JPH05190326A - Permanent current coil - Google Patents

Permanent current coil

Info

Publication number
JPH05190326A
JPH05190326A JP628992A JP628992A JPH05190326A JP H05190326 A JPH05190326 A JP H05190326A JP 628992 A JP628992 A JP 628992A JP 628992 A JP628992 A JP 628992A JP H05190326 A JPH05190326 A JP H05190326A
Authority
JP
Japan
Prior art keywords
coil
current
permanent current
magnetic field
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP628992A
Other languages
Japanese (ja)
Other versions
JP2871260B2 (en
Inventor
Jun Fujigami
純 藤上
Kenichi Sato
謙一 佐藤
Nobuhiro Shibuta
信広 渋田
Hideto Mukai
英仁 向井
Takeshi Kato
武志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP628992A priority Critical patent/JP2871260B2/en
Publication of JPH05190326A publication Critical patent/JPH05190326A/en
Application granted granted Critical
Publication of JP2871260B2 publication Critical patent/JP2871260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a superconducting magnet of simpler structure. CONSTITUTION:A permanent current coil provided with a junction 22 where a coil 21 composed of an oxide superconductive wire 24 is joined to the oxide superconductive wire 24 composing the coil 21; and a pair of terminals 23a and 23b mounted on the oxide superconductive wire 24 between the coil 21 and the junction 22 so that the current will be simultaneously fed to the coil 21 and the junction 22. The permanent current mode of the coil 22 and the magnetic field generated there are controlled by controlling the current fed through the pair of terminals 23a and 23b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物超電導材料を
用いた永久電流コイルに関し、特に超電導マグネットと
して有用なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent current coil using an oxide superconducting material, and more particularly to a coil useful as a superconducting magnet.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】一般
的に超電導マグネットにおいて永久電流コイルを励磁す
るためには、コイルを形成する超電導体の接合部または
その付近を一旦超電導状態から常電導状態ににする必要
がある。
2. Description of the Related Art Generally, in order to excite a permanent current coil in a superconducting magnet, a superconducting joint forming a coil or its vicinity is temporarily changed from a superconducting state to a normal conducting state. Need to

【0003】このため、従来の合金系または化合物系超
電導線材を用いた超電導マグネットでは、超電導体の接
合部またはその付近にヒータまたは磁気スイッチを用い
た永久電流スイッチを取付け、その部分について加熱す
るかまたは磁場をかけるかして通電前からその部分を一
旦常電導状態にしておき、永久電流コイルに電流を流し
ていた。
Therefore, in a conventional superconducting magnet using an alloy-based or compound-based superconducting wire, a heater or a permanent current switch using a magnetic switch is attached at or near the junction of the superconductors to heat the portion. Alternatively, by applying a magnetic field, the part was once brought into the normal conducting state before energization, and a current was passed through the permanent current coil.

【0004】このような永久電流スイッチは、超電導線
材の急激な超電導−常電導転移を防ぐとともに、磁場の
昇降および永久電流モードのオン・オフに使用される。
Such a persistent current switch is used for preventing abrupt superconducting-normal conducting transition of a superconducting wire and for raising and lowering a magnetic field and turning on and off a persistent current mode.

【0005】しかしながら、従来の超電導マグネットに
おいて、必要とされる永久電流スイッチは、使用される
ヒータまたは磁気スイッチのためマグネットの構造を複
雑にしていたとともに、スイッチ部がクエンチするなど
の電磁気的不安定性等の問題を有していた。また、スイ
ッチ部を常電導状態にするための加熱により、液体ヘリ
ウムを大巾に消費するという欠点も存在した。
However, in the conventional superconducting magnet, the required permanent current switch complicates the structure of the magnet due to the heater or magnetic switch used, and also causes electromagnetic instability such as quenching of the switch section. Had problems such as. In addition, there is a drawback that liquid helium is consumed extensively by heating to bring the switch part to the normal conducting state.

【0006】それゆえに、この発明の目的は、より簡単
な構造で、しかも運転が安定し、さらに低コストの超電
導マグネットを実現することができる永久電流コイルを
提供することにある。
Therefore, an object of the present invention is to provide a permanent current coil which has a simpler structure, is stable in operation, and can realize a low-cost superconducting magnet.

【0007】また、この発明のさらなる目的は、液体ヘ
リウムよりも沸点が高い寒材を用いても使用が可能であ
る永久電流コイルを作製することができる技術を提供す
ることにある。
A further object of the present invention is to provide a technique capable of producing a permanent current coil which can be used even with a cold material having a boiling point higher than that of liquid helium.

【0008】[0008]

【課題を解決するための手段】酸化物超電導体は、従来
の超電導体よりも超電導転移温度が高く、しかもより大
きな比熱を有する。このような酸化物超電導体について
その常電導転移現象を詳細に検討した結果、磁場や通電
による超電導−常電導転移は、同温度で比較すると他の
合金系超電導体などよりも実質的に緩やかであることが
判った。
Oxide superconductors have a higher superconducting transition temperature and a higher specific heat than conventional superconductors. As a result of a detailed examination of the normal transition phenomenon of such an oxide superconductor, the superconducting-normal conduction transition due to a magnetic field or energization is substantially slower than that of other alloy-based superconductors at the same temperature. I knew it was.

【0009】本発明者らは、このような性質に着目し、
酸化物超電導線材を用いてより簡単な構造の永久電流コ
イルを実現させるに至った。
The present inventors have paid attention to such a property,
Using an oxide superconducting wire, we have realized a permanent current coil with a simpler structure.

【0010】すなわち、この発明に従う永久電流コイル
は、酸化物超電導線材で形成されるコイル部と、コイル
部を形成する酸化物超電導線材が接合される接合部と、
コイル部および接合部に同時に電流を流すことができる
よう、酸化物超電導線材上においてコイル部と接合部の
間に設けられる1対の端子部とを備え、1対の端子部を
介して流す電流の制御により、コイル部における永久電
流モードおよび発生磁場が制御されることを特徴とす
る。
That is, the permanent current coil according to the present invention comprises a coil portion formed of an oxide superconducting wire and a joint portion to which the oxide superconducting wire forming the coil portion is joined.
In order to allow a current to flow through the coil portion and the joint portion at the same time, a pair of terminal portions provided between the coil portion and the joint portion on the oxide superconducting wire is provided, and a current flowing through the pair of terminal portions. Is controlled to control the permanent current mode and the generated magnetic field in the coil section.

【0011】この発明に従う酸化物超電導線材は、たと
えば、金属により被覆された酸化物超電導体よりなる線
材等を含むが、酸化物超電導体を導体として用いた線材
であれば、いかなるものにも限定されない。酸化物超電
導体としては、たとえば、イットリウム系、ビスマス系
およびタリウム系のものを好ましく用いることができ
る。また、臨界電流密度、低毒性および希土類元素を必
要としないことでビスマス系がより好ましく、さらにビ
スマス系においては、特に高温相がより好ましい。
The oxide superconducting wire according to the present invention includes, for example, a wire made of an oxide superconductor coated with a metal, but is not limited to any wire as long as the oxide superconductor is used as a conductor. Not done. As the oxide superconductor, for example, yttrium-based, bismuth-based, and thallium-based ones can be preferably used. In addition, a bismuth-based material is more preferable because a critical current density, low toxicity and a rare earth element are not required, and in the bismuth-based material, a high temperature phase is particularly preferable.

【0012】この発明に従う接合部は、酸化物超電導線
材の超電導体同士が直接接合されているか、または酸化
物超電導体のみを介して線材の超電導体同士が接続され
ているものであれば、特に限定されるものではない。
The joining portion according to the present invention is particularly preferable as long as the superconductors of the oxide superconducting wires are directly joined to each other or the superconductors of the wires are connected only through the oxide superconductors. It is not limited.

【0013】上記接合部として、たとえば金属被覆され
た酸化物超電導線材を用いる場合、接合されるべき線材
の金属被覆をはがし、かつ露出した超電導体同士を重ね
合わせて接合したもの、並びに金属被覆がはがされ露出
した超電導体間に別の酸化物超電導体を介在させて線材
の超電導体同士を接続したもの等を挙げることができ
る。本発明者らの検討では、後者の方が大きな超電導電
流が得られ、かつ安定した接続が得られるのでより好ま
しい。このような接合には、たとえば、材料が重ね合わ
せられた部分に圧力を加えた後、加熱処理する方法等を
用いることができる。
When, for example, a metal-coated oxide superconducting wire is used as the above-mentioned joining portion, the metal coating of the wire to be joined is peeled off, and the exposed superconductors are superposed and joined together, as well as the metal coating. The superconductors of the wire may be connected to each other by interposing another oxide superconductor between the stripped and exposed superconductors. According to the study by the present inventors, the latter is more preferable because a larger superconducting current can be obtained and a stable connection can be obtained. For such joining, for example, a method of applying heat to the portions where the materials are superposed and then performing heat treatment can be used.

【0014】[0014]

【作用】図1は、この発明に従う永久電流コイルを駆動
させるための簡単な回路を示している。図において、点
線で囲まれる永久電流コイル10は、酸化物超電導線材
で形成されたコイル部11、およびコイル部11を形成
する線材が接合された接合部12を有する。また、コイ
ル部11と接合部12の間には、それぞれ端子部13a
および13bが設けられている。そして、端子部13a
と13bの間に可変抵抗14を介して電源15より電圧
が印加されるようになっている。
FIG. 1 shows a simple circuit for driving a persistent current coil according to the present invention. In the figure, a permanent current coil 10 surrounded by a dotted line has a coil portion 11 formed of an oxide superconducting wire and a joining portion 12 to which the wires forming the coil portion 11 are joined. Further, between the coil portion 11 and the joint portion 12, the terminal portion 13a is provided.
And 13b are provided. And the terminal portion 13a
And 13b, a voltage is applied from the power source 15 via the variable resistor 14.

【0015】図を参照しながら、本発明に従う永久電流
コイルの動作機構について以下に説明する。まず、超電
導状態にされた永久電流コイル10に、端子部13a、
13bを介して電流を流し始める。このとき、可変抵抗
を用いて電流値を0から徐々に上げていくと、始めはコ
イル部11のインダクタンスのため、電流は超電導状態
の接合部12の方に流れ続け、コイル部11に磁場は発
生しない。しかし、電流値がある値を越えると、接合部
12およびその付近の超電導状態が破れ、常電導状態に
転移する。その結果、コイル部11に電流が流れ始め、
コイル部11の励磁が始まる。ある程度磁場が発生した
状態で電源をオフにすると、永久電流によりコイル内に
強い磁界が保たれる。このように、本発明では、接合部
の酸化物超電導体自身に流す電流値を変化させること
で、超電導−常電導転移を行ない、永久電流モードを制
御することができる。
The operation mechanism of the persistent current coil according to the present invention will be described below with reference to the drawings. First, in the persistent current coil 10 in the superconducting state, the terminal portion 13a,
Begin to pass current through 13b. At this time, when the current value is gradually increased from 0 using the variable resistance, the current continues to flow toward the superconducting junction 12 due to the inductance of the coil 11, and the magnetic field is generated in the coil 11. Does not occur. However, when the current value exceeds a certain value, the superconducting state of the junction 12 and its vicinity is broken, and the state changes to the normal conducting state. As a result, a current starts to flow in the coil portion 11,
Excitation of the coil portion 11 starts. When the power supply is turned off with a magnetic field generated to some extent, a strong magnetic field is maintained in the coil due to the permanent current. As described above, in the present invention, by changing the value of the current flowing through the oxide superconductor itself at the junction, the superconducting-normal conducting transition can be performed and the persistent current mode can be controlled.

【0016】一方、コイル部で磁界を発生させた状態に
おいて、磁場を発生させたときと反対の電流を端子部か
ら通電していくと、永久電流モードをオフにすることが
できるとともに、磁場を変化させることができる。
On the other hand, in the state where the magnetic field is generated in the coil portion, if a current opposite to that when the magnetic field is generated is supplied from the terminal portion, the permanent current mode can be turned off and the magnetic field can be reduced. Can be changed.

【0017】[0017]

【実施例】【Example】

実施例1 Bi:Pb:Sr:Ca:Cu=1.80:0.41:
2.01:2.18:3.02の組成を持つように、酸
化物または炭酸塩を混合し、熱処理により、主に221
2相と非超電導相からなる粉末を準備した。
Example 1 Bi: Pb: Sr: Ca: Cu = 1.80: 0.41:
The oxide or carbonate is mixed so as to have a composition of 2.01: 2.18: 3.02, and mainly 221 is obtained by heat treatment.
A powder consisting of two phases and a non-superconducting phase was prepared.

【0018】この粉末に対して、大気中800℃、2時
間の脱ガス処理を施した。次に、この粉末を外径12m
m、内径8mmの銀パイプで被覆し、直径1.8mmま
で伸線加工した後、0.29mmの厚みまで圧延加工し
た。このようにして得られた幅約6mmのテープ状の線
材を845℃、50時間熱処理して焼結を行なった。得
られたビスマス系酸化物超電導線材の超電導転移温度は
110Kであった。この線材を冷間圧延により、厚み
0.26mm、幅4mmに一パスで圧延した。
The powder was degassed at 800 ° C. for 2 hours in the air. Next, this powder is 12m in outer diameter
It was covered with a silver pipe having an inner diameter of 8 mm and an inner diameter of 8 mm, drawn to a diameter of 1.8 mm, and then rolled to a thickness of 0.29 mm. The tape-shaped wire rod having a width of about 6 mm thus obtained was heat-treated at 845 ° C. for 50 hours to be sintered. The superconducting transition temperature of the obtained bismuth oxide superconducting wire was 110K. This wire rod was cold-rolled to a thickness of 0.26 mm and a width of 4 mm in one pass.

【0019】上記銀被覆超電導テープ線材を2枚重ね
て、20ターン、内径30mm、外径50mmのダブル
パンケーキコイルを作成した。次に、コイルを形成した
線材の端末部分5mmについて、1本づつ個別に銀被覆
をそれぞれ半分ぐらいずつはがして超電導体を露出させ
た後、超電導体同士を重ね合わせて30トンの押圧処理
により接合させた。コイル形成後、接合させた線材を8
40℃で50時間熱処理した後、コイル部と接合部との
間に1対の端子を設けた。
Two pieces of the above silver-coated superconducting tape wire were stacked to form a double pancake coil having 20 turns, an inner diameter of 30 mm and an outer diameter of 50 mm. Next, about 5 mm of the terminal portion of the wire material on which the coil was formed, about half each of the silver coatings were individually peeled off to expose the superconductors, and then the superconductors were overlapped with each other and joined by a pressing treatment of 30 tons. Let After forming the coil,
After heat treatment at 40 ° C. for 50 hours, a pair of terminals was provided between the coil portion and the joint portion.

【0020】このようにして得られた永久電流コイルを
図2に示す。永久電流コイル20は、ビスマス系酸化物
超電導線材24で形成されたコイル部21、および線材
の接合部22を有し、コイル部21と接合部22の間に
は、1対の端子部23aおよび23bが設けられてい
る。
The permanent current coil thus obtained is shown in FIG. The persistent current coil 20 has a coil portion 21 formed of a bismuth-based oxide superconducting wire 24, and a joint portion 22 of the wire material, and a pair of terminal portions 23 a and a joint portion 22 are provided between the coil portion 21 and the joint portion 22. 23b is provided.

【0021】図2に示す永久電流コイルについて、以下
のとおり超電導マグネットとしての特性を調べた。ま
た、コイルの発生磁場は、コイル中心にホール素子を埋
め込んで測定した。
With respect to the permanent current coil shown in FIG. 2, the characteristics as a superconducting magnet were examined as follows. The magnetic field generated by the coil was measured by embedding a Hall element in the center of the coil.

【0022】まず、永久電流スイッチを使用せずにコイ
ルを永久電流モードにする実験を行なった。実験にあた
り、永久電流コイルを液体窒素に漬け、端子部23a、
23bを介して電流を流した。電流値は図3の一点鎖線
に示すように0から直線的に増加させていった。図に示
すように、通電電流が6Aになるまでは電流は接合部側
に流れ続け、コイル部に磁場は発生しなかった。電流が
6Aを越えて接合部側の超電導状態が破れると、コイル
部にも電流が流れ始め、図3の実線に示すようにコイル
部の励磁が始まった。ある程度磁場が発生した状態で電
源をオフにすると、永久電流により1.6ガウスの磁場
が保持された。この過程が永久電流モードのオンに相当
する。 実施例2 実施例1と同一の永久電流コイルを用い、永久電流モー
ドからコイル部の磁場を変化させる実験を行なった。コ
イルを液体ヘリウムに漬けて行った実験結果を図4に示
す。図4に示すように、時間0の点において、永久電流
コイルは永久電流モードであり、−11ガウスの磁場を
保持している。次に、磁場を発生させたときと反対の方
向に電流を通電し始めると、図の実線に示すように磁場
が変化し始める。この過程が永久電流スイッチを用いず
に永久電流モードをオフにした状態に相当する。15A
まで直線的に電流値を増加させていった結果、図に示す
ように逆方向に磁場が発生するようになった。次に電源
をオフにすると、今度は逆向きの永久電流によって約1
6ガウスの磁場が保持された。この過程により、永久電
流コイルの発生磁場を変化させることができた。
First, an experiment was conducted in which the coil was placed in the persistent current mode without using the persistent current switch. In the experiment, the permanent current coil was immersed in liquid nitrogen, and the terminal portion 23a,
An electric current was passed through 23b. The current value was linearly increased from 0 as shown by the alternate long and short dash line in FIG. As shown in the figure, the current continued to flow to the joint side until the energizing current reached 6 A, and no magnetic field was generated in the coil portion. When the current exceeded 6 A and the superconducting state on the junction side was broken, the current also started to flow in the coil section, and excitation of the coil section started as shown by the solid line in FIG. When the power supply was turned off with a magnetic field generated to some extent, a 1.6 Gauss magnetic field was retained by the permanent current. This process corresponds to turning on the persistent current mode. Example 2 Using the same permanent current coil as in Example 1, an experiment was conducted to change the magnetic field of the coil part from the permanent current mode. FIG. 4 shows the result of an experiment conducted by immersing the coil in liquid helium. As shown in FIG. 4, at the point of time 0, the permanent current coil is in the permanent current mode and holds the magnetic field of −11 gauss. Next, when a current is started to flow in the direction opposite to that when the magnetic field is generated, the magnetic field starts to change as shown by the solid line in the figure. This process corresponds to a state in which the persistent current mode is turned off without using the persistent current switch. 15A
As a result of linearly increasing the current value up to, a magnetic field was generated in the opposite direction as shown in the figure. Next, when the power is turned off, the reverse permanent current causes about 1
A magnetic field of 6 Gauss was maintained. By this process, the magnetic field generated by the permanent current coil could be changed.

【0023】なお、上記実施例において、接合部はテー
プ状線材の銀被覆をはがして接合させたものとしたが、
これに限定されることなく、超電導体同士が接合されて
いる構造であれば、種々の形態のものを用いることがで
きる。
In the above embodiment, the joining portion is formed by peeling off the silver coating of the tape-shaped wire and joining it.
Without being limited to this, as long as the superconductors are joined to each other, various structures can be used.

【0024】[0024]

【発明の効果】以上説明したように、この発明に従え
ば、端子部を介して流す電流の制御によりコイル部にお
ける永久電流モードおよび発生磁場を制御する機構を採
用したため、従来の永久電流スイッチを用いずに発生磁
場および永久電流モードのオン・オフが制御できる永久
電流コイルを提供することができる。
As described above, according to the present invention, since the mechanism for controlling the permanent current mode and the generated magnetic field in the coil portion is adopted by controlling the current flowing through the terminal portion, the conventional permanent current switch is used. It is possible to provide a permanent current coil in which the generated magnetic field and the on / off of the permanent current mode can be controlled without using it.

【0025】このように、従来、ヒータまたは磁気スイ
ッチ等を必要とした永久電流スイッチが不要なため、構
造上単純な永久電流コイルを製造することができる。ま
た、この発明の永久電流コイルでは、磁場の昇降時に永
久電流スイッチのオン・オフの操作を行なう必要がな
く、より短時間での永久電流モードのオン・オフが可能
となる。これは、実際に永久電流コイルを超電導マグネ
ットとして製造した場合に、構造上、および取扱い上、
いずれをとっても非常に有益である。
As described above, since a permanent current switch, which has conventionally required a heater or a magnetic switch, is not required, it is possible to manufacture a permanent current coil having a simple structure. Further, in the permanent current coil of the present invention, it is not necessary to turn on / off the permanent current switch when moving up and down the magnetic field, and it is possible to turn on / off the permanent current mode in a shorter time. This is because of the structure and handling when the permanent current coil is actually manufactured as a superconducting magnet.
Both are very useful.

【0026】また、臨界温度が窒素温度を超えるビスマ
ス系などの酸化物超電導体を用いた線材でこの発明のコ
イルを作製すれば、寒材として液体窒素を使用するだけ
で永久電流コイルの使用が可能となる。
Further, if the coil of the present invention is made of a wire using an oxide superconductor such as a bismuth oxide whose critical temperature exceeds the nitrogen temperature, the use of a permanent current coil is possible only by using liquid nitrogen as a cold material. It will be possible.

【0027】なお、以上述べてきたように本発明は特に
超電導マグネットとして有用なものであるが、その他、
電力貯蔵装置および超電導電池等にも応用することがで
きる。
As described above, the present invention is particularly useful as a superconducting magnet.
It can also be applied to power storage devices and superconducting batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従う永久電流コイルの作用機構を示
すための回路図である。
FIG. 1 is a circuit diagram showing an operating mechanism of a persistent current coil according to the present invention.

【図2】この発明に従う永久電流コイルの1具体例を示
す概略斜視図である。
FIG. 2 is a schematic perspective view showing a specific example of a permanent current coil according to the present invention.

【図3】この発明に従う永久電流コイルの1具体例にお
いて、コイルを永久電流モードにする実験結果を示す図
である。
FIG. 3 is a diagram showing an experimental result of putting a coil into a persistent current mode in one specific example of the persistent current coil according to the present invention.

【図4】この発明に従う永久電流コイルの1具体例にお
いて、コイルの磁場を変化させる実験結果を示す図であ
る。
FIG. 4 is a diagram showing an experimental result of changing the magnetic field of the coil in one specific example of the persistent current coil according to the present invention.

【符号の説明】[Explanation of symbols]

10、20 永久電流コイル 11、21 コイル部 12、22 接合部 13a、13b、23a、23b 端子部 24 酸化物超電導線材 10, 20 Permanent current coil 11, 21 Coil part 12, 22 Joint part 13a, 13b, 23a, 23b Terminal part 24 Oxide superconducting wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 向井 英仁 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 加藤 武志 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hidehito Mukai, 1-3, Shimaya, Konohana-ku, Osaka City, Sumitomo Electric Industries, Ltd. (72) Takeshi Kato, 1-1, Shimaya, Konohana-ku, Osaka No. 3 Sumitomo Electric Industries, Ltd. Osaka Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導線材で形成されるコイル部
と、 前記コイル部を形成する酸化物超電導線材が接合される
接合部と、 前記コイル部および前記接合部に同時に電流を流すこと
ができるよう、前記酸化物超電導線材上において前記コ
イル部と前記接合部の間に設けられる1対の端子部とを
備え、 前記1対の端子部を介して流す電流の制御により、前記
コイル部における電流モードおよび発生磁場が制御され
ることを特徴とする、永久電流コイル。
1. A coil part formed of an oxide superconducting wire, a joint part to which the oxide superconducting wire forming the coil part is joined, and a current can be simultaneously applied to the coil part and the joint part. As described above, the oxide superconducting wire is provided with a pair of terminal portions provided between the coil portion and the joint portion, and a current in the coil portion is controlled by controlling a current flowing through the pair of terminal portions. A persistent current coil, characterized in that the mode and the magnetic field generated are controlled.
JP628992A 1992-01-17 1992-01-17 Permanent current coil Expired - Fee Related JP2871260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP628992A JP2871260B2 (en) 1992-01-17 1992-01-17 Permanent current coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP628992A JP2871260B2 (en) 1992-01-17 1992-01-17 Permanent current coil

Publications (2)

Publication Number Publication Date
JPH05190326A true JPH05190326A (en) 1993-07-30
JP2871260B2 JP2871260B2 (en) 1999-03-17

Family

ID=11634233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP628992A Expired - Fee Related JP2871260B2 (en) 1992-01-17 1992-01-17 Permanent current coil

Country Status (1)

Country Link
JP (1) JP2871260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004787A3 (en) * 2005-07-06 2007-03-22 Univ Korea Polytechnic Superconductive magnet for persistent current and method for manufacturing the same
WO2018211797A1 (en) * 2017-05-15 2018-11-22 国立研究開発法人理化学研究所 Superconducting magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004787A3 (en) * 2005-07-06 2007-03-22 Univ Korea Polytechnic Superconductive magnet for persistent current and method for manufacturing the same
US20080207458A1 (en) * 2005-07-06 2008-08-28 Gye-Won Hong Superconductive Magnet for Persistent Current and Method for Manufacturing the Same
JP2009500843A (en) * 2005-07-06 2009-01-08 コリアポリテクニック大学 Superconducting magnet for permanent current and manufacturing method thereof
JP4677032B2 (en) * 2005-07-06 2011-04-27 コリアポリテクニック大学 Superconducting magnet for permanent current and manufacturing method thereof
US8178473B2 (en) * 2005-07-06 2012-05-15 Gye-Won Hong Superconductive magnet for persistent current and method for manufacturing the same
WO2018211797A1 (en) * 2017-05-15 2018-11-22 国立研究開発法人理化学研究所 Superconducting magnet
CN110637347A (en) * 2017-05-15 2019-12-31 国立研究开发法人理化学研究所 Superconducting magnet
KR20200004813A (en) * 2017-05-15 2020-01-14 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 Superconducting magnet
JPWO2018211797A1 (en) * 2017-05-15 2020-03-19 国立研究開発法人理化学研究所 Superconducting magnet
CN110637347B (en) * 2017-05-15 2021-05-25 国立研究开发法人理化学研究所 Superconducting magnet

Also Published As

Publication number Publication date
JP2871260B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
EP0371410B1 (en) Joining of high-temperature oxide superconductors
JP2907830B2 (en) Superconducting device and manufacturing method thereof
EP0772208A2 (en) Oxide-superconducting coil and a method for manufacturing the same
US20050099253A1 (en) Superconducting current limiting device with magnetic field assisted quenching
WO1998047155A1 (en) Low resistance cabled conductors comprising superconducting ceramics
US6414244B1 (en) Connection structure for superconducting conductors including stacked conductors
JP2974108B2 (en) Composite of high temperature superconducting bulk and coil magnet
Benz Superconducting properties of diffusion processed niobium-Tin tape
Jin et al. Measurement of persistent current in a Gd123 coil with a superconducting joint fabricated by the CJMB method
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
Haldar et al. Transport critical current densities of silver clad Bi‐Pb‐Sr‐Ca‐Cu‐O tapes at liquid helium and hydrogen temperatures
JP2871260B2 (en) Permanent current coil
JP3018534B2 (en) High temperature superconducting coil
EP0327683B1 (en) Superconducting switching device
JPH0982446A (en) Superconductive connecting method for superconductive wire
JPH05335145A (en) Superconducting current lead
JPH09219928A (en) Superconducting current limiter element and superconducting member
CA2091595A1 (en) Superconductive current lead
JP2913940B2 (en) Superconducting current lead
JP3143932B2 (en) Superconducting wire manufacturing method
JPH09298320A (en) Perpetual current switch for oxide superconductive coil and switching device using it as well as switching method
JPH05109323A (en) Superconductive assembled conductor
JP3155558B2 (en) Oxide superconducting wire
JPH05234741A (en) Superconducting magnet structure
JPS61265881A (en) Thermal type superconductive switch

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees