JP4414617B2 - Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply - Google Patents
Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply Download PDFInfo
- Publication number
- JP4414617B2 JP4414617B2 JP2001277050A JP2001277050A JP4414617B2 JP 4414617 B2 JP4414617 B2 JP 4414617B2 JP 2001277050 A JP2001277050 A JP 2001277050A JP 2001277050 A JP2001277050 A JP 2001277050A JP 4414617 B2 JP4414617 B2 JP 4414617B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- low
- superconductor
- bulk
- resistance conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、実質的に低抵抗の電気伝導体およびその製造方法並びにこれを用いた応用機器に関する。
【0002】
【従来の技術】
電気を通す導体として、現在、銅が最も多く使用されている。これは、室温での比抵抗が銀とほぼ同程度で他の物質に比べ最も低く、かつ比較的安価であることによる。導体の比抵抗を下げる方法には、導体を冷却する方法がある。銅の場合、液体窒素温度(77K)に冷却すると、比抵抗は約1/7の約2.5×10-9Ωmとなる。
【0003】
超伝導線材は、超伝導転移温度以下に冷却する必要はあるものの、電気抵抗がほぼゼロであり、理想の導体である。金属系超伝導線材は、線材としての完成度も高く、MRI等のマグネットとして実用化されているが、極低温への冷却の必要 性から広く普及するにいたっていない。一方、液体窒素温度で超伝導になる酸化物系の超伝導材料には、大別してBi系とY系の2種類がある。Bi系は主に銀シース付きのテープ線材として、また、Y系は金属テープ表面にバッファ層を形成しそ の上に超伝導薄膜を形成したテープ線材の開発が進められている。これらの線材は、高特性が得られた場合、取り扱いの容易な液体窒素で冷却できるため期待が高まっている。そして、これらの線材を用いた電気機器の開発および普及が期待されている。
【0004】
【発明が解決しようとする課題】
しかしながら、Bi系線材は、77Kにおいては、十分な臨界電流密度が得られて おらず、特に磁場中で特性劣化が著しいことや、銀をシース材として使用しているために高価である等の問題がある。Y系線材は、真空中で成膜速度や特性の均 質化等の問題があり、開発途上にある。
【0005】
一方、比抵抗が十分低く、かつ安価で取り扱いの容易な導体が製造可能であれば、必ずしも電気抵抗がゼロである超伝導線材である必要はない。そこで、本発明は、このような比抵抗が十分に小さい導体を提供することを目的とする。また、このような導体を用いた電力損失が少なく取り扱いが容易な電気機器の提供も目的とする。
【0006】
また、複数のバルク超伝導体を超伝導接続する技術は、特開平5−279028号公報、特開平6−40775号公報及び特開平7−17774号公報で開示されているが、本発明は、有限の電気抵抗を有する常伝導体を介して比較的簡便に接合された導体およびその製法を提供するものである。
【0007】
【課題を解決するための手段】
一例として、主にY系の酸化物超伝導バルク材料では、すでに77Kにおいて高い臨界電流密度が得られている。このような材料に代表される超伝導体を互いに電気的に接続することによって、実質的に低抵抗の導体およびその応用電気機器が得られることを見出した。すなわち、
(1) 100μm以上の厚さを有するバルク超伝導体を3個以上常伝導接続してなる導体であって、前記超伝導体の超伝導転移温度以下における前記導体の見かけの比抵抗が、前記温度における銅の比抵抗より低いことを特徴とする超伝導体を用いた低抵抗導体。
(2) 100μm以上の厚さを有するバルク超伝導体を3個以上常伝導接続してなる導体であって、77Kにおける該導体の見かけの比抵抗が、77Kにおける銅の比抵抗より低いことを特徴とする超伝導体を用いた低抵抗導体。
(3) 前記バルク超伝導体の厚さが、200μm以上10mm以下であることを特徴とする(1)又は(2)に記載の超伝導体を用いた低抵抗導体。
(4) 前記3個以上のバルク超伝導体の一部又は全部が、棒状又は板状の形状を有してなることを特徴とする(1)〜(3)の何れかに記載の超伝導体を用いた低抵抗導体。
(5) 前記3個以上のバルク超伝導体の一部が、湾曲及び屈曲のうち、少なくとも何れか一方の状態である棒状又は板状の形状を有してなることを特徴とする(1)〜(4)の何れかに記載の超伝導体を用いた低抵抗導体。
(6) 前記3個以上のバルク超伝導体の一部又は全部が、REBa2Cu3O7-x系超伝導体(ここで、REはYを含む希土類元素の1種類又はその組合せ)であることを特徴とする(1)〜(5)の何れかに記載の超伝導体を用いた低抵抗導体。
(7) 前記3個以上のバルク超伝導体の一部又は全部が、種結晶から成長させて得られる単結晶状の酸化物系バルク超伝導体であることを特徴とする(1)〜(6)の何れかに記載の超伝導体を用いた低抵抗導体。
(8) 前記3個以上のバルク超伝導体の一部又は全部の長手方向が、該超伝導体の結晶学的方位においてc軸と垂直方向であることを特徴とする(6)又は(7)に記載の超伝導体を用いた低抵抗導体。
(9) 前記3個以上のバルク超伝導体の常伝導接続の一部又は全部が、隣接する超伝導体の長手方向に略垂直な面同士及び略平行な面同士のうち、少なくとも何れか一方で接合されていることを特徴とする(1)又は(2)に記載の超伝導体を用いた低抵抗導体。
(10) 前記3個以上のバルク超伝導体の長手方向における常伝導接続部の一部又は全部を覆うように複数層の超伝導体が配置されてなることを特徴とする(9)に記載の超伝導体を用いた低抵抗導体。
【0008】
(11) 前記常伝導接続の一部又は全部が、金属を介して隣接する超伝導体を接合してなることを特徴とする(9)又は(10)に記載の超伝導体を用いた低抵抗導体。
(12) 前記金属が、銅、銅合金、銀、銀合金、金、金合金、アルミニウム、及びアルミニウム合金からなる群から選ばれる1種又は2種以上であることを特徴とする(11)記載の超伝導体を用いた低抵抗導体。
(13) 前記金属の厚みが100μm以下であることを特徴とする(11)又は(12)に記載の超伝導体を用いた低抵抗導体。
(14) 前記バルク超伝導体の長手方向の一部又は全部が、通電方向であることを特徴とする(1)〜(13)の何れかに記載の超伝導体を用いた低抵抗導体。
(15) 前記バルク超伝導体間の距離が10mm以下であることを特徴とする(1)〜(14)の何れかに記載の低抵抗導体。
(16) 前記見かけの比抵抗は、RS/nLであることを特徴とする(1)〜(15)の何れかに記載の低抵抗導体。ただし、Rは前記導体の抵抗値、Sは前記導体の断面積、nは前記バルク超伝導体の数、Lは1つの前記バルク超伝導体の長さである。
(17)前記バルク超伝導体の1つを介して配設された2つの前記バルク超伝導体の隙間L 1 が、前記バルク超伝導体の長さLの50%以下であることを特徴とする(1)〜(16)の何れかに記載の低抵抗導体。
【0009】
(18) 100μm以上の厚さを有するバルク超伝導体を3個以上常伝導体を介して配置し、加圧して接続処理することを特徴とする低抵抗導体の製造方法。
(19) 前記バルク超伝導体を半田を用いて接続することを特徴とする(18)に記載の低抵抗導体の製造方法。
(20) 100μm以上の厚さを有するバルク超伝導体を3個以上常伝導体を介して配置し、加圧した後、減圧雰囲気又は真空中で熱処理することを特徴とする低抵抗導体の製造方法。
(21) 前記バルク超伝導体を銅、銅合金、銀、銀合金、金、金合金、アルミニウム又はアルミニウム合金のペースト又は箔を用いて接続し、しかる後に加熱処理することを特徴とする(18)又は(20)に記載の低抵抗導体の製造方法。
(22) 前記バルク超伝導体の表面に、銅、銅合金、銀、銀合金、金、金合金、アルミニウム、及びアルミニウム合金からなる群から選ばれる1種又は2種以上の被覆を有することを特徴とする(18)〜(21)の何れかに記載の低抵抗導体の製造方法。
【0010】
(23) (1)〜(17)の何れかに記載の低抵抗導体を少なくとも一部に配してなることを特徴とする電流リード。
