JPH0982446A - Superconductive connecting method for superconductive wire - Google Patents

Superconductive connecting method for superconductive wire

Info

Publication number
JPH0982446A
JPH0982446A JP23173295A JP23173295A JPH0982446A JP H0982446 A JPH0982446 A JP H0982446A JP 23173295 A JP23173295 A JP 23173295A JP 23173295 A JP23173295 A JP 23173295A JP H0982446 A JPH0982446 A JP H0982446A
Authority
JP
Japan
Prior art keywords
oxide
superconducting
brazing material
superconducting wire
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23173295A
Other languages
Japanese (ja)
Inventor
Takashi Hase
隆司 長谷
Kazuyuki Shibuya
和幸 渋谷
Seiji Hayashi
征治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23173295A priority Critical patent/JPH0982446A/en
Publication of JPH0982446A publication Critical patent/JPH0982446A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide superconductive connectability for a Bi series oxide superconductive wire with another while good superconductive characteristics of the wire are maintained by allowing a brazing material containing Bi and a specific alloy to exist in the connecting region, and melting it and solidifying in the non- oxidative atmosphere. SOLUTION: A Bi series oxide superconductor 1 crystallized through a heat treatment is coupled with a tape-form oxide superconductive wire 2 consisting of a sheath material 6 such as silver, and in the coupling part a brazing material 4 of Bi-Sn alloy is arranged, and the part is enclosed with a reinforcement 3 consisting of a silver tape, and its outside is covered with a protection cover 5. From a nozzle 7 nitrogen gas is fed so that the inside of the cover 5 is put in a non-oxidative atmosphere, and the connecting region is heated to 300 deg.C along with melting of the brazing material 4 and then cooled to the room temp. to cause solidification. According to this procedure which includes heat treatment in non-oxidative atmosphere using a Bi-containing brazing material having a high critical current density, the material concerned and the brazing material are prevented from oxidating to suppress formation of a on- superconductive oxide, and it is possible to establish good superconductive characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Bi系酸化物超電
導線材と金属系超電導線材、またはBi系酸化物超電導
線材同士を、良好な超電導接続状態を維持しつつ接続す
る方法の改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement in a method of connecting a Bi-based oxide superconducting wire and a metal-based superconducting wire, or a Bi-based oxide superconducting wire while maintaining a good superconducting connection state. is there.

【0002】[0002]

【従来の技術】酸化物超電導体は、従来の金属系超電導
体に比べ、超電導遷移温度(以下、Tcと記す)および
上部臨界磁場(以下、Hc2 と記す)が遥かに高いとい
う特長を有しているので、様々な分野への応用が期待さ
れている。酸化物超電導体のうちでも、Bi系酸化物超
電導体は、Tcが80K程度の低Tc相のものと110
K程度の高Tc相のものが存在し、いずれもHc2 が1
00Tを超えることが予想される。前者(低Tc相)
は、Bi,Sr,Ca,Cuのモル比がほぼ2:2:
1:2であるので、一般にBi−2212相と呼ばれて
おり、また後者(高Tc相)は、前記モル比がほぼ2:
2:2:3(但しBiの一部がPbにより置換されてい
る)であるので、一般にBi−2223相と呼ばれてい
る。
2. Description of the Related Art Oxide superconductors are characterized by far higher superconducting transition temperature (hereinafter referred to as Tc) and upper critical magnetic field (hereinafter referred to as Hc 2 ) than conventional metal-based superconductors. Therefore, it is expected to be applied to various fields. Among the oxide superconductors, the Bi-based oxide superconductors have a Tc of about 80 K and a low Tc phase 110
There is a high Tc phase of about K and Hc 2 is 1 in both cases.
It is expected to exceed 00T. The former (low Tc phase)
Has a molar ratio of Bi, Sr, Ca, Cu of approximately 2: 2 :.
Since it is 1: 2, it is generally called a Bi-2212 phase, and the latter (high Tc phase) has a molar ratio of about 2: 2.
Since it is 2: 2: 3 (however, a part of Bi is replaced by Pb), it is generally called a Bi-2223 phase.

【0003】これらの酸化物超電導体を用いて酸化物超
電導線材が作製されるが、これは一般に次の方法で作製
される。まずBi23,SrCO3 ,CaCO3 ,Cu
O等からなる原料粉末を秤量して粉砕混合し、熱処理を
行なって仮焼する。次に、銀パイプや銀ビレット等に充
填してから伸線・圧延してテープ状に成形する。更に、
成形した線材を熱処理し、酸化物超電導体を高い配向性
を有する状態で結晶化させる。このような製造方法を適
用することによって、臨界電流(以下、Icと記す)が
高い良好な超電導線材が作製できる。
Oxide superconducting wires are produced using these oxide superconductors, which are generally produced by the following method. First, Bi 2 O 3 , SrCO 3 , CaCO 3 , Cu
Raw material powders such as O are weighed, pulverized and mixed, heat-treated and calcined. Next, it is filled in a silver pipe, a silver billet or the like, and then drawn and rolled to form a tape. Furthermore,
The formed wire is heat-treated to crystallize the oxide superconductor in a highly oriented state. By applying such a manufacturing method, a good superconducting wire having a high critical current (hereinafter referred to as Ic) can be manufactured.

【0004】前述した様に、酸化物超電導体のHc2
金属系超電導体のそれを大きく凌駕している。従って、
酸化物超電導体で超電導マグネットを構成すると、従来
の金属系超電導マグネットでは発生させることができな
かった強磁場を発生させることが可能となる。こうした
特性を応用した例としては、タンパク質等の高分子化合
物の分子構造を決定する際に大きな威力を発揮する高分
解能NMR分析装置が挙げられ、該装置においては、試
料に印加する磁場が強い程得られる情報量が増大し、よ
り詳細に分子構造が決定されることになる。
As described above, Hc 2 of the oxide superconductor greatly exceeds that of the metal superconductor. Therefore,
When the superconducting magnet is composed of the oxide superconductor, it becomes possible to generate a strong magnetic field that cannot be generated by the conventional metal-based superconducting magnet. An example of applying such characteristics is a high-resolution NMR analyzer that exerts great power in determining the molecular structure of a polymer compound such as protein. In this device, the stronger the magnetic field applied to the sample is, The amount of information obtained will increase, and the molecular structure will be determined in more detail.

【0005】超電導体の特長として、超電導ループに誘
起された永久電流の時間的変動が小さく且つ発熱しない
ことが挙げられる。従来、超電導体としては、金属系超
電導体材料がMRI医療診断装置、高分解能NMR分析
装置等の様に、高精度安定磁場が要求される各種機器に
応用されている。これらの場合、前述の特長を有効に活
用するには、装置に用いられる超電導線材同士を超電導
状態を維持しつつ接続することによって、ループ状に永
久電流が流れる様に構成されている。近年、酸化物超電
導コイルを金属系超電導コイルに挿入して、より高い磁
場を発生させるという試みがなされている。これらの超
電導コイルを永久電流モードで動作させるためには、酸
化物超電導体同士または酸化物超電導体と金属系化超電
導体とを超電導状態で接続することが必要となる。
A feature of the superconductor is that the permanent current induced in the superconducting loop has a small temporal variation and does not generate heat. Conventionally, as a superconductor, a metal-based superconductor material has been applied to various devices that require a highly accurate and stable magnetic field, such as an MRI medical diagnostic device and a high resolution NMR analyzer. In these cases, in order to effectively utilize the above-mentioned features, the superconducting wires used in the device are connected to each other while maintaining the superconducting state, so that a permanent current flows in a loop. In recent years, attempts have been made to insert an oxide superconducting coil into a metal-based superconducting coil to generate a higher magnetic field. In order to operate these superconducting coils in the persistent current mode, it is necessary to connect the oxide superconductors or the oxide superconductor and the metallized superconductor in a superconducting state.

【0006】金属系超電導コイルと酸化物超電導コイル
を夫々独立して永久電流モードで運転する場合には、酸
化物超電導線材は同種の酸化物超電導線材と超電導接続
すればよいので、比較的容易に接続できることが予想さ
れる。しかしながら、こうした構成を採用する場合に
は、各超電導コイル毎に夫々専用の永久電流スイッチを
設置する必要がある。
When the metal-based superconducting coil and the oxide superconducting coil are independently operated in the persistent current mode, the oxide superconducting wire may be superconductingly connected to the oxide superconducting wire of the same kind, so that it is relatively easy. Expected to be connectable. However, when adopting such a configuration, it is necessary to install a dedicated permanent current switch for each superconducting coil.

【0007】超電導コイルを永久電流モードで運転する
場合に、発生磁場を所定の値にまで増大させたり、その
値から減少させる際には、直流電源と超電導コイルが直
列に接続された回路に電流を流す必要がある。また所定
の電流値にまで電流を流し、或は所定の電流値で超電導
電流を永久電流モードで流す際には、超電導体で形成さ
れる直流電源を含まない回路に超電導電流を流す必要が
ある。こうした切換えを行なうために、用いられる特殊
なスイッチが永久電流スイッチである。
When operating the superconducting coil in the permanent current mode, when increasing or decreasing the generated magnetic field to a predetermined value, a current is supplied to the circuit in which the DC power source and the superconducting coil are connected in series. Need to be flushed. Further, when a current is made to flow up to a predetermined current value, or when a superconducting current is passed at a predetermined current value in the permanent current mode, it is necessary to flow the superconducting current in a circuit formed of a superconductor and not including a DC power source. . A special switch used to make such a switch is a persistent current switch.

【0008】こうした永久電流スイッチにおいては、直
流電源に電流を流す状態(OFF状態)では、永久電流
スイッチの電気抵抗は直流電源の内部抵抗よりも高く
し、永久電流スイッチの方に電流を流す状態(ON状
態)では、永久電流スイッチはもちろん超電導状態で抵
抗はゼロでなければならない。こうした電気抵抗の切換
えを行なう必要があるので、永久電流スイッチの作製は
難しく、特に酸化物超電導体対応の永久電流スイッチは
未だ開発されていないのが現状である。
In such a persistent current switch, when the current is applied to the DC power supply (OFF state), the electrical resistance of the permanent current switch is set higher than the internal resistance of the DC power supply, and the current is applied to the permanent current switch. In the (ON state), the resistance must be zero in the superconducting state as well as in the persistent current switch. Since it is necessary to switch the electric resistance in this way, it is difficult to manufacture a persistent current switch, and in particular, a persistent current switch corresponding to an oxide superconductor has not yet been developed.

【0009】これに対し、金属系超電導線材の場合に
は、NMR分析装置用超電導マグネット等、既に市販さ
れている超電導マグネット内に永久電流スイッチが搭載
されており、技術的に高いレベルにまで確立されてい
る。
On the other hand, in the case of a metallic superconducting wire, a permanent current switch is mounted in a commercially available superconducting magnet such as a superconducting magnet for an NMR analyzer, which is technically established at a high level. Has been done.

【0010】金属系超電導線材と酸化物超電導線材を超
電導接続することができれば、各超電導コイルは直列に
接続され、一つの閉ループを形成するので、永久電流ス
イッイを一つ配置すれば良いことになる。即ち、既に技
術的に確立されている金属系超電導コイル用の永久電流
スイッチを用いることによって、技術的に作製が困難な
酸化物超電導永久電流スイッチを開発する必要がなくな
る。また、こうした構成を採用することによって、高い
信頼性を有する永久電流スイッチを使用することが可能
となる。
If the metal-based superconducting wire and the oxide superconducting wire can be superconductingly connected, each superconducting coil is connected in series and forms one closed loop, so that one permanent current switch should be arranged. . That is, by using the persistent current switch for the metal-based superconducting coil, which has been technically established, it is not necessary to develop an oxide superconducting persistent current switch which is technically difficult to manufacture. Moreover, by adopting such a configuration, it becomes possible to use a persistent current switch having high reliability.

【0011】上記の様に、酸化物超電導線材同士または
酸化物超電導線材と金属系超電導線材を超電導接続する
技術は、夫々重要な意味を有しており、その技術の確立
が望まれているのが実情である。
As described above, the techniques for superconducting connecting oxide superconducting wires to each other or connecting oxide superconducting wires to metal-based superconducting wires have important meanings, and the establishment of such techniques is desired. Is the reality.

【0012】[0012]

【発明が解決しようとする課題】超電導接続はこうした
重要性を有しているので、酸化物超電導体同士を接続す
る方法についても様々なものが提案されており、例えば
(1) 酸化物超電導体同士を密着後加熱焼成する方法(例
えば特開平1−23379号)、(2) 接続部を補強材ま
たはスリーブで囲み、その中で酸化物超電導粉末を焼結
する方法(例えば特開昭63−269468号,特開平
1−17384号等)等が知られている。
Since the superconducting connection has such an importance, various methods have been proposed for connecting oxide superconductors to each other.
(1) A method in which oxide superconductors are adhered to each other and then heated and fired (for example, JP-A 1-23379), (2) A method in which the connection portion is surrounded by a reinforcing material or a sleeve, and the oxide superconducting powder is sintered therein. (For example, JP-A-63-269468 and JP-A-1-17384) are known.

【0013】しかしながらこれら(1) ,(2) の接続方法
では、接続部がいずれも固相反応で生じる焼結体から構
成されるので、超電導体結晶の配向性や密着性が悪く、
接続部のIcがそれ以外の部分のIcに比較して大きく
低下するという欠点がある。
However, in these connection methods (1) and (2), since the connection parts are both formed of a sintered body produced by a solid-phase reaction, the orientation and adhesion of the superconductor crystal are poor,
There is a drawback in that the Ic of the connection portion is greatly reduced as compared with the Ic of other portions.

【0014】一方、特開平3−78879号には、酸化
物超電導体同士または酸化物超電導体と常電導体とを接
合させる方法として、(3) 酸化物超電導体と被接合部材
をロウ材で接合することを基本とし、前記ロウ材と酸化
物超電導体との間に遷移金属酸化物を介在させて接合す
る方法が提案されている。しかしながらこの方法では、
電流の経路に非超電導酸化物である遷移金属酸化物が存
在するので、そこでは超電導電流ではなく常電導電流が
流れることになり、有限の電圧が発生することになる。
またこの方法では、実施例にはロウ材としてNbを添加
したIn合金(99.5%In−0.5%Nb)が使用
されているが、このロウ材はTcが約5Kと低いので、
液体ヘリウム温度における臨界電流密度(以下、Jcと
記す)が極端に低くなるという欠点がある。従って、こ
の方法で作製された超電導コイルを用いても、永久電流
モ−ドでの運転は期待できない。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 3-78879 discloses a method of joining oxide superconductors or an oxide superconductor and a normal conductor by (3) brazing an oxide superconductor and a member to be joined. A method has been proposed in which the transition metal oxide is interposed between the brazing material and the oxide superconductor, and the bonding is basically performed. However, with this method,
Since the transition metal oxide, which is a non-superconducting oxide, exists in the current path, the normal conducting current flows instead of the superconducting flowing current, and a finite voltage is generated.
In this method, an In alloy (99.5% In-0.5% Nb) added with Nb is used as a brazing material in the example, but since this brazing material has a low Tc of about 5K,
There is a drawback that the critical current density (hereinafter referred to as Jc) at the liquid helium temperature becomes extremely low. Therefore, even if the superconducting coil manufactured by this method is used, the operation in the persistent current mode cannot be expected.

【0015】また特開平4−301388号には、酸化
物超導線材と金属系超電導線材を超電導接続する方法に
ついて提案されている。この方法では、(4) 酸化物超電
導線材と金属系超電導線材の接合長さを10cm以上と
し、ロウ材(はんだ材)を用いて接合する方法である。
しかしながらこの方法においても、下記の様な問題があ
る。即ち、この方法では、前記特開平3−78879号
でも指摘されている様に、雰囲気中の酸素または酸化物
超電導体中の酸素によって、ロウ材の表面が酸化されて
非超電導酸化物が生成する。従って、この方法で作製さ
れた超電導コイルを用いても、永久電流モ−ドでの運転
は困難である。
Further, Japanese Patent Application Laid-Open No. 4-301388 proposes a method of superconductingly connecting an oxide superconducting wire and a metallic superconducting wire. In this method, (4) the bonding length of the oxide superconducting wire and the metal-based superconducting wire is 10 cm or more, and the brazing material (solder material) is used for bonding.
However, this method also has the following problems. That is, in this method, as pointed out in JP-A-3-78879, oxygen in the atmosphere or oxygen in the oxide superconductor oxidizes the surface of the brazing material to form a non-superconducting oxide. . Therefore, even if the superconducting coil manufactured by this method is used, it is difficult to operate in the persistent current mode.

【0016】本発明はこうした状況の下になされたもの
であって、その目的は、Bi系酸化物超電導線材を、良
好な超電導特性を維持した状態で、Bi系酸化物超電導
線材や金属系超電導線材と接続し、永久電流モード運転
が可能な超電導コイルを製造するのに有用な方法を提供
することにある。
The present invention has been made under these circumstances, and its purpose is to provide a Bi-based oxide superconducting wire or a metal-based superconducting wire while maintaining good superconducting properties. It is an object of the present invention to provide a method useful for manufacturing a superconducting coil which can be connected to a wire and can be operated in a persistent current mode.

【0017】[0017]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、Bi系酸化物超電導線材と金属系超電導線
材、またはBi系酸化物超電導線材同士を超電導接続す
るに当たり、接続領域に、Biを含むロウ材を存在さ
せ、このロウ材を非酸化性雰囲気で溶融し、次いで凝固
させて前記被接続超電導線材を接続する点に要旨を有す
る超電導線材の超接続方法である。上記方法において用
いるロウ材としては、Biの他にSn,Nb,Pbのい
ずれか1種以上を含む合金や、該合金に更にInを含む
合金等が挙げられる。
Means for Solving the Problems The present invention, which has achieved the above object, means that when a Bi-based oxide superconducting wire and a metal-based superconducting wire or Bi-based oxide superconducting wires are superconductingly connected, a connection region is formed. , Bi is present, the brazing material is melted in a non-oxidizing atmosphere, and then solidified to connect the superconducting wire to be connected to each other. Examples of the brazing material used in the above method include an alloy containing at least one of Sn, Nb, and Pb in addition to Bi, an alloy containing In in the alloy, and the like.

【0018】[0018]

【発明の実施の形態】本発明は上記の如く構成される
が、要するに、接続領域に、Biを含むロウ材を存在さ
せ、このロウ材を非酸化性雰囲気で溶融し、次いで凝固
させる様にすれば、従来技術における様な問題を発生さ
せることなく、良好な超電導接続が達成できることを見
い出し、本発明を完成した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is constructed as described above, but in short, a brazing material containing Bi is present in the connection region, and the brazing material is melted in a non-oxidizing atmosphere and then solidified. Then, it has been found that a good superconducting connection can be achieved without causing the problems as in the prior art, and the present invention has been completed.

【0019】本発明で用いるロウ材としては、Biの他
にSn,Nb,Pbのいずれか1種以上を含む合金や、
必要によってこれらにInを含む合金等であるが、これ
らのロウ材は、300℃程度以下の比較的低い温度で溶
融して液体状態になる。従って、固相反応を利用して超
電導接続する前記(1),(2) の方法に比べて、超電導体同
士の密着性が向上し、良好な超電導接続が可能になる。
尚本発明では、少なくともBiを含むロウ材を使用する
必要があるが、これは次の理由からである。
As the brazing material used in the present invention, in addition to Bi, an alloy containing any one or more of Sn, Nb and Pb, and
If necessary, these are alloys containing In, etc., but these brazing materials are melted at a relatively low temperature of about 300 ° C. or lower to become a liquid state. Therefore, as compared with the methods (1) and (2) in which the superconducting connection is made by utilizing the solid-phase reaction, the adhesion between the superconductors is improved, and good superconducting connection can be achieved.
In the present invention, it is necessary to use a brazing material containing at least Bi, for the following reason.

【0020】Biを含むロウ材の超電導遷移温度Tcは
約9Kであり、酸化物超電導体に比べて低い。しかしな
がら、Pb−Sn合金やIn−Pb合金等のロウ材と比
べて高いTcを示す。また液体ヘリウム温度におけるJ
cも、Biを含むロウ材は、Pb−Sn合金やIn−P
b合金等のロウ材よりも一桁ほど高い104 A/cm 2
程度の値を示している。これは,Biが超電導体の結晶
内部に析出して磁束をトラップするピンニングセンター
となるので、高いJcを示すものと考えられる。
The superconducting transition temperature Tc of the brazing material containing Bi is
It is about 9K, which is lower than that of the oxide superconductor. But
And braze materials such as Pb-Sn alloy and In-Pb alloy
It shows a high Tc. Also, J at liquid helium temperature
c is also a brazing material containing Bi, Pb-Sn alloy or In-P
10 times higher than brazing materials such as b alloysFour A / cm 2 
It shows the value of the degree. This is because Bi is a superconductor crystal
Pinning center that deposits inside and traps magnetic flux
Therefore, it is considered that a high Jc is exhibited.

【0021】またロウ材中のBiの含有量については、
10〜60重量%程度が好ましい。即ち、Biの含有量
が10重量%未満では前述した効果が発揮されず、60
重量%を超えるとTcが低下する。
Regarding the content of Bi in the brazing material,
It is preferably about 10 to 60% by weight. That is, when the Bi content is less than 10% by weight, the above-mentioned effects are not exhibited and 60
When it exceeds the weight%, Tc decreases.

【0022】一般に、Jcが低い場合には、接続する部
分の長さを長くすると共に、面積を広くし、Jcを大き
くする方法が採用される。しかしながら、Biを含むロ
ウ材では、従来のPb−Sn合金やIn−Pb合金等の
ロウ材よりも高いJcを有しているので、この様なロウ
材を非酸化性雰囲気で溶融・凝固させることによって、
接続部分を長くしなくても十分高いJcを確保すること
ができる。
Generally, when Jc is low, a method of increasing the length of the connecting portion, widening the area, and increasing Jc is adopted. However, since a brazing material containing Bi has a higher Jc than brazing materials such as conventional Pb-Sn alloys and In-Pb alloys, such brazing materials are melted and solidified in a non-oxidizing atmosphere. By
It is possible to secure a sufficiently high Jc without lengthening the connecting portion.

【0023】本発明方法によれば、前記(3),(4) の方法
で示した問題も生じることはない。即ち、前記した(3),
(4) の方法では、介在物の表面が酸化されて超電導特性
が劣化していたのであるが、この酸化の原因となる雰囲
気中の酸素は、非酸化性雰囲気で熱処理を行なうことに
よって許容濃度以下に低減されることになる。具体的に
は、熱処理中の酸素分圧は0.05atm以下であるこ
とが好ましい。また介在物の溶融状態中に残存している
酸素によって、介在物合金が酸化する可能性もあるが、
これについては、電子親和力の低いIn(0.3eV)
をロウ材中に添加し、このIn中に吸収させることによ
り、ロウ材が酸化して酸化物超電導体との界面に非超電
導酸化物が形成されるのを防止することができる。こう
した観点からして本発明では、用いるロウ材としてはI
nを含むものを使用することが好ましい。またこうした
効果を発揮させるには、必要により添加されるInの含
有量は、1〜5重量%程度が好ましい。
According to the method of the present invention, the problems shown in the above methods (3) and (4) do not occur. That is, the above (3),
In the method of (4), the surface of the inclusions was oxidized and the superconducting property was deteriorated.However, the oxygen in the atmosphere that causes this oxidation is allowed to have an allowable concentration by performing heat treatment in a non-oxidizing atmosphere. Will be reduced to: Specifically, the oxygen partial pressure during the heat treatment is preferably 0.05 atm or less. Also, the oxygen remaining in the molten state of the inclusions may oxidize the inclusion alloy,
Regarding this, In (0.3 eV) having a low electron affinity
Is added to the brazing material and absorbed in the In, it is possible to prevent the brazing material from oxidizing and forming a non-superconducting oxide at the interface with the oxide superconductor. From this point of view, in the present invention, the brazing material used is I
It is preferable to use those containing n. Further, in order to exert such effects, the content of In added as necessary is preferably about 1 to 5% by weight.

【0024】従来では、介在物が凝固する際に酸化物超
電導体が酸素と反応して非超電導体相を形成するという
問題があったが、本発明ではこうした問題ついても下記
の理由によって解決できる。ある金属と酸化物が混在す
るときには、その酸化物中に存在する酸素は該酸化物中
に留まるか、或は混在している金属と反応して別の酸化
物を生成するかは、主に金属の電子親和力によって決定
される。この電子親和力が負の値をとり、しかも大きい
値を有する金属であるほど、酸素と結合して自らは正の
イオンとなり、酸化物を形成しようとする傾向が強い。
Bi系酸化物超電導体の構成金属元素は、Bi,Pb,
Sr,Ca,Cuであり、これらの電子親和力は、Sr
とCaが負の値を示し、BiとPbが1.1eV、Cu
が1.2eVである。またBiを含むロウ材に添加され
ることのあるSnとNbは、夫々1.2eV,1.0e
Vである。これらのことから、SrとCaは正イオンの
状態を維持しようとする傾向が非常に強くなる。またB
i,Pb,Cu,Sn,Nbは、電子親和力の値がほぼ
同じであるので、金属と正イオンが混在した状態におい
ては、積極的に正イオンの状態を置換しようとはせず、
ほぼ初期状態に保たれる。以上のことから、これらの元
素は、Bi系酸化物超電導体における正イオンの状態を
維持しようとするので、Bi系酸化物超電導体中の酸素
を奪って、Biを含むロウ材が酸化して非超電導酸化物
を形成することはない。
Conventionally, there was a problem that the oxide superconductor reacts with oxygen to form a non-superconductor phase when the inclusions solidify, but the present invention can solve such a problem for the following reason. . When a metal and an oxide are mixed, it is mainly determined whether oxygen existing in the oxide stays in the oxide or reacts with the mixed metal to form another oxide. Determined by the electron affinity of the metal. A metal having a negative electron affinity and a larger value has a higher tendency to bond with oxygen to become a positive ion and form an oxide.
The constituent metal elements of the Bi-based oxide superconductor are Bi, Pb,
Sr, Ca, Cu, and their electron affinity is Sr.
And Ca show negative values, Bi and Pb are 1.1 eV, Cu
Is 1.2 eV. Sn and Nb which may be added to the brazing material containing Bi are 1.2 eV and 1.0 e, respectively.
V. From these facts, Sr and Ca have a very strong tendency to maintain a positive ion state. Also B
Since i, Pb, Cu, Sn, and Nb have almost the same electron affinity value, when the metal and the positive ion are mixed, the positive ion state is not positively replaced.
It is kept in almost the initial state. From the above, since these elements try to maintain the state of positive ions in the Bi-based oxide superconductor, they deprive the oxygen of the Bi-based oxide superconductor and the brazing material containing Bi is oxidized. It does not form non-superconducting oxides.

【0025】以上の作用によって、酸化物超電導線材同
士、または酸化物超電導線材と金属系超電導線材とが、
良好な超電導状態を維持した状態で超電導接続される。
またこのときの接続長さを5cm以下にしても、10
-11 Ω以下の接続抵抗が実現できる。
By the above operation, the oxide superconducting wires or the oxide superconducting wire and the metal-based superconducting wire are
The superconducting connection is made while maintaining a good superconducting state.
Even if the connection length at this time is 5 cm or less, 10
A connection resistance of -11 Ω or less can be realized.

【0026】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and the following. It is included in the technical scope.

【0027】[0027]

【実施例】【Example】

実施例1 図1は、本発明方法を実施する際の一構成例を示す模式
図であり、図中1は酸化物超電導体、2は酸化物超電導
線材、3は補強材、4はロウ材、5は保温カバー、6は
シース材、7はノズルを夫々示す。
Example 1 FIG. 1 is a schematic view showing an example of the structure for carrying out the method of the present invention, in which 1 is an oxide superconductor, 2 is an oxide superconducting wire, 3 is a reinforcing material, and 4 is a brazing material. 5 is a heat insulating cover, 6 is a sheath material, and 7 is a nozzle.

【0028】下記に示す順によって、図1に示した構成
に従って酸化物超電導線材2同士の接続を行なった。ま
ず既に熱処理を行なって結晶化した単芯の(Bi−22
12)酸化物超電導体1(厚さ:70μm)と、純銀製
のシース材6からなるテープ状の酸化物超電導線材2
(厚さ:200μm,幅8:mm)を二枚用意し、接続
部分にBi−Sn合金からなるロウ材4を配置して補強
体3である銀テープで接続部分を覆った。このとき、超
電導接続領域の長さは5cmとした。更に、その外側を
保温カバー5で覆い、その中にノズル7を挿入して窒素
ガスを流して保温カバー5の内部を非酸化性雰囲気と
し、接続領域の酸素分圧が0.05atm以下に保たれ
ていることをYSZ(イットリウム安定化ジルコニア)
酸素センサーを用いて確認した。
The oxide superconducting wires 2 were connected to each other in the order shown below according to the structure shown in FIG. First, a single core (Bi-22
12) A tape-shaped oxide superconducting wire 2 comprising an oxide superconductor 1 (thickness: 70 μm) and a sheath material 6 made of pure silver.
Two pieces (thickness: 200 μm, width 8: mm) were prepared, a brazing material 4 made of a Bi—Sn alloy was arranged in the connecting portion, and the connecting portion was covered with a silver tape as the reinforcing body 3. At this time, the length of the superconducting connection region was 5 cm. Further, the outside is covered with a heat insulating cover 5, and a nozzle 7 is inserted into the heat insulating cover 5 to flow a nitrogen gas to make the inside of the heat insulating cover 5 a non-oxidizing atmosphere and keep the oxygen partial pressure of the connection region at 0.05 atm or less. YSZ (yttrium-stabilized zirconia)
It confirmed using the oxygen sensor.

【0029】その後、補強体3である銀テープの表面に
電気絶縁体を被せ、加熱用ヒータを巻線した。この加熱
用ヒーターよって、接続領域を300℃に加熱して10
分間保持してロウ材4を溶融させた後、室温まで冷却し
て凝固させた。
Then, the surface of the silver tape which is the reinforcing member 3 was covered with an electric insulator, and a heater for heating was wound. This heating heater heats the connection area to 300 ° C.
After holding for a minute to melt the brazing material 4, it was cooled to room temperature and solidified.

【0030】そして接続領域をまたいで、10-11 Ωと
いう基準を設けてIc(4.2K,2T)を測定した結
果、接続領域を含まない(Bi−2212)酸化物超電
導線材2のIc(=100A)と同じ値が得られてい
た。
As a result of measuring Ic (4.2K, 2T) across the connecting region with a standard of 10 -11 Ω, Ic (of the oxide superconducting wire 2 of (Bi-2212) oxide not including the connecting region was found. = 100 A), the same value was obtained.

【0031】上記と同様にして、単芯の(Bi−222
3)酸化物超電導線材2を超電導接続し、上記と同様に
してIc(4.2K,2T)を測定した結果、接続領域
を含まない(Bi−2223)酸化物超電導線材2のI
c(=80A)と同じ値が得られていた。
In the same manner as above, a single core (Bi-222
3) The oxide superconducting wire 2 was superconductingly connected, and Ic (4.2K, 2T) was measured in the same manner as above. As a result, the I of the (Bi-2223) oxide superconducting wire 2 not including the connection region
The same value as c (= 80 A) was obtained.

【0032】本発明者らが、純銀シース材6の替わり
に、強度増大を目的としてNiやMgを微量に添加した
銀合金を用いて同様の測定を行なったところ、接続領域
の結晶化には影響しないので、同様の効果が得られてい
た。また接続領域に窒素ガスの替わりに、アルゴンガス
を導入しても酸素分圧が制御でき、上記と同様の効果が
得られていた。
The inventors of the present invention performed the same measurement using a silver alloy to which Ni or Mg was added in a small amount for the purpose of increasing the strength, instead of the pure silver sheath material 6, and found that the connection region was crystallized. Since it has no effect, the same effect was obtained. Further, even if argon gas was introduced into the connection region instead of nitrogen gas, the oxygen partial pressure could be controlled, and the same effect as above was obtained.

【0033】比較例1 実施例1と同様にして、単芯の(Bi−2212)酸化
物超電導体1(厚さ:70μm)と、純銀製のシース材
6からなるテープ状の酸化物超電導線材2(厚さ:20
0μm,幅8:mm)を二枚用意し、接続部分にPb−
Sn合金からなるロウ材4を配置して補強体3である銀
テープで接続部分を覆った。このとき、超電導接続領域
の長さは5cmとした。
Comparative Example 1 In the same manner as in Example 1, a tape-shaped oxide superconducting wire comprising a single core (Bi-2212) oxide superconductor 1 (thickness: 70 μm) and a sheath material 6 made of pure silver. 2 (thickness: 20
0 μm, width 8: mm), and prepare Pb-
A brazing material 4 made of Sn alloy was arranged and the connecting portion was covered with a silver tape as the reinforcing body 3. At this time, the length of the superconducting connection region was 5 cm.

【0034】その後、補強体3である銀テープの表面に
電気絶縁体を被せ、加熱用ヒータを巻線した。この加熱
用ヒーターよって、大気中で接続部分を200℃に加熱
して10分間保持してロウ材を溶融させた後、室温まで
冷却して凝固させた。
After that, the surface of the silver tape as the reinforcing member 3 was covered with an electric insulator, and a heater for heating was wound. With this heater for heating, the connecting portion was heated to 200 ° C. in the atmosphere and held for 10 minutes to melt the brazing material, and then cooled to room temperature to be solidified.

【0035】そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない(Bi
−2212)酸化物超電導線材2のIc(=100A)
の半分の値である50Aしか得られていなかった。
Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring (K, 2T), the connection area is not included (Bi
-21212) Ic of oxide superconducting wire 2 (= 100 A)
Only 50A, which is half the value of, was obtained.

【0036】実施例2 図2は、本発明方法を実施する際の他の構成例を示す模
式図であり、その基本的な構成は前記図1と類似してお
り、対応する部分には同一の参照符号を付すことによっ
て重複説明を回避する。
Example 2 FIG. 2 is a schematic diagram showing another example of the structure for carrying out the method of the present invention, the basic structure of which is similar to that of FIG. 1, and the corresponding parts are the same. The duplicate description is avoided by adding the reference numeral of.

【0037】下記に示す順によって、図2に示した構成
に従って超電導線材2同士の接続を行なった。図2に示
した様に、既に熱処理を行なって結晶化した50芯の
(Bi−2212)酸化物超電導体1(厚さ:10μ
m)と、純銀製のシース材6からなる平角状の酸化物超
電導線材2(厚さ:500μm(0.5mm),幅:2
mm)を二本用意し、実施例1と同様にして超電導接続
を行なった。
The superconducting wire rods 2 were connected to each other in the order shown below according to the configuration shown in FIG. As shown in FIG. 2, a 50-core (Bi-2212) oxide superconductor 1 (thickness: 10 μm) which has already been heat-treated and crystallized.
m) and a flat oxide superconducting wire 2 (thickness: 500 μm (0.5 mm), width: 2) composed of a sheath material 6 made of sterling silver.
mm) were prepared, and superconducting connection was performed in the same manner as in Example 1.

【0038】そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない50芯
の(Bi−2212)酸化物超電導線材2のIc(=7
0A)と同じ値が得られていた。
Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring K, 2T), Ic (= 7) of 50-core (Bi-2212) oxide superconducting wire 2 which does not include a connection region.
The same value as 0A) was obtained.

【0039】実施例3 実施例1と同様にして、単芯の(Bi−2212)酸化
物超電導体1(厚さ:70μm)と、純銀製のシース材
6からなるテープ状の酸化物超電導線材2(厚さ:20
0μm,幅8:mm)を二枚用意し、接続部分にPb−
Sn−In合金からなるロウ材4を配置して補強体3で
ある銀テープで接続部分を覆った。このとき、超電導接
続部分の長さは5cmとした。
Example 3 In the same manner as in Example 1, a tape-shaped oxide superconducting wire comprising a single-core (Bi-2212) oxide superconductor 1 (thickness: 70 μm) and a sheath material 6 made of pure silver. 2 (thickness: 20
0 μm, width 8: mm), and prepare Pb-
A brazing material 4 made of an Sn-In alloy was arranged and the connecting portion was covered with a silver tape which was the reinforcing body 3. At this time, the length of the superconducting connection portion was 5 cm.

【0040】その後、実施例1と同様にして超電導接続
を行なった。そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない(Bi
−2212)酸化物超電導線材2のIc(=100A)
を上回るIc(=120A)の値が得られ、前記実施例
1よりも更に改良されていた。
After that, superconducting connection was performed in the same manner as in Example 1. Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring (K, 2T), the connection area is not included (Bi
-21212) Ic of oxide superconducting wire 2 (= 100 A)
A value of Ic (= 120 A) of more than 1.0 was obtained, which was further improved as compared with Example 1.

【0041】実施例4 図3は、本発明方法を実施する際の更に他の構成例を示
す模式図であり、この図は、酸化物超電導線材2と金属
系超電導体8とを超電導接続する為のものであり、前記
図1,2と対応する部分には同一の参照符号が付してあ
る。下記に示す順によって、図3に示した構成に従って
酸化物超電導線材2と金属系超電導体7との超電導接続
を行なった。
Example 4 FIG. 3 is a schematic diagram showing still another example of the structure for carrying out the method of the present invention. In this figure, the oxide superconducting wire 2 and the metal-based superconductor 8 are superconductingly connected. The same reference numerals are attached to the portions corresponding to those in FIGS. In the order shown below, the superconducting connection between the oxide superconducting wire 2 and the metal superconductor 7 was performed according to the configuration shown in FIG.

【0042】多芯の(Nb−Ti)金属系超電導線材8
に埋め込まれている超電導フィラメントを予め露出させ
接続面積を大きくし、この部分にBi−Sn合金からな
るロウ材を前もってコーティングしておき、その金属系
超電導線材8と、単芯の(Bi−2212)酸化物超電
導線材2を接続させる部分に、Bi−Sn合金からなる
ロウ材4を配置して補強体3である銀テープで接続部分
を覆った。このとき、超電導接続部分の長さは5cmと
した。但し、酸化物超電導線材2では、酸化物超電導体
1を露出することは強度不足の点から困難であるため、
金属系超電導線材8の超電導フィラメントのみを露出さ
せた。
Multi-core (Nb-Ti) metal-based superconducting wire 8
The superconducting filaments embedded in the are exposed in advance to increase the connection area, and a brazing material made of a Bi—Sn alloy is previously coated on this portion, and the metallic superconducting wire 8 and the single core (Bi-2212 ) A brazing material 4 made of a Bi—Sn alloy was arranged in a portion to which the oxide superconducting wire 2 was connected, and the connecting portion was covered with a silver tape as the reinforcing body 3. At this time, the length of the superconducting connection portion was 5 cm. However, in the oxide superconducting wire 2, it is difficult to expose the oxide superconductor 1 from the viewpoint of insufficient strength.
Only the superconducting filament of the metal-based superconducting wire 8 was exposed.

【0043】その後、実施例1と同様にして超電導接続
を行なった。そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない単芯の
(Bi−2212)酸化物超電導線材2および多芯の
(Nb−Ti)金属系超電導線材7のIc(=100
A)と同じ値が得られていた。
After that, superconducting connection was performed in the same manner as in Example 1. Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring K, 2T), Ic (= 100) of the single-core (Bi-2212) oxide superconducting wire 2 and the multi-core (Nb-Ti) metal-based superconducting wire 7 which do not include a connection region.
The same value as in A) was obtained.

【0044】比較例2 実施例4と同様にして、多芯の(Nb−Ti)金属系超
電導線材8に埋め込まれている超電導フィラメントに、
Pb−Sn合金からなるロウ材を前もってコーティング
しておき、その金属系超電導線材8と、単芯の(Bi−
2212)酸化物超電導線材2を接続させる領域に、P
b−Sn合金からなるロウ材4を配置して補強体3であ
る銀テープで接続領域を覆った。このとき、超電導接続
領域の長さは4cmとした。
Comparative Example 2 In the same manner as in Example 4, a superconducting filament embedded in a multifilamentary (Nb-Ti) metal-based superconducting wire 8 was prepared.
A brazing material made of a Pb-Sn alloy is coated in advance, and the metal-based superconducting wire 8 and a single core (Bi-
2212) In the region where the oxide superconducting wire 2 is connected, P
A brazing material 4 made of a b-Sn alloy was arranged, and the connection area was covered with a silver tape which was the reinforcing body 3. At this time, the length of the superconducting connection region was 4 cm.

【0045】その後、実施例1と同様にして超電導接続
を行なった。そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない単芯の
(Bi−2212)酸化物超電導線材2および多芯の
(Nb−Ti)金属系超電導線材7のIc(=100
A)の半分の値しか得られていなかった。
After that, superconducting connection was performed in the same manner as in Example 1. Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring K, 2T), Ic (= 100) of the single-core (Bi-2212) oxide superconducting wire 2 and the multi-core (Nb-Ti) metal-based superconducting wire 7 which do not include a connection region.
Only half the value of A) was obtained.

【0046】実施例5 実施例4と同様にして、多芯の(Nb−Ti)金属系超
電導線材8に埋め込まれている超電導フィラメントに、
Bi−Pb−In合金からなるロウ材を前もってコーテ
ィングしておき、その金属系超電導線材8と、単芯の
(Bi−2212)酸化物超電導線材2を接続させる領
域に、Bi−Sn−In合金からなるロウ材4を配置し
て補強体3である銀テープで接続部分を覆った。このと
き、超電導接続領域の長さは5cmとした。
Example 5 In the same manner as in Example 4, the superconducting filament embedded in the multifilamentary (Nb-Ti) metal superconducting wire 8 was
A brazing material made of a Bi-Pb-In alloy is coated in advance, and a region where the metal-based superconducting wire 8 and the single-core (Bi-2212) oxide superconducting wire 2 are connected to each other is provided in the Bi-Sn-In alloy. The brazing material 4 consisting of was placed and the connecting portion was covered with the silver tape which was the reinforcing body 3. At this time, the length of the superconducting connection region was 5 cm.

【0047】その後、実施例1と同様にして超電導接続
を行なった。そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない単芯の
(Bi−2212)酸化物超電導線材2および多芯の
(Nb−Ti)金属系超電導線材8のIc(=100
A)を上回るIc(=120A)の値が得られ、前記実
施例4よりも更に改良されていた。
After that, superconducting connection was performed in the same manner as in Example 1. Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring K, 2T), Ic (= 100) of the single-core (Bi-2212) oxide superconducting wire 2 and the multi-core (Nb-Ti) metal-based superconducting wire 8 which do not include a connection region.
A value of Ic (= 120 A) exceeding A) was obtained, which was a further improvement over Example 4.

【0048】実施例6 実施例5において、多芯の(Nb−Ti)金属系超電導
線材8を多芯の(Nb 3 Sn)金属系超電導線材8に置
き換え、その中に埋め込まれている超電導フィラメント
に、Bi−Nb−In合金からなるロウ材を前もってコ
ーティングしておき、その金属系超電導線材8と、単芯
の(Bi−2212)酸化物超電導線材2を接続させる
部分に、Bi−Nb−In合金からなるロウ材4を配置
して補強体3である銀テープで接続部分を覆った。この
とき、超電導接続部分の長さは5cmとした。
Example 6 In Example 5, multicore (Nb-Ti) metal-based superconductivity
Wire 8 is made of multi-core (Nb Three Sn) Placed on metallic superconducting wire 8
Replacement, superconducting filament embedded in it
In addition, a brazing material composed of Bi-Nb-In alloy was previously
The metal-based superconducting wire 8 and the single core
(Bi-2212) oxide superconducting wire 2
The brazing material 4 made of Bi-Nb-In alloy is arranged in the portion
Then, the connection portion was covered with a silver tape which was the reinforcing body 3. this
At this time, the length of the superconducting connection portion was 5 cm.

【0049】その後、実施例1と同様にして超電導接続
を行なった。そして実施例1と同様にしてIc(4.2
K,2T)を測定した結果、接続領域を含まない単芯の
(Bi−2212)酸化物超電導線材2および多芯の
(Nb−Ti)金属系超電導線材8のIc(=100
A)を上回るIc(=120A)の値が得られていた。
After that, superconducting connection was performed in the same manner as in Example 1. Then, in the same manner as in Example 1, Ic (4.2
As a result of measuring K, 2T), Ic (= 100) of the single-core (Bi-2212) oxide superconducting wire 2 and the multi-core (Nb-Ti) metal-based superconducting wire 8 which do not include a connection region.
Values of Ic (= 120 A) above A) were obtained.

【0050】[0050]

【発明の効果】以上述べた如く本発明によれば、酸化物
超電導線材同士または酸化物超電導線材と金属系超電導
線材を超電導接続する際において、各被接続超電導線材
の臨界電流と同等以上の臨界電流を有する超電導接続が
可能になった。従って、本発明を適用すれば、酸化物超
電導線材同士または酸化物超電導線材と金属系超電導線
材を超電導接続した超電導コイルにおいても永久電流モ
ードで運転することができ、超強磁場発生用超電導マグ
ネットの製造においても極めて有利となる。
As described above, according to the present invention, when superconducting oxide superconducting wires or between an oxide superconducting wire and a metal superconducting wire, the critical current is equal to or higher than the critical current of each connected superconducting wire. Superconducting connections with current have become possible. Therefore, by applying the present invention, it is possible to operate in the persistent current mode even in the superconducting coil in which the oxide superconducting wire rods or the oxide superconducting wire rods and the metal-based superconducting wire rods are superconductingly connected, and the superconducting magnet for generating a super strong magnetic field It is also extremely advantageous in manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する際の一構成例を示す模式
図である。
FIG. 1 is a schematic diagram showing an example of the configuration when carrying out the method of the present invention.

【図2】本発明方法を実施する際の他の一構成例を示す
模式図である。
FIG. 2 is a schematic view showing another example of the structure when carrying out the method of the present invention.

【図3】本発明方法を実施する際の更に他の構成例を示
す模式図である。
FIG. 3 is a schematic view showing still another configuration example when carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物超電導体 2 酸化物超電導線材 3 補強材 4 ロウ材 5 保温カバー5 6 シース材 7 ノズル 8 金属系超電導線材 1 Oxide Superconductor 2 Oxide Superconducting Wire 3 Reinforcing Material 4 Brazing Material 5 Insulation Cover 5 6 Sheath Material 7 Nozzle 8 Metallic Superconducting Wire

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 37/02 ZAA C04B 37/02 ZAAB H01F 6/06 ZAA H01R 43/02 ZAAA H01R 43/02 ZAA H01F 5/08 ZAAE Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C04B 37/02 ZAA C04B 37/02 ZAAB H01F 6/06 ZAA H01R 43/02 ZAAA H01R 43/02 ZAA H01F 5 / 08 ZAAE

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Bi系酸化物超電導線材と金属系超電導
線材、またはBi系酸化物超電導線材同士を超電導接続
するに当たり、接続領域に、Biを含むロウ材を存在さ
せ、このロウ材を非酸化性雰囲気で溶融し、次いで凝固
させて前記被接続超電導線材を接続することを特徴とす
る超電導線材の超電導接続方法。
1. When a Bi-based oxide superconducting wire and a metal-based superconducting wire or Bi-based oxide superconducting wires are superconductingly connected to each other, a brazing material containing Bi is present in the connection region, and the brazing material is non-oxidized. A superconducting connection method for a superconducting wire, which comprises melting the material in a strong atmosphere and then solidifying it to connect the superconducting wire to be connected.
【請求項2】 前記ロウ材が、Biの他にSn,Nb,
Pbのいずれか1種以上を含む合金である請求項1に記
載の方法。
2. The brazing material comprises Sn, Nb,
The method according to claim 1, which is an alloy containing any one or more of Pb.
【請求項3】 前記ロウ材が、更にIn含む合金である
請求項1または2に記載の方法。
3. The method according to claim 1, wherein the brazing material is an alloy further containing In.
JP23173295A 1995-09-08 1995-09-08 Superconductive connecting method for superconductive wire Withdrawn JPH0982446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23173295A JPH0982446A (en) 1995-09-08 1995-09-08 Superconductive connecting method for superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23173295A JPH0982446A (en) 1995-09-08 1995-09-08 Superconductive connecting method for superconductive wire

Publications (1)

Publication Number Publication Date
JPH0982446A true JPH0982446A (en) 1997-03-28

Family

ID=16928172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23173295A Withdrawn JPH0982446A (en) 1995-09-08 1995-09-08 Superconductive connecting method for superconductive wire

Country Status (1)

Country Link
JP (1) JPH0982446A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524822A (en) * 1998-08-28 2002-08-06 ピルキントン オートモーティヴ ユーケイ リミテッド Manufacture of heated windows
JP2003501782A (en) * 1999-06-02 2003-01-14 アメリカン スーパーコンダクター コーポレイション Method of joining high-temperature superconducting components with negligible critical current reduction and product by the same
CN106695054A (en) * 2015-07-14 2017-05-24 富通集团(天津)超导技术应用有限公司 Heater and current terminal and wire rod welding method
CN109434232A (en) * 2018-12-12 2019-03-08 云南电网有限责任公司电力科学研究院 A kind of cable connecting arrangement and connection method with heating refrigerating function
CN110653444A (en) * 2019-09-24 2020-01-07 深圳供电局有限公司 Welding device and system for high-temperature superconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524822A (en) * 1998-08-28 2002-08-06 ピルキントン オートモーティヴ ユーケイ リミテッド Manufacture of heated windows
JP2003501782A (en) * 1999-06-02 2003-01-14 アメリカン スーパーコンダクター コーポレイション Method of joining high-temperature superconducting components with negligible critical current reduction and product by the same
CN106695054A (en) * 2015-07-14 2017-05-24 富通集团(天津)超导技术应用有限公司 Heater and current terminal and wire rod welding method
CN106695054B (en) * 2015-07-14 2019-04-26 富通集团(天津)超导技术应用有限公司 A kind of heater and a kind of current terminal and soldering wires method
CN109434232A (en) * 2018-12-12 2019-03-08 云南电网有限责任公司电力科学研究院 A kind of cable connecting arrangement and connection method with heating refrigerating function
CN110653444A (en) * 2019-09-24 2020-01-07 深圳供电局有限公司 Welding device and system for high-temperature superconductor
CN110653444B (en) * 2019-09-24 2021-08-31 深圳供电局有限公司 Welding device and system for high-temperature superconductor

Similar Documents

Publication Publication Date Title
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
US7602269B2 (en) Permanent current switch
EP0772208A2 (en) Oxide-superconducting coil and a method for manufacturing the same
WO2011115385A2 (en) Superconducting joint method for first generation high-temperature superconducting tape
EP0827217A2 (en) Oxide superconductor wire material and method for jointing the same together
JP2001319750A (en) Connecting method of oxide superconductor
JPH0982446A (en) Superconductive connecting method for superconductive wire
JPH05283138A (en) Superconductive joint for superconductive oxide tape
JP3447990B2 (en) Superconducting connection method and superconducting connection structure for superconducting wires
Tenbrink et al. Recent results on test windings and coils of Bi-2212/Ag HTSC wires
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP3161938B2 (en) Superconducting wire manufacturing method
JP2001283660A (en) Connection structure for superconducting wire
JPH10188696A (en) Oxide superconductive wire and its connecting method
JPH05335145A (en) Superconducting current lead
US11177588B2 (en) High-temperature superconducting wire connection assembly
JP2549684B2 (en) Oxide-based superconducting wire connection method
JP2871260B2 (en) Permanent current coil
JP3776618B2 (en) Joining method of oxide superconductor and normal conductor
JPH01133307A (en) Low temperature apparatus
JP4013409B2 (en) Superconducting connection method of oxide superconducting material and superconducting connection structure
JPH09298320A (en) Perpetual current switch for oxide superconductive coil and switching device using it as well as switching method
JPH0982445A (en) Superconductive connecting method for oxide type superconductive wire
JPS61265881A (en) Thermal type superconductive switch

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203