学会講演概要集、P5)等によって超電導マグネッ
トを構成し、良好な配向を得るとともに弱結合組織の排
除に成功し、高磁場下でも高いJcを示すことが報告さ
れている。
When considering the application of a superconducting substance to a superconducting magnet, it is an essential requirement to make the superconducting substance linear or strip-shaped. For example, in the case of a Bi-based oxide superconducting material, in addition to forming a wire drawing coil by the conventionally known silver sheath method (Kazuyuki Shibuya et al., Spring Meeting of the 1991 Spring Low Temperature Engineering Superconductivity Society, P232), dip it on the surface of silver tape A superconducting magnet is formed by a method such as coating by a coating method or a doctor blade method and then coiling (Junichi Shimoyama et al., Autumn 1991 Low Temperature Engineering Superconductivity Society Lecture Summary, P5), etc. Has been reported to be successfully eliminated and to exhibit high Jc even under a high magnetic field.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこれまで
報告された超電導マグネットは、いわゆるシングルパン
ケーキ構造のものであって、より高い且つ均質な磁場を
発生させる上で不可欠な積層構造の報告はなされていな
い。その原因の1つとして、シングルパンケーキ同士の
超電導接続が容易に行なえないことが挙げられる。ま
た、例えばBi系酸化物超電導体では、部分溶融熱処理
後はBi系酸化物が結晶化し、ひずみに対して非常に弱
い状態となり、取り扱いによって簡単にクラックが発生
してJcが低下し易く、部分溶融熱処理後に積層の為の
工程を付加することが困難であることも、原因として挙
げられる。そこで積層構造にしても、従来のシングルパ
ンケーキ並みのJcを示す超電導マグネット構造体の実
現が望まれていた。本発明はこうした状況のもとになさ
れたものであって、その目的は、Jcを低下させること
なく、より高い且つ均一な磁場の発生を可能にした積層
構造型超電導マグネット構造体を提供することにある。
However, the superconducting magnets reported so far have a so-called single pancake structure, and a laminated structure essential for generating a higher and more uniform magnetic field has been reported. Absent. One of the causes is that the superconducting connection between single pancakes cannot be easily performed. In addition, for example, in a Bi-based oxide superconductor, after the partial melting heat treatment, the Bi-based oxide is crystallized and becomes extremely weak against strain, and cracks easily occur due to handling, and Jc tends to decrease. Another reason is that it is difficult to add a step for laminating after the melt heat treatment. Therefore, it has been desired to realize a superconducting magnet structure having a Jc similar to that of a conventional single pancake even with a laminated structure. The present invention has been made under such circumstances, and an object thereof is to provide a laminated structure type superconducting magnet structure capable of generating a higher and more uniform magnetic field without lowering Jc. It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、超電導物質を表面にコーティングした帯状部
材を巻回または積層して構成される超電導マグネット構
造体であり、該帯状部材によって通電される通電方向
が、マグネット全体の発生磁場方向に対して部分的に平
行な成分を有するものである点に要旨を有する超電導マ
グネット構造体である。また上記超電導マグネット構造
体を構成する帯状部材の一具体例として、該帯状部材の
延長線方向と交差する方向への変位部分を段差として連
続した形状を有するものが挙げられる。
The present invention which has achieved the above object is a superconducting magnet structure constituted by winding or laminating a belt-shaped member having a surface coated with a superconducting substance. The superconducting magnet structure is characterized in that the energizing direction energized by has a component that is partially parallel to the direction of the magnetic field generated by the entire magnet. A specific example of the strip-shaped member forming the superconducting magnet structure is one having a continuous shape with a displacement portion in the direction intersecting the extension line direction of the strip-shaped member as a step.

【0007】[0007]

【作用】本発明は上述の如く構成されるが、本発明者ら
は、要するに、通電方向がマグネット全体の発生磁場方
向に部分的に平行な成分を有する様に構成することによ
って、シングルパンケーキ並みのJcを示し、積層構造
に匹敵する様なより高い且つ均一な磁場の発生を可能に
した超電導マグネットが一体的にできることを見出し、
本発明を完成した。
The present invention is constructed as described above, but in short, the present inventors constructed a single pancake by constructing it so that the energizing direction has a component partially parallel to the direction of the magnetic field generated by the entire magnet. It has been found that a superconducting magnet that can generate a higher and more uniform magnetic field that shows a comparable Jc and that is comparable to a laminated structure can be integrated.
The present invention has been completed.

【0008】以下本発明の構成および作用・効果を実施
例によって更に詳細に説明するが、下記実施例は本発明
を限定するものではなく、前・後記の趣旨に徴して設計
変更することはいずれも本発明の技術的範囲に含まれる
ものである。例えば、後記実施例では銀テープ上に、デ
ィップコート法によってBi系酸化物超電導体をコーテ
ィングする場合について示すが、本発明はこの様な場合
に限らず、他の酸化物超電導体をコーティングする場
合、更にはNbまたはVのテープ表面にSnまたはGa
を溶融めっきした後拡散させて、テープ表面にNb3Sn や
V3Ga等の超電導化合物を形成する場合等への技術的応用
も本発明に含まれる。
The structure, action and effect of the present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention, and any design changes may be made in view of the spirit of the preceding and the following. Also included in the technical scope of the present invention. For example, in the examples described below, the case where the Bi-based oxide superconductor is coated on the silver tape by the dip coating method is shown, but the present invention is not limited to such a case, and the case where another oxide superconductor is coated. , Or Sn or Ga on the Nb or V tape surface
Is hot dip plated and then diffused to form Nb 3 Sn or
The present invention also includes technical applications such as forming a superconducting compound such as V 3 Ga.

【0009】[0009]

【実施例】まず本発明者らは、図1に示す形状の銀テー
プ1(帯状部材)を裁断した。このときのテープ厚みは
50μm 、テープ幅は19mm、全長は6.0mm とした。尚図1
において、ハッチングで示した部分は、リード線取付の
為のめかくし部分(銀露出部分)を意味する。またこの
銀テープ1は、帯状部材の延長線方向と交差する方向へ
の変位部分2a〜2cを段差として連続した形状を有す
る。図1に示した銀テープを、図2に示す様なコイル状
に巻き取り、4連積層型のパンケーキコイルとした。尚
このときコイルの内径:13mm,外径:60mm,コイル長:
80mmの粗巻とした。
EXAMPLES First, the present inventors cut the silver tape 1 (strip-shaped member) having the shape shown in FIG. The tape thickness at this time is
The tape width was 50 μm, the tape width was 19 mm, and the total length was 6.0 mm. Figure 1
In the figure, the hatched portion means a blind portion (silver exposed portion) for attaching the lead wire. Further, this silver tape 1 has a continuous shape with displacement portions 2a to 2c in the direction intersecting the extension line direction of the strip-shaped member as steps. The silver tape shown in FIG. 1 was wound into a coil as shown in FIG. 2 to obtain a four-layer laminated pancake coil. At this time, the coil inner diameter: 13 mm, outer diameter: 60 mm, coil length:
It was a coarse roll of 80 mm.

【0010】一方各元素のモル比がBi:Sr:Cu:
Pb=2:2:1:2となる様に調整して固相反応法で
作成した粉末(Bi系−2212型粉末)を、有機系増粘剤
(ポリビニルブチラール),有機溶媒(ブタノール)と
混合してスラリーとした。このスラリー中に図2に示し
たコイルを浸漬した後、引き上げ(ディップコート)、
乾燥することにより、両面におのおの厚さ約60μm 、幅
19mmの厚膜を形成した。次に、空気中でまず500 ℃まで
徐々に加熱し脱溶媒した後887 ℃まで加熱し、Bi系−
2212相を部分溶融させ、さらに徐冷することによって、
銀テープ表面にBi系−2212相結晶が緻密に積層した組
織を有するコイルを得た。このときの熱処理パターンを
図3に示す。尚超電導層の厚さは片面当たり約20μm で
あった。
On the other hand, the molar ratio of each element is Bi: Sr: Cu:
The powder (Bi-2212 type powder) prepared by the solid-phase reaction method with Pb = 2: 2: 1: 2 was used as an organic thickener (polyvinyl butyral) and an organic solvent (butanol). Mix to form a slurry. After immersing the coil shown in FIG. 2 in this slurry, pulling up (dip coating),
By drying, each side has a thickness of about 60 μm, width
A 19 mm thick film was formed. Then, first in air, gradually heat up to 500 ° C to remove the solvent and then heat up to 887 ° C to remove Bi-
By partially melting the 2212 phase and then slowly cooling it,
A coil having a structure in which Bi-2212 phase crystals were densely laminated on the surface of the silver tape was obtained. The heat treatment pattern at this time is shown in FIG. The thickness of the superconducting layer was about 20 μm on each side.

【0011】コイル間に絶縁物を差し込んだ後、外径28
mm、内径13mmの大きさに巻締め、最後にワックスを流し
込むことにより固定した。得られた複合コイルについ
て、図4に示す様に電流リード3a,3bおよびポテン
シャルリード4a〜4eを取付けた後、4.2 Kにおいて
超電導マグネット中に内挿した状態で、直流4端子法に
より各端子(P1 〜P5 )相互間のI−V特性を調べ、
また同時にコイル中心部に設置したホール素子により発
生磁界を検出した。
After inserting an insulator between the coils, the outer diameter 28
mm and inner diameter of 13 mm, and finally fixed by pouring wax. After the current leads 3a and 3b and the potential leads 4a to 4e were attached to the obtained composite coil as shown in FIG. 4, each terminal (by DC 4 terminal method) was inserted in a superconducting magnet at 4.2K. P 1 to P 5 ) The IV characteristics between them are investigated,
At the same time, the generated magnetic field was detected by the Hall element installed in the center of the coil.

【0012】複合コイルに4.2 K,5.0 Tの磁場中で通
電した結果、182 A通電時にコイルのクライテリアとし
て用いられる10-13 Ω・mに相当する抵抗発生が観測さ
れた。また同時に観測されたコイルの中心磁界は5.27T
であり、この複合コイルが0.27Tの磁界を発生したこと
を意味する。このコイルについて、形状、構成から計算
される中心磁界は0.284 Tであり、ほぼ実測値と一致し
ていた。各端子間の臨界電流(Ic)を表1に示す。尚
この時点でのコイルのIcは182 A、超電導部のJcは
1.37×104 A/cm2 であり、通電は4連積層パンケーキ
の端(図4に示した+の位置)から端(図4に示した−
の位置)まで直列で行なった。
As a result of energizing the composite coil in a magnetic field of 4.2 K and 5.0 T, resistance generation corresponding to 10 -13 Ω · m used as the criteria of the coil was observed when 182 A was energized. The central magnetic field of the coil observed at the same time was 5.27T.
This means that this composite coil generated a magnetic field of 0.27T. The central magnetic field calculated from the shape and configuration of this coil was 0.284 T, which was almost in agreement with the actually measured value. Table 1 shows the critical current (Ic) between the terminals. The Ic of the coil at this point is 182 A, and the Jc of the superconducting part is
The current was 1.37 × 10 4 A / cm 2 , and the current flow was from the end (position + shown in FIG. 4) to the end (− shown in FIG.
Position) was performed in series.

【0013】[0013]

【表1】 [Table 1]

【0014】これらの結果から、上記複合コイルは、4
連積層全体で超電導を示していることが明らかであり、
パンケーキ間のまたぎ(図1に示した段差部分2a〜2
c)を介して完全に超電導積層状態となっていることが
分かった。本発明は、超電導接続技術がこれまで確立さ
れていなかった状況下において、超電導多層パンケーキ
を一体的に比較的容易に作製できる様になし得たもので
あり、これによって超電導マグネットの永久電流モード
運転も可能となる。次に、本発明の各種実施例を示す。
まず図5〜7に夫々示すパターン形状の銀テープ1(厚
み:50μm )を各3枚ずつ裁断した。
From these results, the composite coil has 4
It is clear that the entire continuous stack exhibits superconductivity,
Span between pancakes (steps 2a to 2 shown in FIG. 1)
It was found through c) that the superconducting laminated state was completely established. The present invention has made it possible to integrally manufacture a superconducting multi-layer pancake relatively easily under the condition that the superconducting connection technology has not been established so far, and thereby, the persistent current mode of the superconducting magnet can be obtained. Driving is also possible. Next, various examples of the present invention will be shown.
First, three silver tapes 1 (thickness: 50 μm) each having the pattern shape shown in FIGS. 5 to 7 were cut.

【0015】尚図5および図6に示した銀テープは、前
記図1に示した銀テープと基本的には類似した構成のも
のであるが、図5に示したものは変位部分2a〜2cが
銀テープに対して傾斜した方向に延びるものであり、図
6に示したものは銀テープの各層の幅を変えたものであ
る。また図7に示したものは、ジグザグ状に裁断したも
のである。そして各銀テープの1枚を、前記と同様に調
製したスラリー中に浸漬した後引き上げ(デップコー
ト)、乾燥することによって各々厚さ約100 μmのBi
系酸化物膜を形成した。これを夫々残り2枚の銀テープ
でサンドイッチ状に挟み、図8〜10に夫々示す形状に巻
回または積層(図10に示したものは72回積層)して複合
コイル5a〜5cとした。このときサンドイッチ状3枚
銀テープを一組に対し、ガラステープ絶縁材を1枚の割
合で挟み込んだ。
The silver tape shown in FIGS. 5 and 6 has a structure basically similar to that of the silver tape shown in FIG. 1, but the one shown in FIG. 5 has displacement portions 2a to 2c. 6 extends in a direction inclined with respect to the silver tape, and the one shown in FIG. 6 is obtained by changing the width of each layer of the silver tape. Moreover, what is shown in FIG. 7 is cut in a zigzag shape. Then, one of the silver tapes was dipped in the slurry prepared in the same manner as described above, then pulled up (dip coat) and dried to obtain Bi having a thickness of about 100 μm.
A system oxide film was formed. This was sandwiched between the remaining two silver tapes, and wound or laminated in the shapes shown in FIGS. 8 to 10 (72 in FIG. 10) to form composite coils 5a to 5c. At this time, one pair of sandwich-shaped three silver tapes was sandwiched with one glass tape insulating material.

【0016】次に、各コイルについて、空気中でまず50
0 ℃まで徐々に加熱し脱溶媒した後887 ℃まで加熱して
Bi系−2212相を部分溶融させ、さらに徐冷することに
よって、銀テープ面に平行に平板状のBi系−2212相結
晶が緻密に積層した組織を有するコイルを得た。このと
きの超電導層の厚さは、片面当たり約35μm であった。
最後にワックスを流し込むことにより固定した。得られ
た複合コイル5a,5bについて、4.2 Kにおいて超電
導マグネット中に内挿した状態で、直流4端子法により
I−V特性を調べ、また同時にコイル中心部に設置した
ホール素子により発生磁界を検出した。
Next, for each coil, first 50 in air.
After gradually heating to 0 ° C. to remove the solvent, the system was heated to 887 ° C. to partially melt the Bi type-2212 phase and further slowly cooled to form a flat type Bi type-2212 phase crystal parallel to the silver tape surface. A coil having a densely laminated structure was obtained. At this time, the thickness of the superconducting layer was about 35 μm per surface.
Finally, it was fixed by pouring wax. Regarding the obtained composite coils 5a and 5b, the IV characteristics were examined by the DC 4-terminal method while being inserted in the superconducting magnet at 4.2 K, and at the same time, the generated magnetic field was detected by the Hall element installed in the center of the coil. did.

【0017】その結果、図8に示した複合コイルは5
a、4.2 K,5Tの外部磁場中にて、Icが115 A(ク
ライテリア:10-13 Ω・m )、中心発生磁場が0.24T、
中心発生磁場から磁界の強さが−5%となる距離がコイ
ル中心から6mmであった。また図9に示した複合コイル
は5b、4.2 K,5Tの外部磁場中にて、Ic:105 A
(クライテリア:10-13 Ω・m )、中心発生磁場が0.18
T、中心発生磁場から磁界の強さが−5%となる距離が
コイル中心から18mmであった、尚図9に示した複合コイ
ルは、各層におけるテープ幅を変化させたものである
が、この様なコイルでは磁場均一空間を必要に応じて変
化させることができるという利点がある。
As a result, the composite coil shown in FIG.
a, 4.2 K, 5 T external magnetic field, Ic 115 A (Criteria: 10 -13 Ω · m), central magnetic field 0.24 T,
The distance at which the magnetic field strength was −5% from the central magnetic field was 6 mm from the coil center. The composite coil shown in FIG. 9 has an Ic: 105 A in an external magnetic field of 5b, 4.2 K, 5T.
(Criteria: 10 -13 Ω ・ m), central magnetic field is 0.18
T, the distance at which the magnetic field strength was -5% from the central magnetic field was 18 mm from the coil center. The composite coil shown in FIG. 9 was obtained by changing the tape width in each layer. Such a coil has the advantage that the uniform magnetic field space can be changed as necessary.

【0018】一方図10に示した複合コイルは、コイル全
体として超電導となり、Ic=73A(クライテリア:10
-13 Ω・m )であることを、4.2 K無磁場中で確認でき
た。尚図10に示した複合コイルは、いわゆるベースボー
ルコイルマグネットである。また、銀テープ裁断形状を
工夫することで容易に鞍型マグネット等の異形マグネッ
ト形成が可能である。本発明においては、従来酸化物材
料では成形困難とされていた異形マグネットであって
も、比較的容易に積層状に形成できるという利点があ
る。尚図8〜10に示した複合コイル5a〜5cではいず
れもディップコートする銀シートとディップコートしな
い銀テープの枚数を調整することによって、配向面を増
減することができ、Icを容易に変化させることができ
る。
On the other hand, the composite coil shown in FIG. 10 becomes superconducting as a whole, and Ic = 73 A (Criteria: 10
-13 Ω · m) was confirmed in the absence of a 4.2 K magnetic field. The composite coil shown in FIG. 10 is a so-called baseball coil magnet. Further, it is possible to easily form a deformed magnet such as a saddle type magnet by devising the cut shape of the silver tape. The present invention has an advantage that even a deformed magnet, which has been conventionally difficult to form with an oxide material, can be formed into a laminated shape relatively easily. In each of the composite coils 5a to 5c shown in FIGS. 8 to 10, the orientation plane can be increased or decreased by adjusting the number of dip-coated silver sheets and non-dip-coated silver tapes, and Ic can be easily changed. be able to.

【0019】[0019]

【発明の効果】本発明は以上の様に構成されており、電
流密度を低下させることなく、より高い且つ均一な磁場
発生を可能にし、シングルパンケーキを積層したものに
相当する積層構造型超電導マグネット構造体が実現でき
た。
The present invention is constructed as described above, and enables a higher and more uniform magnetic field generation without lowering the current density, and is a laminated structure type superconducting device equivalent to one in which single pancakes are laminated. A magnet structure was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】銀テープの裁断形状例を示す平面図である。FIG. 1 is a plan view showing an example of a cut shape of a silver tape.

【図2】図1に示した形状の銀テープを仮巻してコイル
としたときの外観を示す斜視図である。
FIG. 2 is a perspective view showing an appearance when the silver tape having the shape shown in FIG. 1 is temporarily wound into a coil.

【図3】実施例における熱処理パターン例を示すグラフ
である。
FIG. 3 is a graph showing an example of a heat treatment pattern in an example.

【図4】I−V特性を調査したときの複合コイルのリー
ド線接続状態を示す斜視図である。
FIG. 4 is a perspective view showing a lead wire connection state of a composite coil when an IV characteristic is investigated.

【図5】銀テープの他の裁断形状例を示す平面図であ
る。
FIG. 5 is a plan view showing another example of the cut shape of the silver tape.

【図6】銀テープの更に他の裁断形状例を示す平面図で
ある。
FIG. 6 is a plan view showing still another example of the cut shape of the silver tape.

【図7】銀テープの他の裁断形状例を示す平面図であ
る。
FIG. 7 is a plan view showing another example of the cut shape of the silver tape.

【図8】図5に示した形状の銀テープを巻回して複合コ
イル5aとしたときの外観を示す斜視図である。
8 is a perspective view showing an appearance when the silver tape having the shape shown in FIG. 5 is wound to form a composite coil 5a.

【図9】図6に示した形状の銀テープを巻回して複合コ
イル5bとしたときの外観を示す斜視図である。
9 is a perspective view showing an appearance when the silver tape having the shape shown in FIG. 6 is wound to form a composite coil 5b.

【図10】図7に示した形状の銀テープを積層して複合
コイル5cとしたときの外観を示す斜視図である。
FIG. 10 is a perspective view showing an appearance when the silver tapes having the shape shown in FIG. 7 are laminated to form a composite coil 5c.

【符号の説明】[Explanation of symbols]

1 銀テープ(帯状部材) 2a〜2c 段差部分 3a,3b 電流リード 4a〜4b ポテンシャルリード 5a〜5c 複合コイル 1 Silver Tape (Band-shaped member) 2a to 2c Stepped portion 3a, 3b Current lead 4a to 4b Potential lead 5a to 5c Composite coil

フロントページの続き (72)発明者 江木 俊雄 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所西神総合研究地区内 (72)発明者 増田 喜男 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所西神総合研究地区内Front page continued (72) Inventor Toshio Eki 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Works Seishin Research Center (72) Inventor Yoshio Masuda 1-5 Takatsukadai, Nishi-ku, Kobe No. 5 Stock Company, Kobe Steel Seishin Research Area

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超電導物質を表面にコーティングした帯
状部材を巻回または積層して構成される超電導マグネッ
ト構造体であり、該帯状部材に沿って通電される通電方
向がマグネット全体の発生磁場方向に対して部分的に平
行な成分を有するものであることを特徴とする超電導マ
グネット構造体。
1. A superconducting magnet structure constituted by winding or stacking a strip-shaped member coated on the surface with a superconducting substance, wherein the energizing direction along the strip-shaped member is the magnetic field direction of the entire magnet. A superconducting magnet structure characterized in that it has a partly parallel component.
【請求項2】 請求項1に記載の超電導マグネット構造
体において、前記帯状部材が、該帯状部材の延長線方向
と交差する方向への変位部分を段差として連続した形状
を有する超電導マグネット構造体。
2. The superconducting magnet structure according to claim 1, wherein the strip-shaped member has a continuous shape with a displacement portion in a direction intersecting the extension line direction of the strip-shaped member as a step.
JP4069413A 1992-02-18 1992-02-18 Superconducting magnet structure Withdrawn JPH05234741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069413A JPH05234741A (en) 1992-02-18 1992-02-18 Superconducting magnet structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069413A JPH05234741A (en) 1992-02-18 1992-02-18 Superconducting magnet structure

Publications (1)

Publication Number Publication Date
JPH05234741A true JPH05234741A (en) 1993-09-10

Family

ID=13401900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069413A Withdrawn JPH05234741A (en) 1992-02-18 1992-02-18 Superconducting magnet structure

Country Status (1)

Country Link
JP (1) JPH05234741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238888A (en) * 2008-03-26 2009-10-15 Toshiba Corp Superconducting coil apparatus
JP2012038812A (en) * 2010-08-04 2012-02-23 Toshiba Corp Superconducting coil device
JP2014216569A (en) * 2013-04-26 2014-11-17 株式会社東芝 Superconducting coil device
EP1722997B1 (en) * 2004-03-09 2018-06-06 ThyssenKrupp Transrapid GmbH Magnetic pole for magnetic levitation vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722997B1 (en) * 2004-03-09 2018-06-06 ThyssenKrupp Transrapid GmbH Magnetic pole for magnetic levitation vehicles
JP2009238888A (en) * 2008-03-26 2009-10-15 Toshiba Corp Superconducting coil apparatus
JP2012038812A (en) * 2010-08-04 2012-02-23 Toshiba Corp Superconducting coil device
JP2014216569A (en) * 2013-04-26 2014-11-17 株式会社東芝 Superconducting coil device

Similar Documents

Publication Publication Date Title
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
JP5806302B2 (en) Multifilament superconductor with reduced AC loss and its formation method
US7781376B2 (en) High temperature superconducting wires and coils
US7463915B2 (en) Stacked filamentary coated superconductors
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
US20080210454A1 (en) Composite Superconductor Cable Produced by Transposing Planar Subconductors
US7496390B2 (en) Low ac loss filamentary coated superconductors
EP2544198B1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
CA2018681C (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
KR20150026820A (en) Superconductor coil arrangement
JPH05234741A (en) Superconducting magnet structure
JP4414617B2 (en) Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply
KR20210026613A (en) High temperature superconducting wire with multi-superconducting layer
JPH05335145A (en) Superconducting current lead
JPH0713924B2 (en) Superconducting magnet
JP2651018B2 (en) High magnetic field magnet
JPH05335143A (en) Oxide superconducting magnet structure
JPH05135935A (en) Oxide superconductive coil
JP3363164B2 (en) Superconducting conductor
JPH05109323A (en) Superconductive assembled conductor
JPS63250014A (en) Composite material
JPS63307615A (en) Superconductive cable of oxide type and its manufacture
JPS6348404B2 (en)
JPH0628930A (en) Oxide superconductor wire rod and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518