(24) 前記低抵抗導体の両端部に、銅、アルミニウム、金、又は銀及びこれらの合金からなる電極を接続してなることを特徴とする(23)に記載の電流リード。
(25) (23)又は(24)に記載の電流リードを少なくとも一部に配設してなることを特徴とする電力供給用ケーブル。
(26) 二重管以上の多重管のひとつの空間中心に前記電流リードを配し、他の空間としてその空間中心の周りに冷媒が流れる空間を有すると共に、その外周に断熱層を有することを特徴とする(25)に記載の電力供給用ケーブル。
(27) 前記電流リードに接続した電極同士を電気的に接続すると共に、該接続電極部分を真空断熱層で被覆してなることを特徴とする(25)に記載の電力供給用ケーブル。
【0011】
(28) (1)〜(17)の何れかに記載の低抵抗導体を巻き回してなることを特徴とするコイル。
(29) 前記コイルの低抵抗導体の通電方向に垂直な面の断面積が、外周部より内周部の方が大きいことを特徴とする(28)に記載のコイル。
(30) 前記コイルの低抵抗導体に用いられる低抵抗導体が、異なる希土類組成を有する超伝導体を組み合わせてなることを特徴とすることを特徴とする(28)に記載のコイル。
(31) 前記巻き回した低抵抗導体の間隙を冷媒流路とすることを特徴とする(28)〜(30)の何れかに記載のコイル。
(32) 前記低抵抗導体を樹脂及び繊維強化プラスチックのうち、少なくとも何れか一方で補強してなることを特徴とする(28)〜(31)の何れかに記載のコイル。
(33) (28)〜(32)の何れかに記載のコイルを用いたことを特徴とする磁場発生装置。
(34) (28)〜(32)の何れかに記載のコイルを少なくとも二次側に用いたことを特徴とする変圧器。
(35) (28)〜(32)の何れかに記載のコイルを少なくとも二次側に用いたことを特徴とする交流電源。
【0012】
【発明の実施の形態】
本発明は、有限の電気抵抗を有する常伝導体を介して比較的簡便に接合された導体およびその製法である。複数のバルク超伝導体を超伝導接続する技術は、特開平5−279028号公報、特開平6−40775号公報及び特開平7−17774号公報で開示されているが、上記超伝導接続は、結晶そのものを粒界又は弱結合なしに接続するものであり、結晶方位を3次元的に揃えることが必要であ るのに対し、本発明は、超伝導相である結晶の方位を3次元的に揃える必要はない。このため、導体の製造が極めて容易であり、工業上の効用は、極めて大きい。
なお、本発明における低抵抗導体は、超伝導転移温度より上の温度では良導体の性質を示さないが、その場合も含めて、本発明では低抵抗導体と呼ぶこととする。
【0013】
図1のような長さL(m)、厚さt(m)、幅w(m)の板状の超伝素線を、tに比べ十分 に薄い厚さd(m)の常伝導物質を介して、接続した十分に長い導体を考える。超伝導体1(S1)と超伝導体2(S2)の接続抵抗Rj(Ω)は、S1と常伝導体との接触抵抗Rc1 とS2と常伝導体との接触抵抗Rc2と常伝導体の電気抵抗Rnの和であるから、
Rj=Rc1+Rc2+Rn
で示される。
各超伝導体と常伝導体との接触抵抗率をρc(Ωm2)とすると、
Rc1+Rc2=4ρc/Lw
で示される。
また、Rnは、常伝導体の比抵抗をρn(Ωm)とすると、
Rn=ρn2d/Lw
で示される。
【0014】
通電電流が超伝導体の臨界電流に比べて十分に小さい、すなわち超伝導体中の電圧降下をゼロとすると仮定した場合、長さnLの導体の抵抗Rは、
R=2nRj
であり、したがって、超伝導体の超伝導転移温度以下におけるこのような導体の長手方向の見かけ上の比抵抗ρ*(Ωm)は、
ρ*=2nRjS/nL
で、見かけ上の断面積(S)が、2twであるから、
ρ*=4Rjtw/L
=8t(2ρc+ρnd)/L2
となる。ただし、ここで、図1中に示す長さ方向の突合せ部分は電気的に接続されていないものとしている。
【0015】
次に、図2のように、板状の超伝導体を3本並列に接続した導体を同様に考える。2本並列の場合と同様の条件において、このような導体のρ*(Ωm)は、
ρ*=27(2ρc+ρnd)t/4L2
となる。
これらの計算から、見かけ上のρ*は、tに比例し、かつLの二乗に反比例すること、また、dが小さいほどρ*が小さくなることがわかる。
【0016】
さらに、図3(a)に示すように、L1の隙間を空けながら導体を構成した場合を 同様に考える。この場合のρ*は、
ρ*=8(2ρc+ρnd)t/(L2-L1 2)
となり、同じ本数の導体で長さを稼ぐことはできるものの、比抵抗は大きくなってしまうことがわかる。また、図3(b)のような導体においても同様の傾向があ ることが分かる。
【0017】
実際上、機械的強度を保つために、L1はLの50%以下が望ましく、さらに10%以下が望ましい。最も望ましい形態は、実質的にL1がゼロであり、かつ電気的に低抵抗で接合されている状態である。超伝導導体の長手方向における常伝導接続部を覆うように複数層の超伝導体が配置されてなるとの表現は、このように、L1がLに対して十分に小さい導体の配置を意味する。図1〜図3では、矩形の断面を有する棒状の超伝導導体を例に挙げたが、断面形状が矩形である必要は特に無い。
【0018】
また、L1の隙間に、さらに超伝導体を配置し、電気的な接続をすることは、機械的強度の向上および臨界電流近傍での通電特性の向上になるので望ましい。上述のように、見かけの比抵抗をより小さくするためには、原理的に超伝導体の厚さ(t)をより小さくすればよいことが分かる。実際の超伝導体の厚さとしては、薄片状のY系単結晶超伝導試料の厚さレベルの20μm以上、好ましくは、研削加工により製造可能な100μm以上、さらに好ましくは、容易にスライス切断が可能な200μm以上である。前記超伝導体の厚さの中で、本発明では、バルク超伝導体の厚さを100μm以上とした。また、厚さの上限は特に限定するものではないが、見かけの比抵抗との兼ね合いから、10mm以下が好ましい。
【0019】
このような導体の断面形状も種々の組み合わせが考えられる。具体例を図4に示す。また、並列本数が多い場合、一本のバルク超伝導体に臨界電流密度(Jc)の低い部分等の欠陥があった時の導体全体に及ぼす特性劣化の度合いは小さくなる。さらに、付き合わせ部にも導通を持たせることにより、見かけ比抵抗をより低下させ得ることは言うに及ばない。
【0020】
このようにバルク超伝導体を常伝導接続し、超伝導転移温度以下の冷却温度において、導体の見かけの比抵抗が冷却温度における銅の比抵抗より小さくなった場合、このような導体は、低抵抗導体として、種々の利点を持つことになる。特に、冷却の利便性から液体窒素を冷媒として得られる77K近傍でのρ* は、その導体の有用性を示す重要なパラメータとなる。
【0021】
前述のように、本発明は、有限の電気抵抗を有する常伝導体を介して比較的簡便に接合された導体およびその製法に関するものである。一方、複数のバルク超伝導体を超伝導接続する技術は、ソルダーを介し複数の超伝導体を結晶方位を揃え配置し、熱処理することによりソルダー部分を超伝導体から結晶成長させ、単結晶状の組織を作ることにより接続するものであり、超伝導体の結晶方位を3次元的に揃えることが基本的に必要である。これに対し、本発明は、超伝導相である結晶の方位を3次元的に揃える必要はない。また、ρ*を十分に小さくするこ とによって、実質的に完全超伝導体と同様の効用を得ようとするものである。
【0022】
このような低抵抗体のρ*を小さくするためには、各超伝導体間の実質的な接 触面積を大きくする必要がある。そのためには、超伝導体の形状を棒状または板状とし、隣接する超伝導体の長手方向に垂直な面同士および/または平行な面同士が接触することが望ましい。また、通電方向を変えるためには、湾曲および屈曲した棒状または板状とすることが必要になる。
【0023】
低抵抗導体を構成するバルク超伝導材料は、金属シースを有する線状又はテープ状のバルク超伝導体であってもよく、臨界電流を低下させる粒界等を含まない単結晶状の材料である。特に、RE2BaCuO5相が微細分散した高い臨界電流密度を有するREBa2Cu3O7-x系超伝導体が望ましい。このような超伝導体には、c軸と垂直にマイクロクラックが発生しやすいことから、通電方向となる長手方向は、c軸に垂直であることが望ましい。また、長手方向を通電方向とすることによりρ*が低下することは、前記のρ*に関する式から明らかである。
【0024】
超伝導体と直接接触する金属は、銅、銅合金、銀、銀合金、金、又は金合金、アルミニウム、又はアルミニウム合金の1種又は2種以上を用いることができ、特に、高温での酸化性が低く、超伝導体との電気的ななじみがよく、かつ接触抵抗の低い、銀、銀合金、金又は金合金の1種又は2種以上が望ましい。
また、上記の接触抵抗の比較的小さな金属の被覆を超伝導体に被覆し、しかる後にしかるべき方法により接続することは、製造工程上有利である。この場合、金属被覆された超伝導体を接合する材料としては、錫及び鉛等を主成分とする半田と銀ペースト等の金属ペーストがある。半田は、室温での局所的な加熱により容易に接合処理できるなど、簡便な作業で処理できる点が優れている。半田接続の場合、接続部の金属層の厚さは、通常100〜50μm程度となる。また、銀ペースト等の接着剤も次の点で優れている。銀ペーストを接着剤として用い、加熱処理により焼結させた場合は、銀そのものの比抵抗が小さいことや、焼結による接合部の金属層が収縮することにより、25μm以下の薄い金属層が得られるため、接続抵抗を半田接続に比べ低減できる。この焼結工程においては、ボイド除去の観点から、減圧雰囲気中又は真空中での加熱処理が望ましい。
【0025】
超伝導体間の常伝導接続部の厚さは、より薄いことが望ましいが、超伝導体同士が直接接触する場合は、逆に接触抵抗が大きくなる。10mm以下が好ましく、1mm以下がさらに好ましい。実質的には、超伝導体の表面粗度にも関連するが、平均値で100〜2μmが望ましい。さらに望ましくは50〜2μmである。より好ましく は25〜2μmである。
低抵抗導体は、電極等を両端に取り付けることで電流リードとして機能する。電極材料としては、比抵抗が小さい銅、アルミ、銀等が望ましい。
【0026】
断熱層中に冷却された低抵抗導体を配置することにより、電力供給用ケーブルを構成することができる。ここで、ケーブルとは、低抵抗導体を断熱層が取り囲んでいる導体を意味し、また、少なくとも低抵抗導体の両端に電極を有する導体を電流リードと呼ぶことにする。
【0027】
また、低抵抗導体を用いコイルを作製する場合、円弧状の超伝導体を繋ぎ合わせてゆく事により、従来の線材と同様の円筒状のコイルを作ることができるが、直線状の超伝導体と360度をn等分したある角度の折れ曲がりを有する少ない種 類の部材(最低2種類の部材)によりコイルを作製することは、製造工程上極めて効率がよくなる。図5に折れ曲がり角度45度(n=8)の部材を用いたコイルの一例を示す。この場合、1つの折れ曲がり部材を除いて3種類の超伝導体からなる部材で構成されている。また、一般に強磁場中では、Jcが低下することから、コイルの内側では比較的太い導体を用い、外周部は比較的細い導体を用いることが効率的である。また、希土類元素の組成によって磁場中でのJc特性が異なることから、外周部は低磁界中で高い臨界電流密度を有する材料を用い、内周部では高磁界中で高い臨界電流密度を有する材料を用いるなど、超伝導体の特性に合わせて希土類元素の組成を選択することが望ましい。
【0028】
コイルに通電した場合、低抵抗導体には電磁気力が働くため、樹脂または繊維強化プラスチック等で補強する必要がある。また、抜熱を効率よく行うために冷媒等が流れる冷却路を設けることが望ましい。
巻き線比の小さい二次側にこのような上記の低抵抗導体からなるコイルを用いることで、二次側に大電流が通電可能な変圧器ができる。また、このような変圧器は、大電流通電が可能な交流電源として機能する。
【0029】
【実施例】
(実施例1)
Y2O3、BaO2、CuOの各原料粉末を各金属元素のモル比(Y:Ba:Cu)が(13:17:24)になるように混合し、さらにこの混合粉に0.5質量%のPtを添加し、混合した原料粉末を作製した。この原料粉末を900℃、酸素気流中で仮焼した。この仮焼粉をラ バープレス機を用いて、2ton/cm2の圧力で直径55mm、厚さ20mmの円盤状成形体に成形した。
【0030】
これを大気中で1150℃まで8時間で昇温し、1時間保持した。その後、Sm系の種結晶を用い、1040℃で、盤面の法線がc軸にほぼ一致するように種結晶を配置し た。しかる後、1005℃に30分で降温し、さらに970℃まで220時間かけて徐冷し、結晶成長を行った。続いて、室温まで20時間で冷却した。得られた直径約46mmの円柱状のY系バルク材を、厚さ0.6mmにスライス加工し、さらに幅2.0mm、長さ40mmに加工し、棒状試料を作製した。このようにして得られた材料は、単結晶状のYBa2Cu3O7-x相中に1μm程度のY2BaCuO5相が微細分散した組織を有していた。また、YBa2Cu3O7-x相の結晶方位との関係を図6に示す。
【0031】
これらの棒状試料表面に、銀を約2μmスパッタにより成膜した後、酸素気流中でアニール処理した。アニール処理の熱処理パターンは、室温から600℃まで6時間で昇温し、1時間保持した後、450℃まで2時間で降温し、さらに380℃まで60時間で降温、室温まで12時間で冷却した。
【0032】
これらの棒状試料を図7(a)〜(c)に示す断面を有する低抵抗導体を、図1に示した配置で、銀を含有する半田を用いて電気的に接続し、約1mの導体を作製し た。このとき、通常の半田付けでは金属層の厚さが100μm程度になったが、加圧しながら半田を固化させることにより、金属層の厚さを約50μmまで低減するこ とができた。そして、それぞれの接続方法により作製された導体に電流導入端子及び電圧端子を取り付けた後、液体窒素中に浸し、超伝導体を超伝導状態にした。
【0033】
上記3種類の低抵抗導体に500A通電して抵抗を測定したところ、それぞれ1.25×10-5Ω、0.69×10-5Ω、0.75×10-5Ωであり、見かけの抵抗率は3.0×10-11 Ωm、2.5×10-11Ωm、2.7×10-11Ωmであり、銅の液体窒素温度(77K)での抵抗率(2.5×10-9Ωm)に比べ、約2桁低い抵抗率を示すことがわかった。
【0034】
(実施例2)
原料粉末をY2O3からDy2O3に変えただけで、実施例1で述べた同様の方法によ り、Dy系のバルク材料を作製した。これを厚さ0.6mmにスライス切断した後、図 6の棒状材料と共に図8(a)及び図8(b)に示すような湾曲及び折れ曲がり形状を有する棒状材料に加工した。これらを実施例1と同様に表面に銀を製膜した後、各部材を組み合わせて、全長約1mのL字型の低抵抗導体を作製した。このとき、超伝導体間の接続は、図1に示す要領で半田を用い、実施例1と同様に行った。
このときの接続部は、各銀のコーティング層は5μmで、半田層は約50μmであ った。
【0035】
上記2種類の低抵抗導体に500A通電して抵抗を測定したところ、それぞれ約1.3×10-5Ωであり、見かけの抵抗率は約3.0×10-11Ωmであり、銅の液体窒素温度(77K)での抵抗に比べ、約2桁低い抵抗率を示すことがわかった。
また、このようなケーブルまたは導体は、電流リードとして機能していることになる。
【0036】
(実施例3)
実施例1で作製した低抵抗導体の端部に銅電極を接続してから絶縁被覆を施した後、図9(a)のように三重管の中心に挿入した。また、三重管の直列接続でき る端部は、図9(b)に示す構造を有し、周囲とは絶縁された銅電極があり、これ と液体窒素流路を真空断熱層が覆う構造になっている。このようなケーブルを5本直列接続し、さらに負荷および直流電源を接続することで、図10に示す送電実験回路を作製した。この負荷に500A通電したところ、1本のケーブル内で発生した送電損失は約3.2Wであり、ケーブルの太さ(三重管の外径)を有する銅線の室温での損失(約120W)と比較して、約1/40程度に低減することができた。
【0037】
(実施例4)
実施例1及び実施例2に記載の方法により、Y系及びDy系の直径約46mmの円柱 状のバルク材を作製した。これらを1.0mmにスライス切断した後、Y系材料から幅1.9mmを、Dy系材料から2.2mmの直線状の棒状材料及び45度の折れ曲がり角度を有する棒状材料を作製し、これらに銀被覆を施した後、実施例1記載のアニール方法により酸素付加処理を行った。それらを半田により電気的に接続した。このとき、半田層の厚さは、約60μmであり、また各銀コーティングの厚さが5μmであ った。内側が幅2.2mmの導体を5回巻いたコイルで、外側が幅1.9mmの導体を用い た8回巻きのパンケーキコイル(最内径62mm、最外径138mm)を、厚さ0.4mmのガラ ス繊維強化プラスチック(FRP)上に図5(a)及び(b)に示した要領で作製した。このFRPには、直径2mmの穴が格子状にあけられており、この穴が液体窒素流路となる。FRPと導体との接着には、数μmのフィラーを20体積%程度含む樹脂を用いた。
このようなパンケーキコイルを31枚積層し、各パンケーキコイルが発生する磁場が強め合う方向に電気的に接続し、高さ約80mmの積層コイルを作製した。このとき、各パンケーキコイルの内側及び外側の端子同士を接続するように、一層毎に渦巻きの方向が逆になるように接続した。
【0038】
