JP4016549B2 - Superconducting wire and superconducting coil device using the same - Google Patents

Superconducting wire and superconducting coil device using the same Download PDF

Info

Publication number
JP4016549B2
JP4016549B2 JP33255499A JP33255499A JP4016549B2 JP 4016549 B2 JP4016549 B2 JP 4016549B2 JP 33255499 A JP33255499 A JP 33255499A JP 33255499 A JP33255499 A JP 33255499A JP 4016549 B2 JP4016549 B2 JP 4016549B2
Authority
JP
Japan
Prior art keywords
superconducting
metal tube
wire
superconducting wire
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33255499A
Other languages
Japanese (ja)
Other versions
JP2001155562A (en
Inventor
直 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33255499A priority Critical patent/JP4016549B2/en
Publication of JP2001155562A publication Critical patent/JP2001155562A/en
Application granted granted Critical
Publication of JP4016549B2 publication Critical patent/JP4016549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、安定化材としてアルミニウムを用いた内部強制冷却型の超電導線、及びその超電導線を用いた超電導コイル装置に関するものである。
【0002】
【従来の技術】
従来金属系超電導体、例えばNbTi合金、Nb3Sn化合物を用いた超電導線は、超電導状態を安定化するために、運転温度である約4.2K付近の極低温での電気抵抗率が小さい金属を安定化材として、その中に超電導体を埋設した構成とする必要があり、その安定化材として一般的には高純度アルミニウムや無酸素銅が使用されてきた。さらにこのような超電導線を内部強制冷却式で使用するために、安定化材の中に冷却用ヘリウムを流す通路を設けた構成の超電導線が先進技術として考えられている。
【0003】
図8は例えば特願平11−200043号に示す上記先進技術としての内部強制冷却式のアルミニウム安定化超電導線を示す断面図であり、図において、1は超電導体を銅に埋設した構成の超電導素線、3はこの超電導素線1を埋設する高純度のアルミニウムでできた安定化材であり、12はこの安定化材3に設けられた冷却用穴である。アルミニウムはその低電気抵抗から安定化材として利用するもので、4.2K付近での電気抵抗率は室温の約1/300以下のものが必要である。
【0004】
このような構成の超電導線を得るためには、予め製作された超電導素線1をアルミニウム複合押出し装置に連続的に供給し、冷却用穴12を形成するためにニードルを位置決め設置し、押出し加工すると超電導素線1の周りにアルミニウム安定化材3が被覆され、安定化材には冷却用穴12が形成された超電導線が連続的に製作される。
【0005】
このように構成され、製作された超電導線を巻回して、超電導コイルとなし、冷却用穴に例えば約4.5K超臨界圧ヘリウムを流通させて極低温に冷却し、コイルを超電導状態となして通電して、目的の用に供するものである。
【0006】
【発明が解決しようとする課題】
従来の超電導コイル装置は以上のように構成され、製作されるので、安定化材の中で超電導素線1と冷却用穴ニードルを断面内の所定の位置に保持することが必要であるが、それらの位置が不安定であり、甚だしくは、超電導素線が冷却用穴内に侵入してしまうなどの問題点があった。
【0007】
この発明は上記のような課題を解決するためになされたものであり、寸法的に安定して製造でき、かつ安価な超電導線を得ること、及び、この超電導線を使用した超電導コイル装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る超電導線は、銅及び金属系超電導体の複合体である超電導素線と、金属管とをアルミニウム製の安定化材中に埋設したものである。
【0009】
又、超電導素線と金属管は隣接しているものである。
【0010】
又、複数本の超電導素線を金属管の周りに撚り合わせたものである。
【0011】
又、金属管の外周に超電導素線の直径の1/2以上の深さの溝を設け、その溝に上記超電導素線を埋設したものである。
【0012】
又、金属管の内面に溝を設けたものである。
【0013】
又、金属管の材質はアルミニウムであるものである。
【0014】
又、金属管の材質は高電気抵抗材料であるものである。
【0015】
又、高電気抵抗材料はオーステナイト系ステンレス鋼であるものである。
【0016】
この発明に係る超電導コイル装置は、上記超電導線を使用したものである。
【0017】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。図1において、1は銅及び金属系超電導体の複合体である超電導素線、2はこの超電導素線1に平行に配置された金属管、3は超電導素線1および金属管2を被覆埋設するアルミニウム製の安定化材である。
【0018】
このような構成の超電導線を得るためには、予め製作された超電導素線1と金属管2を束ねてアルミニウム複合押出し装置に連続的に供給し、押出し加工すると超電導素線1と金属管2の周りにアルミニウム安定化材3が被覆され、安定化材に超電導線1と金属管2が互いに密接した状態でアルミニウムに埋設された構造の超電導線が連続的に製作される。
【0019】
本発明では、従来技術で必要であった冷却用穴を形成するためにニードルは不要であり、それらの相対的な位置が安定であり、超電導素線が冷却用穴内に侵入してしまうおそれは全く無い。
【0020】
超電導素線1は金属管2と単に並列に束ねられたものでもよいし、束ねられたものを細い金属線、例えば銅線、アルミニウム線などで結束されていてもかまわない。更には図2に示すように、金属管2の周りに巻きつけられたものでもよい。金属管2は、その内部にヘリウムを流すために、当然気密でなければならない。
【0021】
このように構成され、製作された超電導線を巻回して、超電導コイルとなし、冷却用穴に例えばに約4.5K超臨界圧ヘリウムを流通させて極低温に冷却し、コイルを超電導状態となして通電して、目的の用に供する。
【0022】
実施の形態2.
なお、上記実施の形態1では、超電導素線1が1本の場合について述べたが、図3に示すように、金属管2の周囲に複数の超電導素線を撚り合せて金属管が芯となった撚線1aを構成したので、より通電容量が大きい超電導線およびそれを使用した超電導コイル装置を得ることができる。
【0023】
実施の形態3.
上記実施の形態1および2では、金属管の外周は平滑な円筒面である場合について図示したが、図4に示すように、金属管2aの外周に少なくとも超電導素線1の直径の1/2以上の深さの溝を設け、その溝内に超電導素線1を埋設して束ね、押出し機に供給するようにしたので、超電導素線と金属管との相互位置が押出し時にさらに寸法的に安定し、歩留りが良く、安価でかつ長尺の超電導線およびそれを使用した超電導コイル装置を得ることができる。
【0024】
実施の形態4.
上記実施の形態1乃至3では、金属管2bの内面が平滑である場合について図示したが、図5に示すように、金属管2bの内面に溝を設け、金属管内面の表面積を増やすようにしたので、更に冷却特性が良く小型で安価な超電導線およびそれを使用した超電導コイル装置を得ることができる。
【0025】
実施の形態5.
上記実施の形態1乃至4では、金属管の材質について特に言及しなかったが、通常は、コイルとして端子部でのヘリウム配管を接合するのに、ろう付け等の信頼性があり施工が容易な無酸素銅管を使用すればよい。無酸素銅管はまた長尺管として製作しやすく安価でもあるので冷却管として好便である。ところが超電導コイル装置が使用される、磁場、コイルの通電電流、冷却管寸法が大きい場合には、アルミニウム製安定化材と銅製冷却管とが異なる金属であるので、超電導コイルに何らかの発熱があって超電導線が常電導化した場合に、式(1)で表されるホール電場が安定化材と金属管との間の超電導線断面内に発生する。
【0026】
H=B×JT×R ・・・(1)
【0027】
式(1)で、B(T)は超電導線に印加される磁場、EH(V/m)は超電導線断面内に発生する電位勾配、即ちホール電場、JT(A/m2)は超電導体が常電導化したために、安定化材、金属管に分流した、それぞれの内部の輸送電流の電流密度、R(m3/C)は安定化材であるアルミニウム、金属管材質の銅に固有のホール係数である。このEH、B、JTの関連状況は図6に示すとおりである。同図でEH、JTについては、発生する材料を追加添字Al、Cuとして付加してある。式(1)で示されるホール電場により式(2)で概略値が示されるホール電圧が発生する。
【0028】
H≒EH×LC ・・・(2)
【0029】
式(2)でEH(V/m)はホール電場、VH(V)はホール電圧、はLC(m)は金属管代表長さ、例えば管の直径(図中、符号dで示す)である。金属管寸法、材料の電気抵抗率に応じて、図6に示すホール電流JHが金属管とアルミニウム製安定化材中に流れる。極低温状態では、アルミニウムの場合で室温の1/300以下、銅の場合で1/100以下と電気抵抗が極めて小さいので、前記ホール電場により発生するホール電流が磁場と輸送電流の相乗効果で極めて大きくなることがある。ホール電流が輸送電流と同程度まで大きくなると、超電導素線から分流した輸送電流のみが安定化材を流れる場合に比べ、大きいジュール損失が安定化材中で発生し、ひいては、超電導安定性を大きく低下させる。これは安定に通電できる電流容量限界が大きく低下することを意味し、超電導線の性能を大きく損う。
【0030】
したがって、本実施の形態においては、上記のようなホール電場による超電導線安定性の低下を防ぐため、金属管2cの材質を比較的抵抗が大きい銅である燐脱酸銅とした。極低温では、燐脱酸銅の電気抵抗は無酸素銅の10倍程度であり、金属管が無酸素銅である場合よりホール電流が流れる回路の電気抵抗が増大し、ホール電流が減少する。従って超電導安定性を大きく損うことがない。しかも、燐脱酸銅はろう付け施工の容易さは無酸素銅と何ら変りなく、製造上の利点は保持される。
【0031】
このようにすることで、必要な特性を持つ超電導線およびそれを使用した超電導コイル装置を安価に得ることができる。
【0032】
実施の形態6.
本実施の形態では、純アルミニウムを金属管の材質として用いることを特徴とする。図7に、本実施の形態における、超電導コイル端子部の冷却管の配管接合部を示す。
【0033】
安定化材3に埋設された金属管2は端部で冷却用配管と接続するために、安定化材から金属管部分を露出させ、配管継手5を介して、配管4に接続される。超電導線に埋設する金属管材質として通常の無酸素銅を採用する場合には、金属管2と配管継手5との接続部はろう付けで行うことになる。
【0034】
一方、金属管材質がアルミニウムであれば、配管継手5材質もアルミニウムとし、金属管と配管継手との接続を信頼性が更に高い溶接とすることができる。金属管に耐圧力強度が必要な場合はアルミニウム合金を金属管材質として採用すればよい。
【0035】
また、金属管材質をアルミニウムとすれば、安定化材と同材質であるので、実施の形態5で説明したホール電場は、安定化材部分と金属管部分とで同一となり相殺するため、ホール電流は流れず、超電導線の超電導安定性が低下することもなく、通電容量特性が低下しない。アルミニウム管は長尺管として製作しやすく安価でもあるので冷却管として好便である。
【0036】
このようにすることで、必要な特性を持つ超電導線およびそれを使用した超電導コイル装置を安価に得ることができる。
【0037】
実施の形態7.
本実施の形態では、オーステナイト系ステンレス鋼を金属管材質として用いている。このようにすることで、上記実施の形態6と同様に超電導コイル端子部で冷却管と配管との接合に信頼性ある溶接を採用できる。
【0038】
また実施の形態5で説明したホール電場は発生するが、極低温での金属管の電気抵抗が無酸素銅にくらべ5000倍大きいのでホール電流が殆ど流れず、超電導線の超電導安定性が損われず、超電導線の電流容量低下もない。
【0039】
このようにすることで、必要な特性を持つ超電導線およびそれを使用した超電導コイル装置を安価に得ることができる。
【0040】
【発明の効果】
本発明に係る超電導線は、銅及び金属系超電導体の複合体である超電導素線と、金属管とをアルミニウム製の安定化材中に埋設したので、製造歩留りがよく、安価にできるという効果を有する。
【0041】
又、超電導素線と金属管は隣接しているので、超電導素線と金属管との相対的な位置決めが容易となり、より製造歩留りがよくなり安価に製造できるという効果を有する。
【0042】
又、複数本の超電導素線を金属管の周りに撚り合わせたので、通電容量を大きくすることができるという効果を有する。
【0043】
又、金属管の外周に超電導素線の直径の1/2以上の深さの溝を設け、その溝に上記超電導素線を埋設したので、上記超電導素線と上記金属管との相対的な位置決めがさらに容易となるため、さらに製造歩留りがよくなるという効果を有する。
【0044】
又、金属管の内面に溝を設けたので、冷却特性を向上できるという効果を有する。
【0045】
又、金属管の材質はアルミニウムであるので、ホール電流による超電導安定性の低下を防止できるという効果を有する。
【0046】
又、金属管の材質は高電気抵抗材料であるので、ホール電流による超電導安定性の低下を防止できるという効果を有する。
【0047】
又、高電気抵抗材料はオーステナイト系ステンレス鋼であるので、ホール電流による超電導安定性の低下を防止できるという効果を有する。
【0048】
この発明に係る超電導コイル装置は上記超電導線を使用したので、超電導線の歩留りが向上するため、装置を安価に製造することができるという効果を有する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す断面図である。
【図2】 この発明の実施の形態1を示す斜視図である。
【図3】 この発明の実施の形態2を示す断面図である。
【図4】 この発明の実施の形態3を示す断面図である。
【図5】 この発明の実施の形態4を示す断面図である。
【図6】 ホール電場、磁場及びホール電流の関連状況を示す断面図である。
【図7】 この発明の実施の形態6を示す断面図である。
【図8】 従来の超電導コイル装置を示す断面図である。
【符号の説明】
1 超電導素線、 1a 撚線、 2、2a、2b 金属管、
3 安定化材、 4 配管、 5 配管継手、 12 冷却穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal forced cooling type superconducting wire using aluminum as a stabilizing material, and a superconducting coil device using the superconducting wire.
[0002]
[Prior art]
Conventional superconducting wires using metal-based superconductors, such as NbTi alloys and Nb 3 Sn compounds, have a low electrical resistivity at an extremely low temperature around 4.2 K, which is the operating temperature, in order to stabilize the superconducting state. As a stabilizing material, it is necessary to have a configuration in which a superconductor is embedded therein, and high-purity aluminum or oxygen-free copper has generally been used as the stabilizing material. Furthermore, in order to use such a superconducting wire in the internal forced cooling type, a superconducting wire having a structure in which a passage for flowing cooling helium is provided in the stabilizing material is considered as an advanced technology.
[0003]
FIG. 8 is a cross-sectional view showing an internal forced cooling type aluminum stabilized superconducting wire as the advanced technology described in Japanese Patent Application No. 11-200043, for example. In FIG. 8, 1 is a superconducting structure in which a superconductor is embedded in copper. An element wire 3 is a stabilizing material made of high-purity aluminum in which the superconducting element wire 1 is embedded, and 12 is a cooling hole provided in the stabilizing material 3. Aluminum is used as a stabilizing material because of its low electrical resistance, and its electrical resistivity near 4.2 K is required to be about 1/300 or less of room temperature.
[0004]
In order to obtain the superconducting wire having such a configuration, the superconducting element wire 1 manufactured in advance is continuously supplied to the aluminum composite extrusion apparatus, the needle is positioned and formed to form the cooling hole 12, and the extrusion process is performed. Then, the aluminum conductor 3 is coated around the superconducting element wire 1, and a superconducting wire having a cooling hole 12 formed in the stabilizer is continuously manufactured.
[0005]
The superconducting wire thus constructed is wound to form a superconducting coil, and about 4.5K supercritical pressure helium is circulated through the cooling hole to cool to a very low temperature, and the coil is brought into a superconducting state. It is used for the purpose.
[0006]
[Problems to be solved by the invention]
Since the conventional superconducting coil device is constructed and manufactured as described above, it is necessary to hold the superconducting element wire 1 and the cooling hole needle in a predetermined position in the cross section in the stabilizing material. Their position is unstable, and there is a problem that the superconducting wire enters into the cooling hole.
[0007]
The present invention has been made to solve the above-described problems, and can obtain a superconducting wire that can be manufactured in a dimensionally stable and inexpensive manner, and a superconducting coil device that uses the superconducting wire. For the purpose.
[0008]
[Means for Solving the Problems]
The superconducting wire according to the present invention is obtained by embedding a superconducting element wire, which is a composite of copper and a metallic superconductor, and a metal tube in an aluminum stabilizing material.
[0009]
The superconducting wire and the metal tube are adjacent to each other.
[0010]
In addition, a plurality of superconducting wires are twisted around a metal tube.
[0011]
Further, a groove having a depth of ½ or more of the diameter of the superconducting element wire is provided on the outer periphery of the metal tube, and the superconducting element wire is embedded in the groove.
[0012]
Further, a groove is provided on the inner surface of the metal tube.
[0013]
The material of the metal tube is aluminum.
[0014]
The material of the metal tube is a high electrical resistance material.
[0015]
The high electrical resistance material is austenitic stainless steel.
[0016]
The superconducting coil device according to the present invention uses the superconducting wire.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a superconducting element wire that is a composite of copper and a metallic superconductor, 2 is a metal tube arranged in parallel to the superconducting element wire 1, and 3 is embedded in the superconducting element wire 1 and the metal tube 2. It is an aluminum stabilizer.
[0018]
In order to obtain a superconducting wire having such a configuration, a superconducting wire 1 and a metal tube 2 manufactured in advance are bundled and continuously supplied to an aluminum composite extrusion device. A superconducting wire having a structure embedded in aluminum in a state where the superconducting wire 1 and the metal tube 2 are in close contact with each other is continuously manufactured.
[0019]
In the present invention, needles are not required to form the cooling holes required in the prior art, their relative positions are stable, and there is a possibility that the superconducting wires may enter the cooling holes. Not at all.
[0020]
The superconducting wire 1 may be simply bundled in parallel with the metal tube 2 or may be bundled with a thin metal wire such as a copper wire or an aluminum wire. Furthermore, as shown in FIG. 2, it may be wound around the metal tube 2. The metal tube 2 must naturally be airtight in order to allow helium to flow through it.
[0021]
The superconducting wire constructed in this way is wound to form a superconducting coil, and about 4.5K supercritical pressure helium is circulated in the cooling hole, for example, to cool to a very low temperature, and the coil is brought into a superconducting state. Never energize it and use it for the intended purpose.
[0022]
Embodiment 2. FIG.
In the first embodiment, the case where there is one superconducting element wire 1 has been described. However, as shown in FIG. 3, a plurality of superconducting element wires are twisted around the metal tube 2 so that the metal tube is connected to the core. Since the twisted wire 1a is configured, a superconducting wire having a larger current carrying capacity and a superconducting coil device using the superconducting wire can be obtained.
[0023]
Embodiment 3 FIG.
In the first and second embodiments, the case where the outer periphery of the metal tube has a smooth cylindrical surface is illustrated. However, as shown in FIG. 4, at least 1/2 of the diameter of the superconducting element wire 1 on the outer periphery of the metal tube 2a. Since the groove having the above depth is provided, and the superconducting element wire 1 is embedded and bundled in the groove and supplied to the extruder, the mutual position of the superconducting element wire and the metal tube is further dimensionally determined at the time of extrusion. A stable, good yield, inexpensive and long superconducting wire and a superconducting coil device using the same can be obtained.
[0024]
Embodiment 4 FIG.
In the first to third embodiments, the case where the inner surface of the metal tube 2b is smooth is illustrated. However, as shown in FIG. 5, a groove is provided on the inner surface of the metal tube 2b to increase the surface area of the inner surface of the metal tube. As a result, it is possible to obtain a superconducting wire that has better cooling characteristics and is small and inexpensive, and a superconducting coil device using the same.
[0025]
Embodiment 5 FIG.
In the first to fourth embodiments, the material of the metal pipe is not particularly mentioned. Usually, however, the helium pipe at the terminal portion is joined as a coil, and thus there is reliability such as brazing and the construction is easy. An oxygen-free copper tube may be used. Oxygen-free copper tubes are also convenient as cooling tubes because they are easy to manufacture as long tubes and are inexpensive. However, when the superconducting coil device is used, when the magnetic field, the coil energization current, and the cooling tube dimensions are large, the aluminum stabilizer and the copper cooling tube are different metals, so there is some heat generation in the superconducting coil. When the superconducting wire becomes normal conducting, a Hall electric field represented by the formula (1) is generated in the cross section of the superconducting wire between the stabilizing material and the metal tube.
[0026]
E H = B × J T × R (1)
[0027]
In Equation (1), B (T) is the magnetic field applied to the superconducting wire, E H (V / m) is the potential gradient generated in the cross section of the superconducting wire, that is, the Hall electric field, and J T (A / m 2 ) is Since the superconductor has become a normal conductor, the current density of the transport current inside each of the stabilizer and the metal pipe, R (m 3 / C) is the stabilizer aluminum and copper of the metal pipe material. It is a unique Hall coefficient. The relationship between E H , B, and J T is as shown in FIG. In the figure, for E H and J T , the generated materials are added as additional subscripts Al and Cu. A Hall voltage whose approximate value is represented by Equation (2) is generated by the Hall electric field represented by Equation (1).
[0028]
V H ≒ E H × L C (2)
[0029]
In Equation (2), E H (V / m) is the Hall electric field, V H (V) is the Hall voltage, L C (m) is the representative length of the metal tube, for example, the diameter of the tube (indicated by d in the figure). ). Depending on the dimensions of the metal tube and the electrical resistivity of the material, the Hall current JH shown in FIG. 6 flows in the metal tube and the aluminum stabilizer. In an extremely low temperature state, the electrical resistance is extremely small, that is, 1/300 or less of room temperature in the case of aluminum and 1/100 or less in the case of copper. Therefore, the Hall current generated by the Hall electric field is extremely May grow. When the Hall current is increased to the same level as the transport current, a larger Joule loss occurs in the stabilizing material than in the case where only the transport current shunted from the superconducting wire flows through the stabilizing material, which in turn increases the superconducting stability. Reduce. This means that the limit of the current capacity that can be stably energized is greatly reduced, and the performance of the superconducting wire is greatly impaired.
[0030]
Therefore, in the present embodiment, in order to prevent deterioration of the superconducting wire stability due to the Hall electric field as described above, the metal tube 2c is made of phosphorous deoxidized copper which is copper having a relatively large resistance. At an extremely low temperature, the electrical resistance of phosphorous-deoxidized copper is about 10 times that of oxygen-free copper, and the electrical resistance of the circuit through which the hole current flows is increased and the hole current is reduced compared to the case where the metal tube is oxygen-free copper. Therefore, the superconducting stability is not greatly impaired. Moreover, the phosphorous-deoxidized copper has the same ease of brazing as oxygen-free copper, and the manufacturing advantages are maintained.
[0031]
By doing in this way, the superconducting wire which has a required characteristic and the superconducting coil apparatus using the same can be obtained cheaply.
[0032]
Embodiment 6 FIG.
In this embodiment, pure aluminum is used as a material for the metal tube. FIG. 7 shows a pipe joint portion of the cooling pipe of the superconducting coil terminal portion in the present embodiment.
[0033]
Since the metal pipe 2 embedded in the stabilizing material 3 is connected to the cooling pipe at the end, the metal pipe portion is exposed from the stabilizing material and connected to the pipe 4 via the pipe joint 5. When normal oxygen-free copper is adopted as the metal pipe material embedded in the superconducting wire, the connection part between the metal pipe 2 and the pipe joint 5 is performed by brazing.
[0034]
On the other hand, if the metal pipe material is aluminum, the pipe joint 5 can also be made of aluminum, and the connection between the metal pipe and the pipe joint can be welded with higher reliability. In the case where pressure resistance is required for the metal tube, an aluminum alloy may be adopted as the metal tube material.
[0035]
Further, if the metal tube material is aluminum, it is the same material as the stabilizing material. Therefore, the Hall electric field described in the fifth embodiment is the same between the stabilizing material portion and the metal tube portion and cancels out. Does not flow, the superconducting stability of the superconducting wire does not deteriorate, and the current carrying capacity characteristic does not deteriorate. Aluminum tubes are convenient as cooling tubes because they are easy to manufacture as long tubes and are inexpensive.
[0036]
By doing in this way, the superconducting wire which has a required characteristic and the superconducting coil apparatus using the same can be obtained cheaply.
[0037]
Embodiment 7 FIG.
In the present embodiment, austenitic stainless steel is used as the metal tube material. By doing in this way, similarly to the said Embodiment 6, reliable welding can be employ | adopted for joining of a cooling pipe and piping in a superconducting coil terminal part.
[0038]
Although the Hall electric field described in Embodiment 5 is generated, the electric resistance of the metal tube at an extremely low temperature is 5000 times larger than that of oxygen-free copper, so that the hole current hardly flows and the superconducting stability of the superconducting wire is impaired. Furthermore, there is no reduction in the current capacity of the superconducting wire.
[0039]
By doing in this way, the superconducting wire which has a required characteristic and the superconducting coil apparatus using the same can be obtained cheaply.
[0040]
【The invention's effect】
Since the superconducting wire according to the present invention has a superconducting element wire, which is a composite of copper and a metallic superconductor, and a metal tube embedded in a stabilizing material made of aluminum, the production yield is good and the cost can be reduced. Have
[0041]
Further, since the superconducting element wire and the metal tube are adjacent to each other, the relative positioning between the superconducting element wire and the metal tube is facilitated, and the manufacturing yield is improved and the manufacturing can be performed at low cost.
[0042]
Further, since a plurality of superconducting wires are twisted around the metal tube, there is an effect that the current carrying capacity can be increased.
[0043]
Further, since a groove having a depth of ½ or more of the diameter of the superconducting element wire is provided on the outer periphery of the metal tube, and the superconducting element wire is embedded in the groove, the relative relationship between the superconducting element wire and the metal tube is increased. Since positioning is further facilitated, the manufacturing yield is further improved.
[0044]
In addition, since the groove is provided on the inner surface of the metal tube, the cooling characteristic can be improved.
[0045]
Further, since the material of the metal tube is aluminum, there is an effect that it is possible to prevent a decrease in superconducting stability due to a hole current.
[0046]
Further, since the material of the metal tube is a high electrical resistance material, there is an effect that it is possible to prevent a decrease in superconducting stability due to a hole current.
[0047]
Further, since the high electrical resistance material is austenitic stainless steel, it has an effect of preventing the deterioration of the superconducting stability due to the hole current.
[0048]
Since the superconducting coil device according to the present invention uses the superconducting wire, the yield of the superconducting wire is improved, so that the device can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a perspective view showing Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 4 is a sectional view showing Embodiment 3 of the present invention.
FIG. 5 is a sectional view showing Embodiment 4 of the present invention.
FIG. 6 is a cross-sectional view showing a related situation of a Hall electric field, a magnetic field and a Hall current.
FIG. 7 is a sectional view showing Embodiment 6 of the present invention.
FIG. 8 is a cross-sectional view showing a conventional superconducting coil device.
[Explanation of symbols]
1 superconducting wire, 1a stranded wire, 2, 2a, 2b metal tube,
3 Stabilizer, 4 Piping, 5 Piping joint, 12 Cooling hole.

Claims (9)

銅及び金属系超電導体の複合体である超電導素線と、金属管とを束ねてアルミニウム製の安定化材中に埋設した超電導線。A superconducting wire in which a superconducting wire, which is a composite of copper and a metal-based superconductor, and a metal tube are bundled and embedded in a stabilizing material made of aluminum. 複数本の超電導素線を金属管の周りに撚り合わせたことを特徴とする請求項1記載の超電導線。Claim 1 Symbol placement superconducting wire a plurality of superconducting strands, characterized in that twisted around a metal tube. 金属管の超電導素線の直径の1/2以上の深さの溝を設け、その溝に上記超電導素線を埋設したことを特徴とする請求項1又は2のいずれか1項に記載の超電導線。 3. The superconducting device according to claim 1, wherein a groove having a depth of ½ or more of a diameter of a superconducting element wire of a metal tube is provided, and the superconducting element wire is embedded in the groove. line. 金属管の内面に溝を設けたことを特徴とする請求項1乃至のいずれか1項に記載の超電導線。The superconducting wire according to any one of claims 1 to 3 , wherein a groove is provided on an inner surface of the metal tube. 金属管の材質は燐脱酸銅であることを特徴とする請求項1乃至4のいずれか1項に記載の超電導線。The superconducting wire according to any one of claims 1 to 4, wherein the metal tube is made of phosphorous deoxidized copper. 金属管の材質はアルミニウムであることを特徴とする請求項1乃至のいずれか1項に記載の超電導線。The superconducting wire according to any one of claims 1 to 4 , wherein a material of the metal tube is aluminum. 金属管の材質は高電気抵抗材料であることを特徴とする請求項1乃至のいずれか1項に記載の超電導線。The superconducting wire according to any one of claims 1 to 4 , wherein the metal tube is made of a high electrical resistance material. 高電気抵抗材料はオーステナイト系ステンレス鋼であることを特徴とする請求項7に記載の超電導線。The superconducting wire according to claim 7, wherein the high electrical resistance material is austenitic stainless steel. 請求項1乃至のいずれか1項に記載の超電導線を使用した超電導コイル装置。A superconducting coil device using the superconducting wire according to any one of claims 1 to 8 .
JP33255499A 1999-11-24 1999-11-24 Superconducting wire and superconducting coil device using the same Expired - Fee Related JP4016549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33255499A JP4016549B2 (en) 1999-11-24 1999-11-24 Superconducting wire and superconducting coil device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33255499A JP4016549B2 (en) 1999-11-24 1999-11-24 Superconducting wire and superconducting coil device using the same

Publications (2)

Publication Number Publication Date
JP2001155562A JP2001155562A (en) 2001-06-08
JP4016549B2 true JP4016549B2 (en) 2007-12-05

Family

ID=18256229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33255499A Expired - Fee Related JP4016549B2 (en) 1999-11-24 1999-11-24 Superconducting wire and superconducting coil device using the same

Country Status (1)

Country Link
JP (1) JP4016549B2 (en)

Also Published As

Publication number Publication date
JP2001155562A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
US4079187A (en) Superconductor
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
JP5619731B2 (en) Superconducting wire current terminal structure and superconducting cable having this current terminal structure
US4673774A (en) Superconductor
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
US5929385A (en) AC oxide superconductor wire and cable
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
JP4016549B2 (en) Superconducting wire and superconducting coil device using the same
JP3253526B2 (en) Aluminum stabilized superconducting device supported by aluminum alloy sheath and method of manufacturing the same
JP6818578B2 (en) Superconducting cable connection
JPS6137764B2 (en)
JP4391066B2 (en) Multi-layered superconducting conductor terminal structure and manufacturing method thereof
JP3126071B2 (en) Superconducting device and manufacturing method thereof
JPH05335145A (en) Superconducting current lead
JP3644229B2 (en) Current leads for superconducting equipment
JP2959145B2 (en) Superconducting wire for permanent current closed loop
JPH06104026A (en) Connection structure of superconductor
JP3568745B2 (en) Oxide superconducting cable
JP2001028211A (en) Forced cooling type superconductor
JP2000067663A (en) Superconductive conductor
JP3352735B2 (en) Superconducting flexible cable
JPH08181014A (en) Superconductive magnet device and its manufacture
Petrovich et al. Critical current of multifilamentary Nb 3 Sn-insert coil and long sample bend tests
JP3635893B2 (en) Nb-Al-based superconducting conductor and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees