JPH08181014A - Superconductive magnet device and its manufacture - Google Patents

Superconductive magnet device and its manufacture

Info

Publication number
JPH08181014A
JPH08181014A JP6322908A JP32290894A JPH08181014A JP H08181014 A JPH08181014 A JP H08181014A JP 6322908 A JP6322908 A JP 6322908A JP 32290894 A JP32290894 A JP 32290894A JP H08181014 A JPH08181014 A JP H08181014A
Authority
JP
Japan
Prior art keywords
coil
pcs
superconducting
magnet
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6322908A
Other languages
Japanese (ja)
Inventor
Masamitsu Ichihara
政光 市原
Takeshi Uchiyama
剛 内山
Seiichi Miyake
清市 三宅
Keiichiro Maeda
慶一郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP6322908A priority Critical patent/JPH08181014A/en
Publication of JPH08181014A publication Critical patent/JPH08181014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To provide a superconductive magnet device which stably maintains a high performance and can be easily manufactured by forming a magnet coil and a PCS coil using a compound superconductive wire and to provide its manufacturing method. CONSTITUTION: A superconductive magnet device is constituted by forming a magnet coil housing part 14 at the same coil frame 10, a PCS coil housing part 16, and a lead wire joint part housing part 15 and by housing a magnet coil 2 consisting of each compound superconductive wire at the housing parts, a PCS coil consisting of the compound superconductive wire and a heater wire, and a lead wire joint part 19 of both coils.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、永久電流モードで使用
される超電導マグネット装置に係わり、特にNb3 Sn
やV3 Gaなどの化合物系超電導線からなるマグネット
コイルおよびPCSコイルを備えた超電導マグネット装
置とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device used in a permanent current mode, and more particularly to Nb 3 Sn.
The present invention relates to a superconducting magnet device including a magnet coil made of a compound superconducting wire such as V 3 Ga and V 3 Ga and a PCS coil, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】NbTiやNb3 Snなどの金属系超電
導線を使用した超電導マグネット装置は、数百〜数千ア
ンペア/mm2 といった高い電流密度のもとで安定な超電
導特性を示すところから、MRI(磁気共鳴イメージン
グ装置)などの医療機器や静磁場発生用のマグネット装
置として広く実用化されており、また磁気浮上列車など
の各種応用機器への応用が期待されている。超電導マグ
ネット装置を、外部電源からの電流供給を断った後も長
時間、一定磁界に保持する、いわゆる永久電流モードで
運転する場合には、永久電流スイッチ(Persistent Cur
rent Switch .本明細書においては、PCSと略称す
る。)が併用される。
2. Description of the Related Art A superconducting magnet device using a metallic superconducting wire such as NbTi or Nb 3 Sn shows stable superconducting characteristics under a high current density of several hundreds to several thousand amperes / mm 2 . It has been widely put to practical use as a medical device such as MRI (magnetic resonance imaging device) and a magnet device for generating a static magnetic field, and is expected to be applied to various applied devices such as a magnetic levitation train. When the superconducting magnet device is operated in a so-called permanent current mode in which a constant magnetic field is maintained for a long time even after the current supply from the external power supply is cut off, a persistent current switch (Persistent Cur
rent Switch. In this specification, it is abbreviated as PCS. ) Is used together.

【0003】図2は永久電流モードで運転される超電導
マグネット装置の回路構成を例示するもので、PCS1
はPCSコイル1aと、このコイル1aの層間に巻込ん
だヒータ線1bとからなり、PCSコイル1aはマグネ
ットコイル2と並列接続され、スイッチ3を介して、励
磁電源回路4に接続されている。PCS1とマグネット
コイル2はクライオスタット5内に納められ、液体ヘリ
ウム中に浸漬して使用される。なお、PCSコイル1a
は、通電による自身の磁界発生を避けるため、無誘導巻
きとされている。また、PCS1は、マグネットコイル
2とは別の巻枠に巻回して製作され、マグネットコイル
2による磁界の弱い所に配置して使用される。
FIG. 2 exemplifies a circuit configuration of a superconducting magnet device operated in a persistent current mode. PCS1
Is composed of a PCS coil 1a and a heater wire 1b wound between layers of the coil 1a. The PCS coil 1a is connected in parallel with a magnet coil 2 and is connected to an excitation power supply circuit 4 via a switch 3. The PCS 1 and the magnet coil 2 are housed in a cryostat 5 and used by being immersed in liquid helium. The PCS coil 1a
Has a non-inductive winding in order to avoid generation of its own magnetic field due to energization. Further, the PCS 1 is manufactured by being wound around a winding frame different from the magnet coil 2, and is used by being arranged in a place where the magnetic field generated by the magnet coil 2 is weak.

【0004】このような構成の超電導マグネット装置
を、永久電流モードで使用する場合には、ヒータ電源
(図示せず)よりヒータ線1bに電流を流して発熱さ
せ、PCSコイル1aを常電導状態(スイッチOFFの
状態)にした後、励磁電源回路4からマグネットコイル
2に通電し、マグネットコイル2に流れる電流およびそ
れによって形成される磁界が所定のレベルで安定した
ら、ヒータ線1bの加熱を停止する。PCSコイル1a
が冷却され、超電導状態(スイッチONの状態)に達し
たら、励磁電源回路4からの電流を徐々に減少させた
後、スイッチ3を開路する。これにより、マグネットコ
イル2とPCSコイル1aの閉回路には、励磁電源回路
4から断路された後も、長時間に亘って安定した永久電
流が流れることになる。
When the superconducting magnet device having such a structure is used in the permanent current mode, a current is supplied from the heater power source (not shown) to the heater wire 1b to generate heat, and the PCS coil 1a is in the normal conduction state ( After the switch is turned off), the magnet coil 2 is energized from the exciting power supply circuit 4, and when the current flowing through the magnet coil 2 and the magnetic field formed thereby stabilizes at a predetermined level, the heating of the heater wire 1b is stopped. . PCS coil 1a
Is cooled and reaches a superconducting state (switch ON state), the current from the excitation power supply circuit 4 is gradually reduced, and then the switch 3 is opened. As a result, a stable permanent current flows through the closed circuit of the magnet coil 2 and the PCS coil 1a for a long time even after being disconnected from the excitation power supply circuit 4.

【0005】上記超電導マグネット装置において、マグ
ネットコイル2やPCSコイル1aとしては、NbTi
などの合金系超電導材料を、安定化マトリックス内に多
数本埋め込み、細線化させた上、外面に絶縁層を被覆し
た構造の線材を巻枠に巻回したものが使用されている。
ここで、安定化マトリックスは、超電導素線が何等かの
原因によって昇温し、いわゆるクエンチ状態になるか、
なろうとした際、超電導素線から迅速に熱を吸収し、超
電導状態を保持させるためのもので、マグネットコイル
2およびPCSコイル1aの安定化マトリックスとも、
熱伝導性の良い材料から構成されている。しかしなが
ら、マグネットコイル2の安定化マトリックスは、コイ
ル2が万一クエンチした際に、超電導素線に流れていた
電流を安定化マトリックスに大量に分流させる機能を持
たせるため、銅などのように、電気伝導性の良い材料か
ら構成されているが、PCSコイル1aの線材は、超電
導状態では超電導線として作用し、常電導状態では抵抗
線として作用することが期待されるため、PCSコイル
線材の安定化マトリックスは、銅−ニッケル合金のよう
に比抵抗値の大きな材料から構成されている。したがっ
て、マグネットコイル2とPCSコイル1aは、別体と
して設計・製作された超電導線材をそれぞれ別々の巻枠
にコイル状に巻回し、両コイルの口出し端部を互いに接
合させることによって並列接続される。これらのコイル
の巻回や接合作業は、超電導素線がNbTi材料からな
る場合には、容易に行うことができる。
In the above superconducting magnet device, the magnet coil 2 and the PCS coil 1a are made of NbTi.
A large number of alloy superconducting materials such as the above are embedded in a stabilizing matrix to make a fine wire, and a wire having a structure in which an outer surface is covered with an insulating layer is wound on a winding frame.
Here, the stabilization matrix, the temperature of the superconducting element wire is raised by some cause, to become a so-called quench state,
In order to quickly absorb the heat from the superconducting element wire and maintain the superconducting state, the stabilizing matrix of the magnet coil 2 and the PCS coil 1a,
It is made of a material with good thermal conductivity. However, the stabilizing matrix of the magnet coil 2 has a function of shunting a large amount of current flowing through the superconducting element wire into the stabilizing matrix when the coil 2 is quenched, so that the stabilizing matrix of copper, etc. Although it is composed of a material having good electrical conductivity, the wire of the PCS coil 1a is expected to act as a superconducting wire in the superconducting state and as a resistance wire in the normal conducting state, so that the PCS coil wire is stable. The chemical matrix is made of a material having a large specific resistance value such as a copper-nickel alloy. Therefore, the magnet coil 2 and the PCS coil 1a are connected in parallel by winding the superconducting wire rods designed and manufactured as separate bodies around separate winding frames in a coil shape and joining the lead-out ends of both coils to each other. . The winding and joining operations of these coils can be easily performed when the superconducting element wire is made of NbTi material.

【0006】[0006]

【発明が解決しようとする課題】最近では、超電導マグ
ネット装置の性能向上に関する要望はますます増大し、
NbTi超電導線に比べて高磁界中での臨界電流密度が
非常に高いNb3 SnやV3 Gaなどの化合物系超電導
線の利用が強く要請されるようになってきた。特に、P
CS用超電導線は、前記したように、その要求される機
能から、比抵抗値の小さな純銅を安定化マトリックスと
して使用できず、僅かなじょう乱でも超電導状態が破壊
されやすいので、NbTi超電導線に比べて臨界温度が
高く、温度マージンの大きいNb3 SnやV3 Gaなど
の化合物系超電導線の採用が期待されている。しかしな
がら、これらの化合物系超電導線は、製法が複雑な上、
僅かな歪みを加えただけでも超電導特性が劣化するた
め、取扱い方に細心の注意を必要とする。また、マグネ
ットコイルとPCSコイルの口出し部の接合も、線材中
に化合物超電導体が形成された後では容易でない。
[Problems to be Solved by the Invention] Recently, demands for improving the performance of superconducting magnet devices have been increasing,
There has been a strong demand for the use of compound superconducting wires such as Nb 3 Sn and V 3 Ga, which have a very high critical current density in a high magnetic field as compared with NbTi superconducting wires. In particular, P
As described above, the superconducting wire for CS cannot use pure copper having a small specific resistance value as a stabilizing matrix because of its required function, and the superconducting state is easily destroyed even by a slight disturbance. In comparison, the use of compound superconducting wires such as Nb 3 Sn and V 3 Ga, which have a higher critical temperature and a large temperature margin, is expected. However, these compound-based superconducting wires are complicated to manufacture and
The superconducting characteristics deteriorate even with a slight strain, so careful handling is required. Also, joining of the lead-out portions of the magnet coil and the PCS coil is not easy after the compound superconductor is formed in the wire.

【0007】本発明は、化合物系超電導線を用いてマグ
ネットコイルとPCSコイルを形成することによって高
い性能を安定して保持し、しかも製造が容易な超電導マ
グネット装置とその製造方法を提供することを目的とす
るものである。
The present invention provides a superconducting magnet device which can stably maintain high performance by forming a magnet coil and a PCS coil using a compound type superconducting wire and is easy to manufacture, and a manufacturing method thereof. It is intended.

【0008】[0008]

【課題を解決するための手段】本発明の超電導マグネッ
ト装置は、マグネットコイル収納部、PCSコイル収納
部および口出し線接合部収納部を備えた巻枠と、前記マ
グネットコイル収納部に収納された化合物系超電導線か
らなるマグネットコイルと、前記PCSコイル収納部に
収納された化合物系超電導線からなるPCSコイルおよ
びヒータ線と、前記口出し線接合部収納部に収納された
前記マグネットコイルおよびPCSコイルの口出し線接
合部とを備えることを主な特徴とし、本発明の超電導マ
グネット装置の製造方法は、巻枠のマグネットコイル収
納部にマグネットコイル用の化合物系超電導線形成素材
を巻回し、前記巻枠のPCSコイル収納部にPCSコイ
ル用の化合物系超電導線形成素材およびヒータ線を巻回
し、前記両素材の口出し線を互いに接続させた後、全体
を熱処理して、前記両素材および前記接続部に化合物系
超電導体を生成させることを特徴とするものである。
A superconducting magnet device of the present invention comprises a winding frame having a magnet coil housing portion, a PCS coil housing portion and a lead wire joint portion housing portion, and a compound housed in the magnet coil housing portion. -Based superconducting wire magnet coil, compound-based superconducting wire PCS coil and heater wire housed in the PCS coil housing, and lead wire junction housing housing magnet coil and PCS coil housing A main feature of the present invention is to provide a wire joining portion, and a method for manufacturing a superconducting magnet device according to the present invention comprises winding a compound-based superconducting wire forming material for a magnet coil in a magnet coil housing portion of the winding frame, A compound-based superconducting wire forming material for a PCS coil and a heater wire are wound around the PCS coil housing part to After connecting the out line with each other, and heat-treating the whole, it is characterized in that to produce the compound superconductor in the two materials and the connecting portion.

【0009】[0009]

【作用】本発明においては、マグネットコイルとPCS
コイルは共に化合物系超電導線から構成されているの
で、臨界温度が高く、また高磁界中での臨界電流密度が
非常に高い超電導マグネット装置を得ることができる。
また、マグネットコイルとPCSコイルと口出し線接合
部は、同一の巻枠に設けられたそれぞれの収納部に納め
られ、固定されるので、製造中や使用中に無理な力が加
わって特性を劣化させることはない。しかも、線材の取
扱いや加工を困難にする化合物超電導体の生成は、コイ
ル巻きおよび口出し線の接続の後に行われるので、超電
導マグネット装置の作製作業は容易である。
In the present invention, the magnet coil and the PCS are used.
Since the coils are both composed of compound-based superconducting wires, a superconducting magnet device having a high critical temperature and a very high critical current density in a high magnetic field can be obtained.
Further, the magnet coil, the PCS coil, and the lead wire joint are housed and fixed in the respective housings provided on the same winding frame, so that unreasonable force is applied during manufacturing or use to deteriorate the characteristics. There is nothing to do. Moreover, the production of the compound superconductor, which makes it difficult to handle and process the wire, is performed after the coil winding and the connection of the lead wire, so that the superconducting magnet device can be easily manufactured.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を説明
する。なお、これらの図において、図2におけると同一
部分には同一の符号を付してある。図1は、本発明の超
電導マグネット装置の実施例を示すもので、巻枠10は
円筒体11の上下にフランジ部12,13を設け、下側
の厚肉のフランジ部13の外周に2本の環状溝を設けた
形状のものであり、両フランジ部12,13の間の巻胴
部はマグネットコイル収納部14を形成し、下側フラン
ジ部13の外周の2本の環状溝は口出し線接合部収納部
15とPCSコイル収納部16を形成している。この巻
枠はステンレス鋼などを用いて製作され、各収納部1
4,15,16の内壁はアルミナ溶射により絶縁処理を
施されている。また、巻枠の下側フランジ部13には、
マグネットコイル収納部14と口出し線接合部収納部1
5との間、および口出し線接合部収納部15とPCSコ
イル収納部16との間にそれぞれ口出し線を緩やかに湾
曲させて案内するため、らせん状のスリット溝17,1
8が形成されている。
Embodiments of the present invention will be described below with reference to the drawings. In these figures, the same parts as those in FIG. 2 are designated by the same reference numerals. FIG. 1 shows an embodiment of a superconducting magnet device of the present invention, in which a winding frame 10 is provided with flange portions 12 and 13 on the upper and lower sides of a cylindrical body 11, and two flange portions 12 and 13 are provided on the outer periphery of a lower thick flange portion 13. , The winding drum portion between the flange portions 12 and 13 forms a magnet coil housing portion 14, and the two annular grooves on the outer circumference of the lower flange portion 13 are lead wires. The joining portion storage portion 15 and the PCS coil storage portion 16 are formed. This reel is made of stainless steel, etc.
The inner walls of 4, 15 and 16 are insulation-treated by alumina spraying. Further, on the lower flange portion 13 of the reel,
Magnet coil housing 14 and lead wire joint housing 1
5 and between the lead wire joining portion housing portion 15 and the PCS coil housing portion 16 so as to guide the lead wire by gently curving, respectively, so that the spiral slit grooves 17, 1 are provided.
8 are formed.

【0011】巻枠10のマグネットコイル収納部14に
は、安定化マトリックスとして純銅を用い、Nb3 Sn
を超電導体とする超電導線が多数回巻回されてマグネッ
トコイル2を形成している。また、PCSコイル収納部
16には、安定化マトリックスとして銅合金、例えばC
u−10%Ni合金を用い、Nb3 Snを超電導体とす
る超電導線が、PCSヒータ線1b(図示せず)を介挿
しながら、無誘導巻きで巻回されPCSコイル1aを形
成している。マグネットコイル収納部14とPCSコイ
ル収納部16に収納されたマグネットコイル2用超電導
線およびPCSコイル1a用超電導線は、それぞれ巻始
め端および巻終り端の余長部と口出し部(図示せず)を
引出され、必要に応じて余長部を口出し線接合部収納部
15内に巻収された後、口出し部の先端同志を接合部1
9によって互いに接合されている。これらの接合部と端
子板20との間は、リード線21によって連結されてい
る。また、図示を省略したが、巻枠10、各コイル2,
1a、余長部や口出し部、接合部19およびリード線2
1はエポキシ樹脂の含浸により一体化されている。
Pure copper is used as a stabilizing matrix in the magnet coil housing 14 of the bobbin 10, and Nb 3 Sn is used.
A superconducting wire having a superconductor is wound many times to form the magnet coil 2. Further, the PCS coil housing portion 16 contains a copper alloy such as C as a stabilizing matrix.
with u-10% Ni alloy, superconducting wire of the Nb 3 Sn superconductor is while interposing the PCS heater wire 1b (not shown) to form a wound PCS coil 1a in a non-inductive winding . The superconducting wire for the magnet coil 2 and the superconducting wire for the PCS coil 1a, which are housed in the magnet coil housing portion 14 and the PCS coil housing portion 16, respectively, have extra length portions at the winding start end and the winding end end and a lead-out portion (not shown). And the extra length portion is wound up in the lead wire joint portion storage portion 15 as necessary, and then the tip ends of the lead portions are joined to each other by the joint portion 1.
They are joined together by 9. A lead wire 21 connects these joints and the terminal board 20. Although not shown, the winding frame 10, each coil 2,
1a, extra length portion, lead portion, joint portion 19 and lead wire 2
1 is integrated by impregnation with an epoxy resin.

【0012】上述した本発明の超電導マグネット装置に
おいては、マグネットコイルとPCSコイルは共に化合
物系超電導線から構成されているので、臨界温度が高
く、また高磁界中での臨界電流密度が非常に高い特性を
示す。因みに、上記超電導マグネット装置を用いて励磁
実験をしたところ、10テスラまで安定して永久電流モ
ードで運転することができた。また、マグネットコイル
とPCSコイルと口出し線接合部は、同一の巻枠に設け
られたそれぞれの収納部に納められ、固定されているの
で、コンパクトであり、しかも製作中や使用中に無理な
力が加わって特性を劣化させるようなことはない。
In the above-described superconducting magnet device of the present invention, since the magnet coil and the PCS coil are both composed of a compound superconducting wire, the critical temperature is high and the critical current density in a high magnetic field is very high. Show the characteristics. Incidentally, when an excitation experiment was conducted using the above superconducting magnet device, it was possible to stably operate in the permanent current mode up to 10 Tesla. In addition, the magnet coil, PCS coil, and lead wire joint are housed and fixed in their respective housings provided on the same winding frame, so they are compact, and they do not require excessive force during manufacture or use. Does not deteriorate the characteristics.

【0013】次に、本発明の製造方法を説明する。図1
において、巻枠10にマグネットコイル2を設ける場合
には、マグネットコイル収納部14に、安定化マトリッ
クスとして純銅を用い、Nb3 Snを超電導体とするマ
グネットコイル用の超電導線形成素材が多数回巻回され
る。また、PCSコイル収納部16には、安定化マトリ
ックスとして銅合金、例えばCu−10%Ni合金を用
い、Nb3 Snを超電導体とするPCSコイル1a用の
超電導線形成素材が、PCSヒータ線1b(図示せず)
を介挿しながら、無誘導巻きで巻回される。ここで、超
電導線形成素材とは、Nb3 Sn生成のための熱処理を
受ける以前の線材を意味している。これらの超電導線形
成素材は、チューブ法、ブロンズ法、内部拡散法、外部
拡散法、インサイチュー法など種々の方法で製造するこ
とができる。
Next, the manufacturing method of the present invention will be described. FIG.
In the case where the magnet coil 2 is provided on the winding frame 10, pure copper is used as the stabilizing matrix in the magnet coil housing portion 14, and the superconducting wire forming material for the magnet coil having Nb 3 Sn as the superconductor is wound many times. To be turned. In addition, the PCS coil receiving portion 16, a copper alloy as a stabilizing matrix, for example using a Cu-10% Ni alloy, superconducting wire forming material for PCS coil 1a to the Nb 3 Sn superconductor is, PCS heater wire 1b (Not shown)
It is wound by non-inductive winding while inserting. Here, the superconducting wire forming material means a wire material that has not been subjected to a heat treatment for producing Nb 3 Sn. These superconducting wire forming materials can be manufactured by various methods such as a tube method, a bronze method, an internal diffusion method, an external diffusion method and an in situ method.

【0014】例えば、チューブ法を用いてPCSコイル
1a用の超電導線形成素材を製造する場合には、図3に
示すように、SnロッドをCuパイプ内に組込み(ステ
ップS1)、冷間引抜き加工による伸線(ステップS
2)を行って、銅クラッド錫ロッドを作る。この銅クラ
ッド錫ロッドをNbパイプおよびCuNiパイプ内に順
次組込み(ステップS3)、冷間引抜き加工による伸線
(ステップS4)を行って、横断面が六角形状のシング
ル線を作る。このシングル線を多数本、CuNiパイプ
内に組込み(ステップS5)、静水圧押出し(ステップ
6)および冷間引抜き加工による伸線(ステップS7)
を行って、横断面が円形または角型の素線を得る。この
素線をツイストし(ステップS8)、再び伸線(ステッ
プS9)を行い、絶縁処理(ステップS10)を行っ
て、PCSコイル用超電導線形成素材とする。なお、マ
グネットコイル用の超電導線形成素材をチューブ法で製
造する場合には、図3の方法において、CuNiパイプ
に代えてCuパイプを使用すればよい。
For example, when manufacturing a superconducting wire forming material for the PCS coil 1a using the tube method, as shown in FIG. 3, an Sn rod is incorporated into a Cu pipe (step S1) and cold drawing is performed. Wire drawing (step S
Perform 2) to make a copper clad tin rod. This copper clad tin rod is sequentially incorporated into an Nb pipe and a CuNi pipe (step S3), and drawn by cold drawing (step S4) to make a single wire having a hexagonal cross section. A large number of these single wires are incorporated into a CuNi pipe (step S5), hydrostatic extrusion (step 6) and wire drawing by cold drawing (step S7).
Is performed to obtain a wire having a circular or rectangular cross section. This strand is twisted (step S8), drawn again (step S9), and insulated (step S10) to obtain a PCS coil superconducting wire forming material. When manufacturing the superconducting wire forming material for the magnet coil by the tube method, a Cu pipe may be used instead of the CuNi pipe in the method of FIG.

【0015】マグネットコイル収納部14とPCSコイ
ル収納部16に収納されたマグネットコイル用超電導線
形成素材およびPCSコイル用超電導線形成素材は、そ
れぞれ巻始め端および巻終り端の余長部と口出し部を、
スリット溝17,18を通して引出され、口出し線接合
部収納部15内に巻収され、口出し部の先端同志を互い
に接続される。この接続は、図4に示すように、マグネ
ットコイル2用超電導線形成素材22およびPCSコイ
ル1a用超電導線形成素材23の口出し部先端の銅また
は銅合金マトリックス層を溶解して剥離し、露出したシ
ングル線22a,23aの先端を互いに入り組ませ、そ
れらの間にSnパウダー24を介在させ、外側に被せた
Cuチューブ25をかしめることにより行われる。
The magnet coil superconducting wire forming material and the PCS coil superconducting wire forming material housed in the magnet coil housing portion 14 and the PCS coil housing portion 16, respectively, have extra lengths at the winding start end and the winding end end and a lead-out portion, respectively. To
It is drawn out through the slit grooves 17 and 18, is wound up in the lead wire joining portion housing portion 15, and the tips of the lead wire portions are connected to each other. For this connection, as shown in FIG. 4, the copper or copper alloy matrix layer at the tip of the protruding portion of the superconducting wire forming material 22 for the magnet coil 2 and the superconducting wire forming material 23 for the PCS coil 1a is melted and peeled off to be exposed. This is performed by making the tips of the single wires 22a and 23a intricately interpose each other, interposing Sn powder 24 between them, and caulking a Cu tube 25 covering the outside.

【0016】このようにして、口出し線の先端同志の接
続が終わったら、これらの接続部を、図1のように、口
出し線接合部収納部15内に収め、全体を加熱して、マ
グネットコイル2用超電導線形成素材、PCSコイル1
a用超電導線形成素材および口出し線接合部のNb3
n生成のための熱処理を行う。この熱処理においては、
巻枠10に巻回され、かつ口出し線を接続された超電導
線形成素材を加熱炉に入れ、先ず300〜400℃に加
熱してCu−Sn層を形成させ、これを更に550〜7
80℃に加熱してNb3 Sn層を生成させる。この熱処
理に際しては、Snパウダー24の溶融およびCuチュ
ーブ25との反応により、口出し部の先端同志の固相接
合も行われる。この後、電流リード線21と口出し部を
はんだ付けなどにより接続し、さらに、巻枠全体にエポ
キシ樹脂を含浸させ、硬化させる。
In this way, when the connection between the ends of the lead wires is completed, these connecting portions are put in the lead wire joining portion housing portion 15 as shown in FIG. Superconducting wire forming material for 2, PCS coil 1
Nb 3 S for superconducting wire forming material for a and lead wire joints
Heat treatment is performed to generate n. In this heat treatment,
The superconducting wire forming material wound on the bobbin 10 and connected to the lead wire is put into a heating furnace and first heated to 300 to 400 ° C. to form a Cu—Sn layer, which is further 550 to 7
Heat to 80 ° C. to form a Nb 3 Sn layer. At the time of this heat treatment, melting of the Sn powder 24 and reaction with the Cu tube 25 also perform solid-phase bonding between the tips of the lead-out portions. After that, the current lead wire 21 and the lead-out portion are connected by soldering or the like, and the entire reel is impregnated with epoxy resin and cured.

【0017】このように、本発明の超電導マグネット装
置の製造方法は、未だNb3 Sn層の生成されていない
加工性のよい超電導線形成素材を巻枠に巻回し、口出し
部の接続を行った後、熱処理を加えてNb3 Sn層を生
成させるものであるから、線材の取扱いや加工を困難に
する化合物超電導体の生成は、コイル巻きおよび口出し
線の接続後に行われことになり、また、一回の熱処理で
化合物超電導体の生成と引出し部の固相接合を行うこと
ができ、超電導マグネット装置の作製作業は容易であ
る。なお、以上の説明においては、化合物系超電導線と
してNb3 Snを超電導体とする超電導マグネット装置
につき述べたが、本発明はこれに限定されるものではな
く、V3 Gaなど、他の化合物系超電導線を用いた超電
導マグネット装置にも同様に適用することができる。ま
た、超電導線形成素材も、上述のチューブ法に限らず、
ブロンズ法、内部拡散法、外部拡散法、インサイチュー
法など種々の方法で製造することができる。
As described above, according to the method of manufacturing the superconducting magnet device of the present invention, the superconducting wire forming material which is not yet formed with the Nb 3 Sn layer and has good workability is wound around the winding frame, and the lead-out portion is connected. After that, since heat treatment is applied to generate the Nb 3 Sn layer, the production of the compound superconductor which makes the handling and processing of the wire difficult is performed after the coil winding and the connection of the lead wire, and Since the compound superconductor can be produced and the lead-out portion can be solid-phase bonded by one heat treatment, the superconducting magnet device can be easily manufactured. In the above description, the superconducting magnet device using Nb 3 Sn as a superconductor as the compound superconducting wire has been described, but the present invention is not limited to this and other compound-based such as V 3 Ga. It can be similarly applied to a superconducting magnet device using a superconducting wire. Also, the superconducting wire forming material is not limited to the above tube method,
It can be manufactured by various methods such as a bronze method, an internal diffusion method, an external diffusion method and an in situ method.

【0018】[0018]

【発明の効果】上述のように、本発明の超電導マグネッ
ト装置は、マグネットコイルとPCSコイルが共に化合
物系超電導線から構成されているので、臨界温度、およ
び高磁界中での臨界電流密度が高く、また、マグネット
コイルとPCSコイルと口出し線接合部は、同一の巻枠
に設けられたそれぞれの収納部に納められ、固定されて
いるので、製造中や使用中に無理な力が加わって特性を
劣化させることはない。しかも、本発明の超電導マグネ
ット装置の製造方法においては、線材の取扱いや加工を
困難にする化合物超電導体の生成は、コイル巻きおよび
口出し線の接続の後に行われるので、コイル巻きや口出
し線の接続などの作業は容易であり、製作段階での取扱
いによって特性が低下する恐れは少ない。
As described above, in the superconducting magnet device of the present invention, since the magnet coil and the PCS coil are both composed of the compound superconducting wire, the critical temperature and the critical current density in a high magnetic field are high. Also, the magnet coil, PCS coil and lead wire joint are housed and fixed in their respective housings provided on the same winding frame, so unreasonable force is applied during manufacturing and use. Does not deteriorate. Moreover, in the method for manufacturing a superconducting magnet device of the present invention, since the production of the compound superconductor which makes the handling and processing of the wire difficult is performed after the coil winding and the lead wire connection, the coil winding and the lead wire connection The work is easy and there is little risk that the characteristics will deteriorate due to handling at the manufacturing stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の超電導マグネット装置の実施例を示
す縦断面図である。
FIG. 1 is a vertical sectional view showing an embodiment of a superconducting magnet device of the present invention.

【図2】 本発明の超電導マグネット装置の使用法を説
明する回路構成図である。
FIG. 2 is a circuit configuration diagram illustrating a method of using the superconducting magnet device of the present invention.

【図3】 本発明方法におけるPCSコイル用超電導線
形成素材の製造工程を例示する工程図である。
FIG. 3 is a process diagram illustrating a manufacturing process of a PCS coil superconducting wire forming material in the method of the present invention.

【図4】 本発明方法におけるマグネットコイル用超電
導線形成素材とPCSコイル用超電導線形成素材の接続
工程を説明する一部縦断面図である。
FIG. 4 is a partial vertical cross-sectional view for explaining a connecting step of a magnet coil superconducting wire forming material and a PCS coil superconducting wire forming material in the method of the present invention.

【符号の説明】[Explanation of symbols]

1……PCS 2……マグネットコイル 4……励磁電源回路 5……クライオスタット 10……巻枠 11……円筒体 12,13……フランジ部 14……マグネットコイル収納部 15……口出し線接合部収納部 16……PCSコイル収納部 17,18……スリット溝 19……接合部 21……リード線 22……マグネットコイル用超電導線形成素材 23……PCSコイル用超電導線形成素材 24……Snパウダー 25……Cuチューブ 1 ... PCS 2 ... Magnet coil 4 ... Excitation power supply circuit 5 ... Cryostat 10 ... Reel 11 ... Cylinder 12,13 ... Flange 14 ... Magnet coil storage 15 ... Lead wire joint Storage part 16 ...... PCS coil storage part 17, 18 ...... Slit groove 19 ...... Joining part 21 ...... Lead wire 22 ...... Magnetic coil superconducting wire forming material 23 ...... PCS coil superconducting wire forming material 24 ...... Sn Powder 25 …… Cu tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 清市 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 前田 慶一郎 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyo-shi Miyake 2-1-1 Oda Sakae, Kawasaki-ku, Kanagawa Prefecture 2-1-1 No. 1 Showa Electric Wire & Cable Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マグネットコイル収納部、PCSコイル
収納部および口出し線接合部収納部を備えた巻枠と、前
記マグネットコイル収納部に収納された化合物系超電導
線からなるマグネットコイルと、前記PCSコイル収納
部に収納された化合物系超電導線からなるPCSコイル
およびヒータ線と、前記口出し線接合部収納部に収納さ
れた前記マグネットコイルおよびPCSコイルの口出し
線接合部とを備えることを特徴とする超電導マグネット
装置。
1. A winding frame having a magnet coil housing portion, a PCS coil housing portion, and a lead wire joining portion housing portion, a magnet coil made of a compound superconducting wire housed in the magnet coil housing portion, and the PCS coil. A superconducting device comprising: a PCS coil and a heater wire made of a compound superconducting wire housed in a housing part; and a lead wire joint part of the magnet coil and PCS coil housed in the lead wire joint part housing part. Magnet device.
【請求項2】 PCSコイル収納部と口出し線接合部収
納部が、マグネットコイル収納部を備えた巻枠の一方の
フランジ部外周に同心環状溝として形成されていること
を特徴とする請求項1に記載の超電導マグネット装置。
2. The PCS coil accommodating portion and the lead wire joint accommodating portion accommodating portion are formed as concentric annular grooves on the outer circumference of one flange portion of the winding frame having the magnet coil accommodating portion. The superconducting magnet device described in.
【請求項3】 口出し線接合部収納部が、マグネットコ
イル収納部とPCSコイル収納部との間に形成されてい
ることを特徴とする請求項2に記載の超電導マグネット
装置。
3. The superconducting magnet device according to claim 2, wherein the lead wire joint portion storage portion is formed between the magnet coil storage portion and the PCS coil storage portion.
【請求項4】 巻枠のマグネットコイル収納部にマグネ
ットコイル用の化合物系超電導線形成素材を巻回し、前
記巻枠のPCSコイル収納部にPCSコイル用の化合物
系超電導線形成素材およびヒータ線を巻回し、前記両素
材の口出し線を互いに接続させた後、全体を熱処理し
て、前記両素材および前記接続部に化合物系超電導体を
生成させることを特徴とする超電導マグネット装置の製
造方法。
4. A compound superconducting wire forming material for a magnet coil is wound around a magnet coil housing portion of a reel, and a compound superconducting wire forming material for a PCS coil and a heater wire are wound around the PCS coil housing portion of the reel. A method for manufacturing a superconducting magnet device, which comprises winding and connecting lead wires of both materials to each other, and then heat-treating the whole to generate a compound-based superconductor in the both materials and the connecting portion.
JP6322908A 1994-12-26 1994-12-26 Superconductive magnet device and its manufacture Pending JPH08181014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6322908A JPH08181014A (en) 1994-12-26 1994-12-26 Superconductive magnet device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6322908A JPH08181014A (en) 1994-12-26 1994-12-26 Superconductive magnet device and its manufacture

Publications (1)

Publication Number Publication Date
JPH08181014A true JPH08181014A (en) 1996-07-12

Family

ID=18148974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6322908A Pending JPH08181014A (en) 1994-12-26 1994-12-26 Superconductive magnet device and its manufacture

Country Status (1)

Country Link
JP (1) JPH08181014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343622A (en) * 2001-05-15 2002-11-29 Fuji Electric Co Ltd Superconducting magnet
WO2011118501A1 (en) * 2010-03-23 2011-09-29 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet
JP2011199147A (en) * 2010-03-23 2011-10-06 Japan Superconductor Technology Inc Superconducting coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343622A (en) * 2001-05-15 2002-11-29 Fuji Electric Co Ltd Superconducting magnet
JP4562947B2 (en) * 2001-05-15 2010-10-13 富士電機ホールディングス株式会社 Superconducting magnet
WO2011118501A1 (en) * 2010-03-23 2011-09-29 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet
JP2011199147A (en) * 2010-03-23 2011-10-06 Japan Superconductor Technology Inc Superconducting coil
CN102792396A (en) * 2010-03-23 2012-11-21 日本超导体技术公司 Superconducting magnet

Similar Documents

Publication Publication Date Title
US7602269B2 (en) Permanent current switch
JP2010238840A (en) Superconducting wire rod, persistent current switch, and superconducting magnet
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
JP2009187743A (en) Superconductive tape wire rod, and repair method of defective portion
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
US4904970A (en) Superconductive switch
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
JPS5998505A (en) Super conductive current lead
JPH08181014A (en) Superconductive magnet device and its manufacture
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP6818578B2 (en) Superconducting cable connection
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JPH10106647A (en) Wire connection structure and method for permanent current switch
JP3783518B2 (en) Superconducting wire connection structure
JP2859953B2 (en) Superconducting device and permanent current switch used for the superconducting device
JP2009004794A (en) Persistent current switch
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JP2000068567A (en) Conduction cooling perpetual current switch
EP4113548A1 (en) Superconducting magnet, superconducting wire, and method for producing superconducting magnet
JP3677166B2 (en) Permanent current magnet device for high magnetic field generation
JPH08222428A (en) Persistent current switch
JP3020315B2 (en) Superconducting switch
JPH05121232A (en) Current superconductive magnet and its manufacture
JPH0832129A (en) Superconducting device, its operating mthod, and its permanent current switching device