積層コイルに電流導入端子を接続した後、液体窒素に浸し冷却した。500A通電したときに、コイル内の発生電圧は1.5Vであり、中心部で約2.0Tの磁場を発生した。この時、発熱による電圧上昇は無く、長時間通電してもコイルが焼損することは起きなかった。
このように、低抵抗導体を用いることにより、簡便に強力な磁場を発生できることが分かった。
【0039】
(実施例5)
実施例1に記載の方法により、Y系の直径約46mmの円柱状のバルク材を作製し た。これを1.5mmにスライス切断した後、幅3.0mmの直線状棒状材料及び45度の折れ曲がり角度を有する棒状材料を作製し、これらに銀被覆を施した後、実施例1に記載のアニール方法により、酸素付加処理を行った。それらを図11(a)、(b)に示すように、半田により電気的に接続し、1層5回巻きのソレノイドコイル(最 内径20mm、最外径26mm)を作製した。このとき、半田層の厚さは約45μmであり、また、各銀コーティングの厚さは3μmであった。これを図12に示すように、正八角形の断面を有する鉄芯と鎖交させ、トランスの2次巻き線とし、1次側には被覆銅線を500回巻いた。このトランスを液体窒素中に浸し、1次側にピーク値で15Aの正弦波電流を通電し、2次側で約1500Aの正弦波が流れていることを確認した 。これにより、このようなトランスが大電流通電可能な電源として機能することが明らかになった。
【0040】
(実施例6)
実施例1で作製した単結晶状のYBa2Cu3O7-x相中に1μm程度のY2BaCuO5相が微 細分散した組織を有する棒状材料表面に銀を約2μmスパッタにより成膜した後、これらの棒状試料を図7(a)〜(c)に示す断面を有する低抵抗導体を、図1に示した配置で銀ペーストを用いて接続し、約1mの導体を作製した。この導体を約1.3 ×102Paの減圧下において約900℃で約1時間加熱し、銀ペーストの銀粒子と棒状材料表面の銀の膜とを焼結させた。このときの銀層の厚さは、合計で約25μmで あった。
【0041】
その後、室温から600℃まで6時間で昇温し、1時間保持した後、450℃まで2時 間で降温し、さらに380℃まで60時間で降温、室温まで12時間で冷却し、酸素ア ニール処理を行った。
それぞれの接続方法により作製された導体に、電流導入端子および電圧端子を取り付けた後、液体窒素中に浸し、超伝導体を超伝導状態にした。
【0042】
上記3種類の低抵抗導体に500A通電し、抵抗を測定したところ、それぞれ1.25×10-6Ω、0.76×10-6Ω、0.72×10-6Ωであり、見かけの抵抗率は3.0×10-12Ωm、2.8×10-12Ωm、2.7×10-12Ωmであり、銅の液体窒素温度(77K)での抵抗率(2.5×10-9Ωm)に比べ、約3桁低い抵抗率を示すことがわかった。
【0045】
【発明の効果】
以上述べたように、本発明は、実質的に銅の比抵抗より小さい低抵抗の導体およびその製造方法並びにこれを用いた種々の電気機器を提供するものであり、その工業的効果は甚大である。
【図面の簡単な説明】
【図1】2本並列に超伝導体を交互に接続した低抵抗導体の例
【図2】3本並列に超伝導体を交互に接続した低抵抗導体の例
【図3】超伝導体を交互にL1の間隔を置いて接続した低抵抗導体の例
(a) 上下に配置した例 (b) 上方に配置した例
【図4】 (a)〜(e)は複数の超伝導体を接続した低抵抗導体の断面模式図
【図5】折れ曲がり部材と棒状部材を組み合わせて接続したコイルの例
(a) 表面から見た様子。黒い部分が2種類(長、短)の棒状超伝導部材を示す。
(b) 裏面から見た様子。黒い部分が折れ曲がり部材。斜線の部材を除いて1種類からできている。
【図6】実施例1で作製した棒状超伝導体
【図7】 (a) 2本並列に超伝導体を交互に接続した低抵抗導体の断面形状
(b) 3本並列に超伝導体を交互に接続した低抵抗導体の断面形状
(c) 3本並列に超伝導体を交互に接続した低抵抗導体の断面形状
【図8】 (a) 折れ曲がり部材の例
(b) 湾曲した部材の例
【図9】 (a) 三重管及び三重管中に配置された導体の断面図
(b) 接続可能な三重管端部の構造
【図10】送電実験の回路図
【図11】 (a) 表面から見たトランスに用いた2次側低抵抗コイル
(折れ曲がり部材が見える)
(b) 裏面から見たトランスに用いた2次側低抵抗コイル
(棒状部材が見える)
【図12】低抵抗導体を用いたトランスの構造
【符号の説明】
1 突合せ部分
2 短い棒状部材
3 長い棒状部材
4 折れ曲がり部材
5 絶縁被覆
6 液体窒素流路
7 真空断熱層
8 低抵抗導体
9 フランジ
10 Oリング
11 銅リード
12 液体窒素流路
13 ケーブル
14 電源
15 負荷
16 折れ曲がり部材
17 棒状部材
18 1次巻き線
19 正八角形の断面を有する鉄芯
20 低抵抗導体からなる2次巻き線
21 低抵抗導体からなるコイル間の繋ぎ目[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substantially low-resistance electrical conductor, a method for producing the same, and applied equipment using the same.
[0002]
[Prior art]
Currently, copper is most frequently used as a conductor for conducting electricity. This is because the specific resistance at room temperature is almost the same as that of silver, the lowest relative to other materials, and relatively inexpensive. As a method of reducing the specific resistance of the conductor, there is a method of cooling the conductor. In the case of copper, when cooled to liquid nitrogen temperature (77K), the specific resistance is about 1/7, about 2.5 x 10-9Ωm.
[0003]
Although a superconducting wire needs to be cooled below the superconducting transition temperature, it has an almost zero electrical resistance and is an ideal conductor. Metal-based superconducting wires have a high degree of completeness as wires, and have been put into practical use as magnets such as MRI. However, they have not been widely used due to the necessity of cooling to cryogenic temperatures. On the other hand, there are roughly two types of oxide-based superconducting materials that become superconducting at liquid nitrogen temperature: Bi-based and Y-based. Development of tape wires with a silver sheath as the Bi type is mainly in progress, and tape wires with a superconducting thin film formed on the Y tape as a buffer layer on the metal tape surface are being developed. These wires have high expectations because they can be cooled with liquid nitrogen that is easy to handle when high characteristics are obtained. And the development and spread of electrical equipment using these wires are expected.
[0004]
[Problems to be solved by the invention]
However, Bi-based wires do not have a sufficient critical current density at 77K, and are particularly expensive due to their characteristic deterioration in a magnetic field and the use of silver as a sheath material. There's a problem. Y-based wires are under development due to problems such as film formation speed and uniformity of properties in vacuum.
[0005]
On the other hand, as long as the specific resistance is sufficiently low, and an inexpensive and easy-to-handle conductor can be manufactured, it is not always necessary to use a superconducting wire having zero electrical resistance. Therefore, an object of the present invention is to provide a conductor having such a sufficiently small specific resistance. Another object of the present invention is to provide an electric device that uses such a conductor and has low power loss and is easy to handle.
[0006]
Further, techniques for superconducting connection of a plurality of bulk superconductors are disclosed in JP-A-5-279028, JP-A-6-40775, and JP-A-7-17774. The present invention provides a conductor joined relatively easily via a normal conductor having a finite electrical resistance and a method for producing the conductor.
[0007]
[Means for Solving the Problems]
As an example, a high critical current density has already been obtained at 77K, mainly for Y-based oxide superconducting bulk materials. It has been found that a substantially low resistance conductor and its applied electrical equipment can be obtained by electrically connecting superconductors represented by such materials to each other. That is,
(1)Have a thickness of 100 μm or moreBulk superconductor3 or moreA conductor formed by normal conduction, wherein the apparent specific resistance of the conductor below the superconducting transition temperature of the superconductor is lower than the specific resistance of copper at the temperature. Was a low resistance conductor.
(2)Have a thickness of 100 μm or moreBulk superconductor3 or moreA low-resistance conductor using a superconductor, wherein the conductor has a normal conductive connection, and the apparent specific resistance of the conductor at 77K is lower than the specific resistance of copper at 77K.
(3)A thickness of the bulk superconductor is 200 μm or more and 10 mm or less, The low resistance conductor using the superconductor according to (1) or (2).
(4)Above3 or moreA part or all of the bulk superconductor has a rod-like or plate-like shape (1)~(3)EitherA low-resistance conductor using the superconductor described in 1.
(5)3 or moreA part of the bulk superconductor of (1) to (1) is characterized by having a rod-like or plate-like shape that is at least one of curved and bent states.4A low-resistance conductor using the superconductor according to any one of the above.
(6)3 or moreSome or all of the bulk superconductor of REBa2CuThreeO7-x(1) to (1) characterized by being a superconductor (where RE is one or a combination of rare earth elements including Y)5A low-resistance conductor using the superconductor according to any one of the above.
(7) A part or all of the three or more bulk superconductors are single crystal oxide bulk superconductors obtained by growing from a seed crystal (1) to (1) 6) A low-resistance conductor using the superconductor according to any one of
(8)3 or moreA longitudinal direction of a part or all of the bulk superconductor is characterized by being perpendicular to the c-axis in the crystallographic orientation of the superconductor (6)Or (7)Low resistance conductor using the described superconductor.
(9)3 or moreThat part or all of the normal conduction connections of the bulk superconductors are bonded to at least one of the planes substantially perpendicular to the longitudinal direction of the adjacent superconductors and the planes substantially parallel to each other. A low-resistance conductor using the superconductor described in (1) or (2).
(10)3 or moreA plurality of layers of superconductors are arranged so as to cover a part or all of the normal connection portion in the longitudinal direction of the bulk superconductor (9A low-resistance conductor using the superconductor described in 1.).
[0008]
(11A part or all of the normal conduction connection is formed by joining adjacent superconductors through a metal (9Or (10A low-resistance conductor using the superconductor described in 1.).
(12The metal is one or more selected from the group consisting of copper, copper alloy, silver, silver alloy, gold, gold alloy, aluminum, and aluminum alloy (11) A low resistance conductor using the described superconductor.
(13The metal has a thickness of 100 μm or less (11Or (12A low-resistance conductor using the superconductor described in 1.).
(14) A part or all of the bulk superconductor in the longitudinal direction is the energizing direction (1) to (13A low-resistance conductor using the superconductor according to any one of the above.
(15The distance between the bulk superconductors is 10 mm or less (1) to (14The low resistance conductor according to any one of the above.
(16The apparent specific resistance is RS / nL (1) to (1)15The low resistance conductor according to any one of the above. Where R is the resistance value of the conductor, S is the cross-sectional area of the conductor, n is the number of the bulk superconductors, and L is the length of one bulk superconductor.
(17) A gap L between two bulk superconductors disposed through one of the bulk superconductors. 1 Is 50% or less of the length L of the bulk superconductor. The low-resistance conductor according to any one of (1) to (16),
[0009]
(18)Have a thickness of 100 μm or moreBulk superconductor3 or moreA method for producing a low-resistance conductor, characterized in that the low-resistance conductor is disposed through a normal conductor and pressed to perform connection processing.
(19The bulk superconductor is connected using solder (18The manufacturing method of the low resistance conductor of description.
(20)Have a thickness of 100 μm or moreBulk superconductor3 or moreA method for producing a low-resistance conductor, which is disposed through a normal conductor, pressurized, and then heat-treated in a reduced-pressure atmosphere or vacuum.
(21The bulk superconductor is connected using a paste or foil of copper, copper alloy, silver, silver alloy, gold, gold alloy, aluminum or aluminum alloy, and then heat-treated (18Or (20The manufacturing method of the low resistance conductor as described in).
(22The surface of the bulk superconductor has one or more coatings selected from the group consisting of copper, copper alloy, silver, silver alloy, gold, gold alloy, aluminum, and aluminum alloy. Do (18) ~ (21The manufacturing method of the low resistance conductor in any one of.
[0010]
(23(1) to (17A current lead comprising at least a portion of the low resistance conductor according to any one of the above.
(24) An electrode made of copper, aluminum, gold, silver, or an alloy thereof is connected to both ends of the low-resistance conductor (23) Current leads as described.
(25()23Or (24The power supply cable according to claim 1 is provided at least partially.
(26) The current lead is arranged at the center of one space of a multi-pipe more than a double tube, and the other space has a space through which the refrigerant flows around the center of the space, and has a heat insulating layer on the outer periphery. Do (25Power supply cable as described in).
(27) The electrodes connected to the current leads are electrically connected to each other, and the connection electrode portions are covered with a vacuum heat insulating layer (25Power supply cable as described in).
[0011]
(28(1) to (17A coil obtained by winding the low-resistance conductor according to any one of the above.
(29The cross-sectional area of the surface perpendicular to the energizing direction of the low-resistance conductor of the coil is larger in the inner peripheral portion than in the outer peripheral portion (28) Coil.
(30The low-resistance conductor used for the low-resistance conductor of the coil is characterized by combining superconductors having different rare earth compositions (28) Coil.
(31The gap between the wound low resistance conductors is used as a refrigerant flow path (28) ~ (30The coil according to any one of the above.
(32The low-resistance conductor is reinforced with at least one of resin and fiber reinforced plastic (28) ~ (31The coil according to any one of the above.
(33()28) ~ (32A magnetic field generator using the coil according to any one of the above.
(34()28) ~ (32) Is used at least on the secondary side.
(35()28) ~ (32An AC power source characterized in that the coil according to any one of the above is used on at least the secondary side.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a conductor joined relatively easily through a normal conductor having a finite electrical resistance, and a method for manufacturing the conductor. Techniques for superconducting connection of a plurality of bulk superconductors are disclosed in JP-A-5-279028, JP-A-6-40775, and JP-A-7-17774. The crystal itself is connected without grain boundaries or weak bonds, and it is necessary to align the crystal orientation three-dimensionally. On the other hand, according to the present invention, the orientation of the crystal that is a superconducting phase is three-dimensional. There is no need to align. For this reason, manufacture of a conductor is very easy and industrial utility is very large.
Note that the low resistance conductor in the present invention does not exhibit the properties of a good conductor at a temperature above the superconducting transition temperature, but in this case, it is referred to as a low resistance conductor in the present invention.
[0013]
A normal superconducting material with a thickness d (m) that is sufficiently thinner than t is obtained by using a plate-like superconducting wire of length L (m), thickness t (m), and width w (m) as shown in FIG. Consider a sufficiently long conductor connected through. Connection resistance R between superconductor 1 (S1) and superconductor 2 (S2)j(Ω) is the contact resistance R between S1 and the normal conductorc1 Resistance R between S2 and normal conductorc2And normal conductor resistance RnBecause it is the sum of
Rj= Rc1+ Rc2+ Rn
Indicated by
The contact resistivity between each superconductor and normal conductor is ρc(Ωm2)
Rc1+ Rc2= 4ρc/ Lw
Indicated by
RnIs the specific resistance of the normal conductor ρn(Ωm)
Rn= Ρn2d / Lw
Indicated by
[0014]
Assuming that the conduction current is sufficiently small compared to the critical current of the superconductor, that is, the voltage drop in the superconductor is zero, the resistance R of the conductor of length nL is
R = 2nRj
Therefore, the apparent resistivity ρ in the longitudinal direction of such a conductor below the superconducting transition temperature of the superconductor*(Ωm) is
ρ*= 2nRjS / nL
Because the apparent cross-sectional area (S) is 2tw,
ρ*= 4Rjtw / L
= 8t (2ρc+ ρnd) / L2
It becomes. Here, however, it is assumed that the length-wise butted portions shown in FIG. 1 are not electrically connected.
[0015]
Next, as shown in FIG. 2, a conductor in which three plate-like superconductors are connected in parallel is considered in the same manner. Under the same conditions as in the case of two in parallel, ρ of such a conductor*(Ωm) is
ρ*= 27 (2ρc+ ρnd) t / 4L2
It becomes.
From these calculations, the apparent ρ*IstProportional to and inversely proportional to the square of L, and the smaller d, ρ*It turns out that becomes small.
[0016]
Furthermore, as shown in FIG.1Similarly, consider the case where the conductor is constructed while leaving a gap. Ρ in this case*Is
ρ*= 8 (2ρc+ ρnd) t / (L2-L1 2)
Thus, it can be seen that although the length can be increased with the same number of conductors, the specific resistance increases. It can also be seen that the same tendency is found in the conductor as shown in FIG.
[0017]
In practice, to maintain mechanical strength, L1Is preferably 50% or less of L, more preferably 10% or less. The most desirable form is substantially L1Is zero, and is joined with a low electrical resistance. The expression that multiple layers of superconductors are arranged so as to cover the normal conducting connection in the longitudinal direction of the superconducting conductor is1Means an arrangement of conductors sufficiently small with respect to L. In FIG. 1 to FIG. 3, a rod-shaped superconducting conductor having a rectangular cross section is taken as an example, but the cross sectional shape is not necessarily rectangular.
[0018]
L1It is desirable to further dispose a superconductor in the gap and to make electrical connection, since this improves mechanical strength and energization characteristics near the critical current. As described above, it can be understood that, in order to make the apparent specific resistance smaller, in principle, the thickness (t) of the superconductor should be made smaller. The actual thickness of the superconductor is 20 μm or more of the thickness level of the flaky Y-type single crystal superconducting sample, preferably 100 μm or more that can be manufactured by grinding, more preferably, easy slice cutting. 200 μm or more is possible.Among the thicknesses of the superconductors, in the present invention, the thickness of the bulk superconductor is set to 100 μm or more.The upper limit of the thickness is not particularly limited, but is preferably 10 mm or less in view of the apparent specific resistance.
[0019]
Various combinations of the cross-sectional shapes of such conductors are conceivable. A specific example is shown in FIG. Also, if there are many parallel lines,BulkWhen the superconductor has defects such as a portion having a low critical current density (Jc), the degree of deterioration of the characteristics on the entire conductor is reduced. In addition, the continuity is also given to the mating part,RatioNeedless to say, the resistance can be further reduced.
[0020]
in this wayBulkA superconductor is normally connected, and the conductor is viewed at a cooling temperature below the superconducting transition temperature.KenoIf the specific resistance is smaller than the specific resistance of copper at the cooling temperature, such a conductor will have various advantages as a low resistance conductor. In particular, ρ * in the vicinity of 77K obtained from liquid nitrogen as a refrigerant for the convenience of cooling is an important parameter indicating the usefulness of the conductor.
[0021]
As described above, the present invention relates to a conductor joined relatively easily via a normal conductor having a finite electrical resistance and a method for manufacturing the same. On the other hand, the technology for superconducting connection of multiple bulk superconductors is a single crystal structure in which a plurality of superconductors are aligned in crystal orientation via a solder, and the solder portion is crystal-grown from the superconductor by heat treatment. It is basically necessary to align the crystal orientation of the superconductor three-dimensionally. On the other hand, in the present invention, it is not necessary to three-dimensionally align the crystal orientation as the superconducting phase. Ρ*By making this sufficiently small, it is intended to obtain substantially the same effect as a perfect superconductor.
[0022]
Ρ of such a low resistance body*In order to reduce this, it is necessary to increase the substantial contact area between each superconductor. For that purpose, it is desirable that the shape of the superconductor is a rod or plate, and the surfaces perpendicular to the longitudinal direction and / or parallel surfaces of adjacent superconductors are in contact with each other. Further, in order to change the energization direction, it is necessary to have a curved or bent rod shape or plate shape.
[0023]
Configure low resistance conductorBulkSuperconducting materials,MoneyLinear or tape-like with a genus sheathBulkEven a superconductorTheSingle crystal material that does not contain grain boundaries etc. that reduce critical currentIs. In particular, RE2BaCuOFiveREBa with high critical current density with finely dispersed phases2CuThreeO7-xA superconductor is desirable. In such a superconductor, since microcracks are likely to occur perpendicular to the c-axis, it is desirable that the longitudinal direction as the energization direction is perpendicular to the c-axis. Also, by making the longitudinal direction the energizing direction, ρ*Is reduced by the aforementioned ρ*It is clear from the formula for
[0024]
As the metal in direct contact with the superconductor, one or more of copper, copper alloy, silver, silver alloy, gold, or gold alloy, aluminum, or aluminum alloy can be used. It is desirable to use one or more of silver, silver alloy, gold or gold alloy, which has low properties, good electrical compatibility with superconductors, and low contact resistance.
In addition, it is advantageous in the manufacturing process that the superconductor is coated with the metal coating having a relatively low contact resistance and then connected by an appropriate method. In this case, as a material for joining the metal-coated superconductor, there are a solder mainly composed of tin and lead and a metal paste such as a silver paste. Solder is excellent in that it can be easily processed by local heating at room temperature, such as easy bonding. In the case of solder connection, the thickness of the metal layer in the connection portion is usually about 100 to 50 μm. Further, an adhesive such as silver paste is also excellent in the following points. When silver paste is used as an adhesive and sintered by heat treatment, a thin metal layer of 25 μm or less is obtained due to the small specific resistance of silver itself and the shrinkage of the metal layer at the joint due to sintering. Therefore, the connection resistance can be reduced compared to the solder connection. In this sintering step, heat treatment in a reduced pressure atmosphere or vacuum is desirable from the viewpoint of void removal.
[0025]
Although it is desirable that the thickness of the normal connection portion between the superconductors is thinner, when the superconductors are in direct contact with each other, the contact resistance is increased. 10 mm or less is preferable, and 1 mm or less is more preferable. In practice, it is related to the surface roughness of the superconductor, but an average value of 100 to 2 μm is desirable. More desirably, the thickness is 50 to 2 μm. More preferably, it is 25-2 μm.
The low resistance conductor functions as a current lead by attaching electrodes or the like to both ends. As the electrode material, copper, aluminum, silver or the like having a small specific resistance is desirable.
[0026]
By arranging the cooled low resistance conductor in the heat insulating layer, a power supply cable can be configured. Here, the cable means a conductor in which a heat insulating layer surrounds a low-resistance conductor, and a conductor having electrodes at least at both ends of the low-resistance conductor is called a current lead.
[0027]
In addition, when a coil is manufactured using a low-resistance conductor, a cylindrical coil similar to a conventional wire can be made by connecting arc-shaped superconductors, but a linear superconductor. It is extremely efficient in the manufacturing process to produce a coil with a small number of members (at least two members) having a certain angle of bend and 360 degrees. FIG. 5 shows an example of a coil using a member having a bending angle of 45 degrees (n = 8). In this case, it is comprised by the member which consists of three types of superconductors except one bending member. In general, since Jc decreases in a strong magnetic field, it is efficient to use a relatively thick conductor inside the coil and a relatively thin conductor at the outer periphery. In addition, since the Jc characteristics in the magnetic field differ depending on the composition of rare earth elements, the outer peripheral part uses a material having a high critical current density in a low magnetic field, and the inner peripheral part has a high critical current density in a high magnetic field. It is desirable to select the composition of the rare earth element according to the characteristics of the superconductor.
[0028]
When the coil is energized, an electromagnetic force acts on the low resistance conductor, so it is necessary to reinforce it with resin or fiber reinforced plastic. Further, it is desirable to provide a cooling path through which a refrigerant or the like flows in order to efficiently remove heat.
By using a coil made of such a low-resistance conductor on the secondary side with a small winding ratio, a transformer capable of passing a large current on the secondary side can be obtained. Moreover, such a transformer functions as an AC power source capable of energizing a large current.
[0029]
【Example】
Example 1
Y2OThree, BaO2, CuO raw powders are mixed so that the molar ratio of each metal element (Y: Ba: Cu) is (13:17:24), and 0.5% by mass of Pt is added to the mixed powder and mixed. A raw material powder was prepared. This raw material powder was calcined at 900 ° C. in an oxygen stream. This calcined powder is 2 ton / cm using a rubber press.2Was formed into a disk-shaped molded body having a diameter of 55 mm and a thickness of 20 mm.
[0030]
This was heated up to 1150 ° C. in the atmosphere over 8 hours and held for 1 hour. After that, using a Sm-based seed crystal, the seed crystal was arranged at 1040 ° C. so that the normal of the board surface substantially coincided with the c-axis. Thereafter, the temperature was lowered to 1005 ° C. over 30 minutes, and further cooled gradually to 970 ° C. over 220 hours for crystal growth. Subsequently, it was cooled to room temperature in 20 hours. The obtained cylindrical Y-type bulk material having a diameter of about 46 mm was sliced to a thickness of 0.6 mm, and further processed to a width of 2.0 mm and a length of 40 mm to prepare a rod-shaped sample. The material thus obtained is a single crystal YBa2CuThreeO7-xAbout 1μm Y in the phase2BaCuOFiveThe phase had a finely dispersed structure. YBa2CuThreeO7-xThe relationship with the crystal orientation of the phase is shown in FIG.
[0031]
Silver was deposited on these rod-shaped sample surfaces by sputtering of about 2 μm, and then annealed in an oxygen stream. The annealing heat treatment pattern was raised from room temperature to 600 ° C in 6 hours, held for 1 hour, then lowered to 450 ° C in 2 hours, further lowered to 380 ° C in 60 hours, and cooled to room temperature in 12 hours .
[0032]
These rod-shaped samples are electrically connected to the low resistance conductor having the cross section shown in FIGS. 7A to 7C using the silver-containing solder in the arrangement shown in FIG. Was made. At this time, the thickness of the metal layer was about 100 μm in normal soldering, but the thickness of the metal layer could be reduced to about 50 μm by solidifying the solder while applying pressure. And after attaching the electric current introduction terminal and the voltage terminal to the conductor produced by each connection method, it was immersed in liquid nitrogen, and the superconductor was made into the superconducting state.
[0033]
When the resistance was measured by energizing 500A to the above three types of low resistance conductors, each of them was 1.25 × 10-FiveΩ, 0.69 × 10-FiveΩ, 0.75 × 10-FiveΩ, apparent resistivity is 3.0 × 10-11 Ωm, 2.5 × 10-11Ωm, 2.7 × 10-11Ωm, copper resistivity at liquid nitrogen temperature (77K) (2.5 × 10-9It was found that the resistivity is about two orders of magnitude lower than that of (Ωm).
[0034]
(Example 2)
Raw material powder Y2OThreeTo Dy2OThreeA Dy-based bulk material was produced in the same manner as described in Example 1 only by changing to This was sliced and cut to a thickness of 0.6 mm, and then processed into a rod-shaped material having a curved and bent shape as shown in FIGS. 8 (a) and 8 (b) together with the rod-shaped material of FIG. After forming silver on the surface in the same manner as in Example 1, each member was combined to produce an L-shaped low-resistance conductor having a total length of about 1 m. At this time, the connection between the superconductors was performed in the same manner as in Example 1 using solder in the manner shown in FIG.
In this connection, the silver coating layer was 5 μm and the solder layer was about 50 μm.
[0035]
When the resistance was measured by applying 500A to the above two types of low resistance conductors, each was about 1.3 × 10-FiveΩ, apparent resistivity is about 3.0 × 10-11It was found that the resistivity was about two orders of magnitude lower than the resistance of copper at liquid nitrogen temperature (77K).
In addition, such a cable or conductor functions as a current lead.
[0036]
(Example 3)
A copper electrode was connected to the end of the low resistance conductor produced in Example 1, and then an insulating coating was applied. Then, it was inserted into the center of the triple tube as shown in FIG. 9 (a). In addition, the end of the triple tube that can be connected in series has the structure shown in FIG. 9 (b). There is a copper electrode that is insulated from the surroundings, and a structure that covers the liquid nitrogen channel with a vacuum heat insulating layer. It has become. By connecting five such cables in series and further connecting a load and a DC power source, a power transmission experiment circuit shown in FIG. 10 was produced. When this load is energized with 500A, the power transmission loss generated in one cable is about 3.2W, and the loss at room temperature (about 120W) of the copper wire with the cable thickness (outer diameter of the triple tube) In comparison, it could be reduced to about 1/40.
[0037]
Example 4
By the method described in Example 1 and Example 2, Y-type and Dy-type columnar bulk materials having a diameter of about 46 mm were prepared. After slicing and cutting these pieces to 1.0 mm, a straight rod-shaped material having a width of 1.9 mm from the Y-based material and a 2.2-mm straight rod-shaped material from the Dy-based material and a rod-shaped material having a bending angle of 45 degrees are prepared, and these are coated with silver After the application, oxygen addition treatment was performed by the annealing method described in Example 1. They were electrically connected by solder. At this time, the thickness of the solder layer was about 60 μm, and the thickness of each silver coating was 5 μm. An eight-turn pancake coil (outer diameter 62 mm, outermost diameter 138 mm) using a conductor with a width of 2.2 mm on the inside and 5 turns on the outside and a conductor with a width of 1.9 mm on the outside, and a 0.4 mm thick glass Fabricated on a fiber reinforced plastic (FRP) as shown in FIGS. 5 (a) and 5 (b). In this FRP, holes with a diameter of 2 mm are formed in a lattice shape, and these holes serve as a liquid nitrogen channel. For bonding the FRP and the conductor, a resin containing about 20% by volume of a filler of several μm was used.
Thirty-one such pancake coils were stacked and electrically connected in the direction in which the magnetic fields generated by each pancake coil were strengthened to produce a stacked coil having a height of about 80 mm. At this time, it connected so that the direction of a vortex might be reversed for every layer so that the terminal inside and outside of each pancake coil might be connected.
[0038]
After connecting the current introduction terminal to the laminated coil, it was immersed in liquid nitrogen and cooled. When 500A was energized, the generated voltage in the coil was 1.5V and a magnetic field of about 2.0T was generated in the center. At this time, there was no voltage increase due to heat generation, and the coil did not burn out even when energized for a long time.
Thus, it was found that a strong magnetic field can be easily generated by using a low resistance conductor.
[0039]
(Example 5)
By the method described in Example 1, a cylindrical bulk material having a Y-system diameter of about 46 mm was produced. After slicing and cutting this to 1.5 mm, a linear rod-shaped material having a width of 3.0 mm and a rod-shaped material having a bending angle of 45 degrees were prepared, and after these were coated with silver, the annealing method described in Example 1 was used. Then, oxygen addition treatment was performed. As shown in FIGS. 11 (a) and 11 (b), they were electrically connected by soldering to produce a solenoid coil (the
[0040]
(Example 6)
Single-crystal YBa produced in Example 12CuThreeO7-xAbout 1μm Y in the phase2BaCuOFiveAfter silver is deposited on the surface of a rod-shaped material having a structure in which phases are finely dispersed by sputtering of about 2 μm, these rod-shaped samples are formed as low-resistance conductors having cross sections shown in FIGS. 7 (a) to (c). In the arrangement shown in Fig. 1, a silver paste was used for connection to produce a conductor of about 1 m. About 1.3 × 10 this conductor2Heating was performed at about 900 ° C. for about 1 hour under reduced pressure of Pa to sinter the silver particles of the silver paste and the silver film on the surface of the rod-shaped material. At this time, the total thickness of the silver layer was about 25 μm.
[0041]
Then, the temperature was raised from room temperature to 600 ° C in 6 hours, held for 1 hour, then lowered to 450 ° C in 2 hours, further lowered to 380 ° C in 60 hours, cooled to room temperature in 12 hours, oxygen annealed Processed.
After the current introduction terminal and the voltage terminal were attached to the conductors produced by the respective connection methods, they were immersed in liquid nitrogen to bring the superconductor into a superconducting state.
[0042]
When the above three types of low-resistance conductors were energized with 500A and the resistance was measured, each 1.25 × 10-6Ω, 0.76 × 10-6Ω, 0.72 × 10-6Ω, apparent resistivity is 3.0 × 10-12Ωm, 2.8 × 10-12Ωm, 2.7 × 10-12Ωm, copper resistivity at liquid nitrogen temperature (77K) (2.5 × 10-9It was found that the resistivity was about 3 orders of magnitude lower than (Ωm).
[0045]
【The invention's effect】
As described above, the present invention provides a low-resistance conductor that is substantially smaller than the specific resistance of copper, a method for manufacturing the same, and various electrical devices using the conductor, and has a significant industrial effect. is there.
[Brief description of the drawings]
FIG. 1 shows an example of a low-resistance conductor in which two superconductors are alternately connected in parallel.
FIG. 2 shows an example of a low resistance conductor in which three superconductors are alternately connected in parallel.
[Fig. 3] Alternately superconductor L1Of low resistance conductors connected with a gap of
(a) Example of arrangement above and below (b) Example of arrangement above
[Fig. 4] (a) to (e) are cross-sectional schematic diagrams of a low-resistance conductor in which a plurality of superconductors are connected.
FIG. 5 shows an example of a coil in which a bent member and a rod-like member are connected in combination.
(a) Viewed from the surface. The black part shows two types (long and short) of rod-shaped superconducting members.
(b) Viewed from the back. The black part is bent. It is made of one type except for the hatched members.
6 is a rod-shaped superconductor produced in Example 1. FIG.
[Fig. 7] (a) Cross-sectional shape of a low-resistance conductor in which two superconductors are alternately connected in parallel.
(b) Cross section of low resistance conductor with three superconductors connected in parallel
(c) Cross section of low-resistance conductor with three superconductors connected in parallel
[Fig.8] (a) Example of bent member
(b) Example of curved member
[Fig. 9] (a) Cross section of triple tube and conductor arranged in triple tube
(b) Connectable triple tube end structure
Fig. 10 Circuit diagram of power transmission experiment
[Fig. 11] (a) Secondary low-resistance coil used in the transformer seen from the surface
(You can see the bent parts)
(b) Secondary side low resistance coil used in the transformer viewed from the back side
(Bar-shaped member is visible)
FIG. 12 shows a structure of a transformer using a low resistance conductor.
[Explanation of symbols]
1 Butting part
2 Short rod-shaped member
3 Long rod-shaped member
4 Bent material
5 Insulation coating
6 Liquid nitrogen channel
7 Vacuum insulation layer
8 Low resistance conductor
9 Flange
10 O-ring
11 Copper lead
12 Liquid nitrogen channel
13 Cable
14 Power supply
15 Load
16 Bent material
17 Bar-shaped member
18 Primary winding
19 Iron core with regular octagonal cross section
20 Secondary winding made of low resistance conductor
21 Joints between coils made of low-resistance conductors
Claims (35)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001277050A JP4414617B2 (en) | 2001-01-16 | 2001-09-12 | Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply |
PCT/JP2002/000254 WO2002056318A1 (en) | 2001-01-16 | 2002-01-16 | Low resistance conductor, method of producing the same, and electric component using the same |
US10/239,094 US7138581B2 (en) | 2001-01-16 | 2002-01-16 | Low resistance conductor, processes of production thereof, and electrical members using same |
CNB028001079A CN1241208C (en) | 2001-01-16 | 2002-01-16 | Low resistance conductor, method of producing same and electric component using same |
EP02715765.0A EP1353339B1 (en) | 2001-01-16 | 2002-01-16 | Low resistance conductor, method of producing the same, and electric component using the same |
US10/465,441 US7126060B2 (en) | 2001-01-16 | 2003-06-18 | Low resistance conductors, processes of production thereof, and electrical members using same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007372 | 2001-01-16 | ||
JP2001-7372 | 2001-01-16 | ||
JP2001277050A JP4414617B2 (en) | 2001-01-16 | 2001-09-12 | Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002289049A JP2002289049A (en) | 2002-10-04 |
JP4414617B2 true JP4414617B2 (en) | 2010-02-10 |
Family
ID=26607747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001277050A Expired - Fee Related JP4414617B2 (en) | 2001-01-16 | 2001-09-12 | Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4414617B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5574520B2 (en) * | 2007-11-29 | 2014-08-20 | 国立大学法人九州工業大学 | Superconductor |
WO2009069660A1 (en) * | 2007-11-29 | 2009-06-04 | Kyushu Institute Of Technology | Noncontact measurement method for superconductor surface resistivity, measurement apparatus for the method, and superconductor |
JPWO2013164918A1 (en) * | 2012-05-02 | 2015-12-24 | 古河電気工業株式会社 | Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connection |
CN108470617A (en) * | 2018-05-30 | 2018-08-31 | 上海交通大学 | High-temperature superconductor closing coil constant current switch structure and its working method |
JP7277721B2 (en) * | 2019-03-28 | 2023-05-19 | 日本製鉄株式会社 | Oxide superconducting bulk conductor and its manufacturing method |
-
2001
- 2001-09-12 JP JP2001277050A patent/JP4414617B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002289049A (en) | 2002-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7138581B2 (en) | Low resistance conductor, processes of production thereof, and electrical members using same | |
JP5806302B2 (en) | Multifilament superconductor with reduced AC loss and its formation method | |
US5051397A (en) | Joined body of high-temperature oxide superconductor and method of joining oxide superconductors | |
JP6853267B2 (en) | 2nd generation superconducting filaments and cables | |
US20080210454A1 (en) | Composite Superconductor Cable Produced by Transposing Planar Subconductors | |
KR20120040757A (en) | High-current, compact flexible conductors containing high temperature superconducting tapes | |
JP5724029B2 (en) | Superconducting current lead, superconducting current lead device, and superconducting magnet device | |
JP2002373534A (en) | Superconducting wire, its producing method, and superconducting magnet using it | |
JP4414617B2 (en) | Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply | |
JP3328941B2 (en) | Superconducting conductor | |
JP2012059468A (en) | Superconductive current lead | |
JP3522306B2 (en) | Bi-based oxide superconducting wire and method for producing the same | |
JP3831307B2 (en) | Low resistance conductor and method of manufacturing the same | |
JP7335501B2 (en) | Oxide superconducting bulk conductor and current-carrying element | |
JP4171253B2 (en) | Low resistance composite conductor and method of manufacturing the same | |
Shibutani et al. | Fabrication of silver-sheathed Bi (2: 2: 1: 2) superconducting magnet by means of partial melt and slow cooling process | |
JP7127463B2 (en) | Oxide superconducting bulk conductor | |
Tallon | Industry warms to superconductors | |
JP3363164B2 (en) | Superconducting conductor | |
JPH10188696A (en) | Oxide superconductive wire and its connecting method | |
JP5771509B2 (en) | Superconducting cable | |
Carr Jr et al. | Possibilities for use of coated superconductors in AC applications | |
Dey et al. | Effect of magnetic field, thermal cycling and bending strain on critical current density of multifilamentary Bi-2223/Ag tape and fabrication of a pancake coil | |
NZ745190B2 (en) | Second generation superconducting filaments and cable | |
JP2014022228A (en) | Oxide superconductive conductor and production method of oxide superconductive conductor, and superconduction device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050907 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091019 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |