JPH05109323A - Superconductive assembled conductor - Google Patents

Superconductive assembled conductor

Info

Publication number
JPH05109323A
JPH05109323A JP3264550A JP26455091A JPH05109323A JP H05109323 A JPH05109323 A JP H05109323A JP 3264550 A JP3264550 A JP 3264550A JP 26455091 A JP26455091 A JP 26455091A JP H05109323 A JPH05109323 A JP H05109323A
Authority
JP
Japan
Prior art keywords
wire
current density
conductor
rods
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3264550A
Other languages
Japanese (ja)
Inventor
Takaaki Sasaoka
高明 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3264550A priority Critical patent/JPH05109323A/en
Publication of JPH05109323A publication Critical patent/JPH05109323A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide improvement in the current density required for an assembled conductor by using wire rods each reading a low-resistance value under a current density of not less than the critical current density of oxide group superconductive wire-rods for at least one part of the oxide group superconductive wire-rods forming the assernbled conductor. CONSTITUTION:For an oxide group superconductive wire-rods are used different types of tape-like wire-rods 1a and 1b each comprising a core 2 which is made of an oxide group superconductor, such as Y-Ba-Cu-O, Bi-Sr-Cu-O, Tl-13a-Cu-C, La-Na-Cu-O or the like, coated with a film 3 made of Ag, Cu, Al or the like. A plurality of the wire rods 1a, 1b are laminated upon one another, and subsequently fine lead-wire 4 is wound round the resultant laminate to assemble the wire rods into a conductor. Each of the wire rods 1a, 1b is manufactured through the process of reducing the resistance value of the wire rod given under a current density of not less than the critical current density of the wire rod by priority to the resistance value of the wire rod given under the critical current density. This process provides improvement in the current density required for the resultant assembled conductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物系超電導線材を
用いた集合導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aggregate conductor using an oxide-based superconducting wire.

【0002】[0002]

【従来の技術】超電導導体の電流大容量化を目的として
酸化物系超電導線材を集合化して導体とすることが検討
されている。
2. Description of the Related Art In order to increase the current capacity of a superconducting conductor, it has been studied to assemble oxide-based superconducting wires into a conductor.

【0003】超電導線材は磁場(B)によって流し得る
電流密度(Jc)が変化する。このJc−B特性は、超
電導線材の材料又は温度によっても異なり、同系の材料
であっても熱処理条件や添加剤の差によって大きく異な
ることがある。また、酸化物系超電導線材は現在開発の
途上にあるが、添加剤、配合比、熱処理条件、減面加工
条件等の差でJc−B特性のみならず、Jc以上の電流
密度下における抵抗値も異なる。
The current density (Jc) that can flow in the superconducting wire changes depending on the magnetic field (B). The Jc-B characteristics differ depending on the material or temperature of the superconducting wire, and even the materials of the same system may differ greatly depending on the heat treatment conditions and the difference in additives. Also, although oxide-based superconducting wires are currently under development, not only the Jc-B characteristics but also the resistance value under a current density of Jc or more due to differences in additives, compounding ratio, heat treatment conditions, surface-reduction processing conditions, etc. Is also different.

【0004】[0004]

【発明が解決しようとする課題】酸化物系超電導線材の
臨界電流(Ic)は数mTの弱い磁場中ですら低下する
ことが知られている。従って、酸化物系超電導線材を集
合化して電流大容量化を図る場合においても、導体通電
による自己磁界値によって集合導体としてのIcが制約
されてしまう。
It is known that the critical current (Ic) of an oxide-based superconducting wire decreases even in a weak magnetic field of several mT. Therefore, even when the oxide-based superconducting wires are assembled to increase the current capacity, the Ic as the assembled conductor is restricted by the self-magnetic field value due to conduction of the conductor.

【0005】このような超電導集合導体を設計する場
合、各素線の磁界ー臨界電流密度(Jc−B特性)とし
ては同質のものを使う場合が多い。しかし、導体断面の
自己磁界分布は均一にはならず、Jc−B特性の同じ線
材を束ねることは、集合導体としてのIcを高める最良
の手法とはいえない。
When designing such a superconducting collective conductor, the same magnetic field-critical current density (Jc-B characteristic) of each wire is often used. However, the self-magnetic field distribution in the conductor cross section is not uniform, and bundling wires having the same Jc-B characteristics is not the best method for increasing Ic as a collective conductor.

【0006】従来、超電導導体の設計手法としては、J
c以下の電流で使うことを前提として所要電流値が決定
されている。酸化物系の超電導線材はJc値が実用レベ
ルに達しておらず、高Jc化が最大の技術課題となって
いる。
Conventionally, as a method of designing a superconducting conductor, J
The required current value is determined on the assumption that it will be used at a current of c or less. The Jc value of oxide-based superconducting wire has not reached a practical level, and high Jc has become a major technical issue.

【0007】本発明の目的は、酸化物系超電導線材を用
いた電流大容量導体の所要電流密度を向上させることの
できる超電導集合導体を提供することにある。
An object of the present invention is to provide a superconducting collective conductor capable of improving the required current density of a large-current-capacity conductor using an oxide-based superconducting wire.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、酸化物
系超電導線材の集合導体に使用する超電導素線として、
少なくともその一部の素線に対してJc以上の電流を所
要電流として使用することにより、超電導導体の所要電
流密度を向上させることにある。
Means for Solving the Problems The gist of the present invention is to provide a superconducting element wire for use as an assembly conductor of an oxide-based superconducting wire,
It is to improve the required current density of the superconducting conductor by using a current of Jc or more as a required current for at least a part of the wires.

【0009】この場合、酸化物系超電導線材としては、
例えばY−Ba−Cu−O、Bi−Sr−Cu−O、B
i−Sr−Ca−Cu−O、Tl−Ba−Cu−O、T
l−Ba−Ca−Cu−O、Tl−Sr−Ca−Cu−
O、La−Na−Cu−O、La−Ba−Cu−O、L
a−Sr−Cu−O等の酸化物系超電導体にAg、C
u、Al、それらを主体とした合金等の常電導体からな
る被覆を施したものが用いられる。
In this case, as the oxide-based superconducting wire,
For example, Y-Ba-Cu-O, Bi-Sr-Cu-O, B
i-Sr-Ca-Cu-O, Tl-Ba-Cu-O, T
l-Ba-Ca-Cu-O, Tl-Sr-Ca-Cu-
O, La-Na-Cu-O, La-Ba-Cu-O, L
Ag, C in oxide-based superconductors such as a-Sr-Cu-O
A material coated with a normal conductor such as u, Al, or an alloy mainly containing them is used.

【0010】また、そのような線材からなる素線の少な
くとも一部は、Jc値向上よりJc以上の電流密度下に
おける抵抗値低減を優先させて製造されたものが用いら
れる。
At least a part of the wire made of such a wire is manufactured by giving priority to the reduction of the resistance value under the current density of Jc or more rather than the improvement of the Jc value.

【0011】[0011]

【実施例】図1は、本発明に当って試作した超電導集合
導体の構造を示したものである。ここでは酸化物系超電
導線材1としてTl系の酸化物超電導体からなるコア2
にAgからなる被覆3を施したタイプの異なるテープ状
線材1a及び1bを用い、その複数枚を積層した後、細
い導線4を巻き付けて集合化させている。しかして、各
テープ状線材1a及び1bの寸法は全て同一で、厚さ
0.15mm、幅2.7mm、超電導占積率約30%となっ
ており、上下の各表面側に線材1aを夫々10枚、内側
に線材1bを30枚配置して積層した後、その外周に径
の細い導線4を巻き付けて集合化している。
EXAMPLE FIG. 1 shows the structure of a superconducting collective conductor prototyped according to the present invention. Here, a core 2 made of a Tl-based oxide superconductor is used as the oxide-based superconducting wire 1.
The tape-shaped wire rods 1a and 1b of different types having the coating 3 made of Ag on are used, a plurality of the tape-shaped wire rods 1a and 1b are stacked, and then the thin conductive wire 4 is wound to be assembled. The dimensions of the tape-shaped wire rods 1a and 1b are all the same, with a thickness of 0.15 mm, a width of 2.7 mm, and a superconducting space factor of about 30%. After 10 sheets and 30 pieces of the wire rods 1b are arranged on the inner side and laminated, the conductor wire 4 having a small diameter is wound around the outer periphery thereof to be assembled.

【0012】この場合、各線材1a及び1bの製造条件
は、900℃×50時間の熱処理を4回繰返すまでは同
じで、この後、線材1aについては800℃×20時間
の熱処理を付加した。かくして、線材としてはその線材
のJc値以上の電流密度下における抵抗値に差のあるも
のが得られ、その集合導体については、Jc値の低い側
の線材のJc値以上の電流通電下を所要運転負荷とされ
る。
In this case, the manufacturing conditions of the respective wire rods 1a and 1b were the same until the heat treatment at 900 ° C. for 50 hours was repeated four times, after which the heat treatment at 800 ° C. for 20 hours was added to the wire rod 1a. Thus, a wire having a difference in resistance value under the current density of the Jc value of the wire or more is obtained, and the assembly conductor is required to be energized with the current of the Jc value or more of the wire with the lower Jc value. It is regarded as a driving load.

【0013】図4は、前記集合導体の液体窒素温度(7
7K)下における電圧(V)と電流(I)の関係(V−
I特性)を示したもので、200A以上の電流値では抵
抗が発生しているものの、1000A通電時の抵抗は銅
線集合導体の抵抗値より遥かに小さな値となっている。
FIG. 4 shows the liquid nitrogen temperature (7
The relationship between the voltage (V) and the current (I) (V-
I characteristic), the resistance is generated at a current value of 200 A or more, but the resistance when the current is 1000 A is much smaller than the resistance value of the copper wire aggregate conductor.

【0014】酸化物系超電導線材はJc値が低いにもか
かわらず、Jc以上の電流通電状態の抵抗値が小さいと
いう特徴を持つ。従って、この特性を利用して超電導線
材集合導体としての所要電流密度を向上させることが可
能である。
Although the oxide superconducting wire has a low Jc value, it has a feature that the resistance value is small in the current-carrying state of Jc or more. Therefore, it is possible to improve the required current density as a superconducting wire aggregate conductor by utilizing this characteristic.

【0015】超電導線材の集合導体はその通電時、導体
断面上の自己磁界分布が均一でなく、一部の線材がその
導体のJcを越え、他の線材がJc以下となるケースが
ある。このようなケースの集合導体としての臨界電流は
Jc値の最低となる線材の特性で決まってしまうが、J
c以上の通電を前提として低抵抗状態で使用すれば、各
素線はその性能をフルに使えることになり、超電導電力
ケーブル、電流リードの導体等に適用することができる 図2は、超電導集合導体の別の例を示し、Cu、Al等
の安定化材からなる中空パイブ6の周囲に複数の酸化物
系超電導線材を、タイプの異なる線材5a及び5bを交
互に配置し、低温半田7等で集合化したもので、各線材
5a及び5bは図1における線材1a及び1bと同様に
処理されたものが用いられる。
When the collective conductor of the superconducting wire is energized, the self-magnetic field distribution on the cross section of the conductor is not uniform, and some wires exceed Jc of the conductor and other wires become Jc or less. The critical current as the collective conductor in such a case is determined by the characteristics of the wire having the lowest Jc value.
If it is used in a low resistance state on the assumption that it is energized over c, each wire can fully utilize its performance, and it can be applied to superconducting power cables, conductors of current leads, etc. Another example of the conductor is shown, in which a plurality of oxide-based superconducting wires are alternately arranged around the hollow pipe 6 made of a stabilizing material such as Cu or Al, and wire rods 5a and 5b of different types are alternately arranged. The wire rods 5a and 5b treated in the same manner as the wire rods 1a and 1b in FIG. 1 are used.

【0016】この例の場合、中空パイプ6内に液体窒素
や液体ヘリウム等の寒剤を流すことで冷却効果を高める
ことができる。
In the case of this example, the cooling effect can be enhanced by flowing a cryogen such as liquid nitrogen or liquid helium in the hollow pipe 6.

【0017】図3は、さらに集合導体の別の例を示すも
ので、例えば銅版をU字状に成形した安定化材8内に複
数のテープ状の酸化物系統超電線材を内側にタイプBの
線材1b、外側にタイプAの線座1aを夫々積層状態に
収容して低温半田7等で集合一体化したものをテープ状
の電気絶縁層9を介して接合し、電流往復型にしたもの
である。
FIG. 3 shows another example of the collective conductor. For example, a plurality of tape-shaped oxide-based super electric wire materials are provided inside a stabilizing material 8 in which a copper plate is formed in a U shape. Wire rod 1b, and type A wire seat 1a on the outer side, which are housed in a laminated state and collectively integrated with low temperature solder 7 etc., are joined together through a tape-shaped electric insulating layer 9 to form a current reciprocating type. Is.

【0018】いずれの導体構成においても超電導臨界電
流密度以下の電流通電下を所要運転負荷とされる。
In any of the conductor configurations, the required operating load is set under the current flow of the superconducting critical current density or less.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によれば、集合導体としての臨界電流密度以上の電流密
度を運転時の所要電流密度とすることを前提として、集
合化される線材の少なくとも一部に臨界電流密度以上の
電流密度下における抵抗値が低い線材を用いているの
で、各線材の性能をフルに使え、集合導体としての所要
電流密度を向上させることができる。
As is apparent from the above description, according to the present invention, wire rods to be assembled are provided on the assumption that a current density higher than the critical current density as the assembly conductor is the required current density during operation. Since a wire having a low resistance value under a current density equal to or higher than the critical current density is used for at least a part of the above, the performance of each wire can be fully utilized, and the required current density as an aggregate conductor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導導体の一実施例の概要を説
明図。
FIG. 1 is an explanatory diagram outlining an embodiment of a superconducting conductor according to the present invention.

【図2】超電導導体の別の例を示す説明図。FIG. 2 is an explanatory view showing another example of a superconducting conductor.

【図3】超電導導体の別の例を示す説明図。FIG. 3 is an explanatory view showing another example of a superconducting conductor.

【図4】Jc−B特性図。FIG. 4 is a Jc-B characteristic diagram.

【符号の説明】[Explanation of symbols]

1a、1b、5a及び5b 酸化物系超電導線材 2 酸化物系超電導のコア 3 Agの被覆 4 導線 6 中空パイプ 7 低温半田 8 安定化材 9 電気絶縁層 1a, 1b, 5a and 5b Oxide-based superconducting wire 2 Oxide-based superconducting core 3 Ag coating 4 Conductive wire 6 Hollow pipe 7 Low temperature solder 8 Stabilizer 9 Electrical insulation layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】常電導金属の被覆材を含む酸化物系超電導
線材を複数本集合した導体であって、前記線材の少なく
とも一部として、臨界電流密度以上の電流密度下で抵抗
値の低い線材を用いたことを特徴とする超電導集合導
体。
1. A conductor obtained by assembling a plurality of oxide-based superconducting wires containing a coating material of a normal-conducting metal, wherein at least a part of the wires has a low resistance value under a current density of a critical current density or higher. A superconducting collective conductor characterized by using.
JP3264550A 1991-10-14 1991-10-14 Superconductive assembled conductor Pending JPH05109323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3264550A JPH05109323A (en) 1991-10-14 1991-10-14 Superconductive assembled conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3264550A JPH05109323A (en) 1991-10-14 1991-10-14 Superconductive assembled conductor

Publications (1)

Publication Number Publication Date
JPH05109323A true JPH05109323A (en) 1993-04-30

Family

ID=17404829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3264550A Pending JPH05109323A (en) 1991-10-14 1991-10-14 Superconductive assembled conductor

Country Status (1)

Country Link
JP (1) JPH05109323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747975A1 (en) * 1995-06-08 1996-12-11 PIRELLI CAVI S.p.A. Process for producing a multifilamentary superconducting tape and electrically conductive element comprising said tape
EP1067566A1 (en) * 1999-07-07 2001-01-10 Tohoku University Magnetic flux flow resistive magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747975A1 (en) * 1995-06-08 1996-12-11 PIRELLI CAVI S.p.A. Process for producing a multifilamentary superconducting tape and electrically conductive element comprising said tape
EP1067566A1 (en) * 1999-07-07 2001-01-10 Tohoku University Magnetic flux flow resistive magnet

Similar Documents

Publication Publication Date Title
JP3215697B2 (en) Superconducting coil that limits fault current
US20080210454A1 (en) Composite Superconductor Cable Produced by Transposing Planar Subconductors
US7698804B2 (en) Method for producing a fully transposed high Tc composite superconductor and a superconductor produced by said method
US4743713A (en) Aluminum-stabilized NB3SN superconductor
Hayashi et al. Development of Ag-sheathed Bi-2223 superconducting wires and their applications
EP0412442B1 (en) Superconductive conductor
CA2018681C (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
Ayai et al. Development of Bi-2223 superconducting wires for AC applications
US3440336A (en) Web-shaped superconductor
JP3018534B2 (en) High temperature superconducting coil
EP3511953B1 (en) Low-temperature superconducting wire rod having low stabilizing matrix ratio, and superconducting coil having same
JPH05109323A (en) Superconductive assembled conductor
JP2929622B2 (en) How to use oxide superconductor
JP3363164B2 (en) Superconducting conductor
JP3647884B2 (en) Oxide superconducting conductor
JP2913940B2 (en) Superconducting current lead
JPS62214680A (en) Superconductor for thermal permanent current switch
JPH10247428A (en) Oxide superconductive wire
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JPS61265881A (en) Thermal type superconductive switch
CN116721809A (en) Superconducting strip structure for improving superconducting constant current switch resistor and manufacturing method
Kumakura et al. FABRICATION AND PERFORMANCE TESTS OF Bi-2212 PANCAKE COILS
Sampson New Superconducting Material for Magnet Applications
JPH05190326A (en) Permanent current coil
JPS5988882A (en) Thermal type superconductive switch