JPH09153407A - Support structure of oxide superconducting current lead - Google Patents

Support structure of oxide superconducting current lead

Info

Publication number
JPH09153407A
JPH09153407A JP31237095A JP31237095A JPH09153407A JP H09153407 A JPH09153407 A JP H09153407A JP 31237095 A JP31237095 A JP 31237095A JP 31237095 A JP31237095 A JP 31237095A JP H09153407 A JPH09153407 A JP H09153407A
Authority
JP
Japan
Prior art keywords
oxide superconducting
conductor
vibration
support structure
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31237095A
Other languages
Japanese (ja)
Inventor
Hiroe Yamamoto
広衛 山本
Teigo Okada
定五 岡田
Akiyoshi Komura
昭義 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31237095A priority Critical patent/JPH09153407A/en
Publication of JPH09153407A publication Critical patent/JPH09153407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms And Bellows (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the support structure, which can absorb the heat shrinkage of an oxide superconducting conductor and vibrations from the side of a low- temperature container, of an oxide superconducting current lead, which feeds a current to a superconducting coil in the container and links a conductor made of copper to the oxide superconducting connductor. SOLUTION: This support structure consists of an oxide superconducting conductor 17, which is connected with a superconducting coil dipped in a liquid helium in a low-temperature container with a liquid nitrogen container 14 installed on the upper part thereof, and a metal conductor 22, which has a terminal 23 being coupled with an upper side terminal 18 of this conductor 17 and penetrates the container 14 to extend upward. At this time, with a current conduction bellows 20a provided between a flange-shaped flange plate 28, which is provided under the lower end of the conductor 22, and a metal conductor terminal 23, a bellows 21a for vibration absorption use is provided on the periphery of the conductor 22 between the plate 28 and a fixed frame 31 provided under the bottom of the container 10 over the plate 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、極低温下に収納さ
れる超電導コイルと常温下に置かれる外部電源との電力
供給を結ぶ電流リードに係わり、特に酸化物超電導導体
を用いた電流リードの支持構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for connecting a power supply between a superconducting coil housed at a cryogenic temperature and an external power source placed at room temperature, and more particularly to a current lead using an oxide superconducting conductor. Regarding support structure.

【0002】[0002]

【従来の技術】超電導磁石となる超電導コイルは、一般
に冷却媒体(液体ヘリウム)中で冷却される。このため
に超電導コイルを収納する低温容器は、周囲から液体窒
素で冷却され、さらに真空層を有する壁等によって断熱
される真空容器に収納されている。電流リードは、この
低温容器内で極低温に冷却された超電導コイルに、常温
下に設置された外部電源から電流を供給するもので、極
低温下にある超電導コイルへの熱侵入が極力少なくなる
ものが望まれている。そこで極低温下で電気抵抗が小さ
く、熱伝導率の小さい酸化物超電導導体を用いた電流リ
ードの開発が進められている。
2. Description of the Related Art Generally, a superconducting coil serving as a superconducting magnet is cooled in a cooling medium (liquid helium). For this reason, the cryogenic container accommodating the superconducting coil is accommodated in a vacuum container which is cooled by liquid nitrogen from the surroundings and further insulated by a wall having a vacuum layer. The current lead supplies current to the superconducting coil cooled to cryogenic temperature in this cryogenic vessel from an external power supply installed at room temperature, so that heat penetration into the superconducting coil at cryogenic temperature is minimized. Things are desired. Therefore, development of a current lead using an oxide superconducting conductor having a low electric resistance and a low thermal conductivity at an extremely low temperature is under way.

【0003】図8は、酸化物超電導電流リードを用いた
超伝導磁石装置の一般的な構造を簡略化して示した縦断
面図である。図8において、真空断熱容器1は、2重の
容器で構成されており、外側に真空容器3が、その内側
に低温容器5が配置され、そして真空容器3、低温容器
5を構成するそれぞれの壁内には真空断熱層2a、2b
が形成されている。真空容器3と低温容器5は、真空容
器3上端から外方に張り出したフランジからなる容器カ
バー4上に、低温容器5上端から外方に張り出したフラ
ンジからなる低温容器カバー15が載置されて固定され
ている。低温容器5と真空容器3間に形成された空間部
6に液体窒素7aを貯蔵し、液体窒素7aと真空断熱層2
a、2bで真空容器3外部からの輻射熱を遮断し、低温容
器5への熱侵入を最少限に維持できるようにしている。
低温容器5の上部には、液体窒素7bを入れた液体窒素
容器14が挿入して設置され、これが低温容器5を蓋し
ている。
FIG. 8 is a longitudinal sectional view showing a simplified general structure of a superconducting magnet device using an oxide superconducting current lead. In FIG. 8, the vacuum heat insulating container 1 is composed of a double container, the vacuum container 3 is arranged on the outer side, and the low temperature container 5 is arranged on the inner side thereof, and each of the vacuum container 3 and the low temperature container 5 is formed. Vacuum insulation layers 2a, 2b in the wall
Are formed. The vacuum container 3 and the cryogenic container 5 have a cryogenic container cover 15 made of a flange protruding outward from the upper end of the cryogenic container 5 placed on a container cover 4 made of a flange protruding outward from the upper end of the vacuum container 3. It is fixed. The liquid nitrogen 7a is stored in the space 6 formed between the low temperature container 5 and the vacuum container 3, and the liquid nitrogen 7a and the vacuum heat insulating layer 2 are stored.
Radiation heat from the outside of the vacuum container 3 is blocked by a and b, so that the heat intrusion into the low temperature container 5 can be kept to a minimum.
A liquid nitrogen container 14 containing liquid nitrogen 7b is inserted and installed above the cryogenic container 5, which covers the cryogenic container 5.

【0004】超電導コイル8は、低温容器5内に貯留さ
れた液体ヘリウム9中に浸漬した状態で収納され、液体
ヘリウム温度に冷却されている。そして、超電導コイル
8の端子には、接続リード線10を介して、上方向に延
びる酸化物超電導導体13とそれに続く銅製の金属導体
12とからなる超電導電流リード11(以下、酸化物超
電導電流リードという)が接続され、銅製リード12の
上端が真空容器3の外部に取りだされる。酸化物超電導
導体13は低温容器5内に配置され、この導体13に接
続する銅製リード12は、低温容器5から冷却容器とし
ての液体窒素容器14を通り、外部まで延びている。そ
して銅製電流リード12には図示しない外部電源からの
ケーブルが接続され、酸化物超電導電流リード11を介
して超電導コイル8に大電流を供給し、励磁することに
よって超電導磁石装置としての機能を発揮する。
The superconducting coil 8 is housed in a liquid helium 9 stored in a low temperature container 5 while being immersed therein, and is cooled to the liquid helium temperature. A superconducting current lead 11 (hereinafter referred to as an oxide superconducting current lead), which is composed of an oxide superconducting conductor 13 extending upward and a metal conductor 12 made of copper following it, is connected to a terminal of the superconducting coil 8 via a connecting lead wire 10. Is connected, and the upper ends of the copper leads 12 are taken out of the vacuum container 3. The oxide superconducting conductor 13 is arranged in the low temperature container 5, and the copper lead 12 connected to the conductor 13 extends from the low temperature container 5 to the outside through a liquid nitrogen container 14 as a cooling container. A cable from an external power source (not shown) is connected to the copper current lead 12, and a large current is supplied to the superconducting coil 8 via the oxide superconducting current lead 11 to excite it to exert the function as a superconducting magnet device. .

【0005】以上説明したように、従来の酸化物超電導
電流リード11では、酸化物超電導導体13は、超電導
コイル8を冷却している液体ヘリウム9とその蒸発ガス
で冷却し、また銅製電流リード12は液体窒素容器14
中の液体窒素7bによって冷却することにより、外部電
源からの励磁電流によるジュール熱を除去し、常温外部
からの熱侵入を阻止して、液体ヘリウム9側への熱伝導
を大幅に低減できるようになっている。
As described above, in the conventional oxide superconducting current lead 11, the oxide superconducting conductor 13 cools the superconducting coil 8 with the liquid helium 9 that cools the superconducting coil 8 and the vaporized gas thereof, and the copper current lead 12 also. Is liquid nitrogen container 14
By cooling with liquid nitrogen 7b inside, Joule heat due to the exciting current from the external power supply is removed, heat invasion from the outside at room temperature is blocked, and heat conduction to the liquid helium 9 side can be greatly reduced. Has become.

【0006】また、酸化物超電導電流リードとして、酸
化物超電導導体の周囲に補強材を設け、この酸化物超電
導導体に液体窒素アンカー(液体窒素容器)を設けて銅
製リードを接続したものが特開平6ー314616号公
報に記載されている。また、液体窒素温度以下の低温側
を酸化物超電導導体に、窒素温度以上となる高温側を金
属製リードとしたもので、酸化物超電導導体と金属製リ
ードの間にベローズ、あるいはバッファ層の電極部を設
けて接合する方法については特開平5ー21228に記
載されている。
Further, as an oxide superconducting current lead, a reinforcing material is provided around an oxide superconducting conductor, a liquid nitrogen anchor (liquid nitrogen container) is provided on the oxide superconducting conductor, and a copper lead is connected thereto. No. 6-314616. The low temperature side below the liquid nitrogen temperature is an oxide superconducting conductor, and the high temperature side above the nitrogen temperature is a metal lead.A bellows or a buffer layer electrode is placed between the oxide superconducting conductor and the metal lead. A method of providing a portion and joining is described in JP-A-5-21228.

【0007】[0007]

【発明が解決しようとする課題】上記のように従来技術
においては、酸化物超電導導体に補強材を設け、補強材
にフレキシブルの液体窒素アンカーを設けて接続したこ
とにより、酸化物超電導電流リードの熱収縮を吸収でき
るとともに、高温側の銅製電流リードからの侵入熱を低
減することができる。また、酸化物超電導導体と銅製電
流リードをフレキシブルのベローズ、あるいはバッファ
層を設けて接合することにより、酸化物超電導導体の熱
収縮も吸収できる利点がある。
As described above, according to the prior art, the oxide superconducting conductor is provided with the reinforcing material, and the reinforcing material is provided with the flexible liquid nitrogen anchor so as to connect the oxide superconducting conductive lead. It is possible to absorb heat shrinkage and reduce the heat entering from the copper current lead on the high temperature side. Further, there is an advantage that the thermal contraction of the oxide superconducting conductor can be absorbed by joining the oxide superconducting conductor and the copper current lead by providing a flexible bellows or a buffer layer.

【0008】しかしながら、超電導コイル8が大型化
し、大電流が通電されるようになると、その電磁振動が
周辺外枠や真空断熱容器1に伝達され、機械振動となっ
て発生し、それが酸化物超電導電流リード11に伝達さ
れ、酸化物超電導導体13の接続部が機械的疲労を起こ
し破損する問題、また、小型であっても磁気浮上式列車
のような走行車体に搭載した場合、あるいは超電導磁石
装置として移動する場合等は、酸化物超電導電流リード
11を支持している真空断熱容器1、または外枠自体に
機械的振動が発生し、それが酸化物超電導電流リード1
1に伝達して破損する問題があった。また、超電導コイ
ル8への給電周波数が変動すると、低周波の場合には変
位が大きくゆっくりと振動するが、高周波になると変位
は小さいが振幅の速い振動が発生する。このような振動
が長く続くと、酸化物超電導導体13はもとより、酸化
物超電導導体13を接続する電極部に機械的疲労が発生
し、酸化物超電導導体13自体が破損し、信頼性の低下
はもとより長期間使用のできない、機械的強度の弱い酸
化物超電導電流リードとなってしまうことから、冷却に
よる熱収縮吸収と並行して外部からの振動伝達防止ので
きる酸化物超電導電流リードの支持構造が望まれてい
た。
However, when the superconducting coil 8 becomes large in size and a large current is applied, its electromagnetic vibration is transmitted to the peripheral outer frame and the vacuum heat insulating container 1 to generate mechanical vibration, which is caused by the oxide. There is a problem that the connection part of the oxide superconducting conductor 13 is transmitted to the superconducting current lead 11 and causes mechanical fatigue to be damaged. Also, even if it is small, it is mounted on a traveling vehicle body such as a magnetic levitation train, or a superconducting magnet. When moving as a device, mechanical vibration occurs in the vacuum heat insulating container 1 supporting the oxide superconducting current lead 11 or the outer frame itself, which causes the oxide superconducting current lead 1 to move.
There was a problem that it was transmitted to 1 and damaged. Further, when the power supply frequency to the superconducting coil 8 fluctuates, the displacement is large and vibrates slowly at a low frequency, but the vibration is small but the amplitude is fast at a high frequency. If such vibration continues for a long time, mechanical fatigue occurs not only in the oxide superconducting conductor 13 but also in the electrode portion connecting the oxide superconducting conductor 13, the oxide superconducting conductor 13 itself is damaged, and the reliability is not deteriorated. Since it becomes an oxide superconducting current lead with weak mechanical strength that cannot be used for a long period of time, a support structure for the oxide superconducting current lead that can prevent vibration transmission from the outside in parallel with heat shrinkage absorption by cooling is also provided. Was wanted.

【0009】本発明は、上記の点に鑑みてなされたもの
であり、その目的とするところは、酸化物超電導電流リ
ードを構成する低温側の酸化物超電導導体の熱収縮を吸
収でき、酸化物超電導電流リードを構成する高温側の金
属導体を介して、外部から、すなわち酸化物超電導電流
リードを収納する低温容器の周囲の真空容器や外枠等の
外部から伝達する振動を吸収できる吸振用伸縮部材によ
る支持構造を構成し、冷却による熱収縮と外部振動伝達
吸収を同時に行い、機械的振動に強く、長寿命で信頼性
の高い酸化物超電導電流リードの支持構造を提供するこ
とにある。
The present invention has been made in view of the above points, and it is an object of the present invention to absorb the thermal contraction of the oxide superconducting conductor on the low temperature side which constitutes the oxide superconducting current lead. Expansion and contraction for vibration absorption that can absorb the vibration transmitted from the outside through the metal conductor on the high temperature side that constitutes the superconducting current lead, that is, from the vacuum container around the low temperature container that houses the oxide superconducting current lead or the outside. (EN) It is intended to provide a support structure for an oxide superconducting current lead having a long life and high reliability, which constitutes a support structure by members and simultaneously performs heat shrinkage by cooling and external vibration transmission and absorption, is resistant to mechanical vibration.

【0010】[0010]

【課題を解決するための手段】本発明は、第1冷却媒体
を入れた冷却容器を上部に設置された低温容器内で第2
冷却媒体中に浸漬された超電導装置に接続する酸化物超
電導導体と、この酸化物超電導導体の上側端子と結合す
る端子を有し、冷却容器を貫通して上方に延びる金属導
体とからなる酸化物超電導電流リードの支持構造であ
る。そして金属導体は常温下にある外部電源につなが
る。以下、本発明の各支持構造を説明する。
According to the present invention, a cooling container containing a first cooling medium is provided in a second cryogenic container installed in an upper portion thereof.
An oxide consisting of an oxide superconducting conductor connected to a superconducting device immersed in a cooling medium, and a metal conductor having a terminal coupled to an upper terminal of the oxide superconducting conductor and extending upward through a cooling container. It is a support structure for a superconducting current lead. Then, the metal conductor is connected to an external power source at room temperature. Hereinafter, each support structure of the present invention will be described.

【0011】上記目的を達成するために、本発明の第1
の酸化物超電導電流リードの支持構造は、金属導体の下
端に設けたつば状のフランジ板と金属導体の端子間に通
電用伸縮継手を設けるとともに、フランジ板と上方の冷
媒容器の底部との間で金属導体の周囲に吸振用伸縮部材
を設けたことを特徴とする。そして通電用伸縮継手とし
て銅製ベローズを、吸振用伸縮部材は銅、銅合金あるい
はステンレス鋼製ベローズを用いるのがよい。
In order to achieve the above object, the first aspect of the present invention
The support structure of the oxide superconducting current lead of, the expansion joint for electricity is provided between the flange-shaped flange plate provided at the lower end of the metal conductor and the terminal of the metal conductor, and between the flange plate and the bottom portion of the upper refrigerant container. Then, a vibration absorbing elastic member is provided around the metal conductor. Then, it is preferable that a copper bellows is used as the expansion joint for energization and a bellows made of copper, a copper alloy or stainless steel is used as the vibration absorbing expansion member.

【0012】上記第1の酸化物超電導電流リードの支持
構造において、酸化物超電導電流リードは超電導装置
(ここでは超電導コイル)に接続する側、即ち第1の冷
却媒体(ここでは液体窒素)温度以下の低温側を酸化物
超電導導体で構成し、液体窒素温度以上となる高温側を
金属導体で形成している。液体窒素を貯留する冷却容器
は金属導体を液体窒素で冷却するとともに、金属導体を
支持し、ひいては酸化物超電導電流リードを支持してい
る。
In the above support structure for the first oxide superconducting current lead, the oxide superconducting current lead is connected to the superconducting device (here, the superconducting coil), that is, the temperature of the first cooling medium (here, liquid nitrogen) or lower. The low temperature side is formed of an oxide superconducting conductor, and the high temperature side above the liquid nitrogen temperature is formed of a metal conductor. The cooling container for storing liquid nitrogen cools the metal conductor with liquid nitrogen, supports the metal conductor, and thus supports the oxide superconducting current lead.

【0013】このように構成した、例えば、低温容器内
に第2冷却媒体(ここでは液体ヘリウム)を貯蔵する前
に液体窒素冷却容器に液体窒素を貯蔵して金属導体を冷
却すると、その金属導体の熱収縮応力が酸化物超電導導
体にかかり、特に酸化物超電導導体の端子部(実際は酸
化物超電導導体端の銀電極と超電導コイルにつながる接
続リード線との端子部)に伝導される。その後、超電導
コイルを収納している低温容器に液体ヘリウムが貯蔵さ
れると、接続リード線からの熱伝導と蒸発ガスによって
酸化物超電導導体は一段と冷却され、その熱収縮応力は
酸化物超電導導体と銀電極、あるいは銀電極と金属導体
の接続端子部に、または金属導体と液体窒素容器との結
合部分に集中し、昇温冷却の繰りかえし時に熱応力で破
損する、あるいは接続リード線を銀電極に接続する際の
無理な変振による機械的破損が発生する。
When the liquid conductor is cooled by storing the liquid nitrogen in the liquid nitrogen cooling container before storing the second cooling medium (here, liquid helium) in the low temperature container configured as above, the metal conductor is cooled. Is applied to the oxide superconducting conductor, and is particularly conducted to the terminal portion of the oxide superconducting conductor (actually, the terminal portion of the silver electrode at the end of the oxide superconducting conductor and the connecting lead wire connected to the superconducting coil). After that, when liquid helium is stored in a cryogenic container containing the superconducting coil, the oxide superconducting conductor is further cooled by the heat conduction from the connecting lead wire and the evaporative gas, and the heat shrinkage stress is changed to the oxide superconducting conductor. The silver electrode, or the connection terminal between the silver electrode and the metal conductor, or the connection part between the metal conductor and the liquid nitrogen container, concentrates and is damaged by thermal stress during repeated heating and cooling, or the connection lead wire is connected to the silver electrode. Mechanical damage occurs due to excessive vibration when connecting.

【0014】また、超電導コイルに大電流が通電された
り、周波数変動が発生すると、超電導コイルの電磁振動
が低温容器からその周囲の真空断熱容器や周辺外枠に伝
導し、低温容器のカバーや液体窒素容器から金属導体に
伝導して酸化物超電導導体を破損させていた。さらに、
超電導コイル自体が周波数変動給電を受ける超電導磁石
装置であったり、あるいは走行車体に搭載し常に機械的
振動の受ける超電導磁石装置の場合には、その振動周波
数に対する変振は、低周波の場合には変位は大きく緩や
かな振動になるが、高周波になると変位は小さくなるが
振幅が速くなることが実験結果から解かっている。この
ような異振動が超電導磁石装置の運転中に発生し伝達さ
れると、酸化物超電導導体自体はもとより、酸化物超電
導導体を集積固定している銀電極の固定部、あるいは銀
電極と金属導体の接続端子部に多大な機械応力がかか
り、機械的疲労を起こして破損する。さらには、超電導
コイルの移動に伴う運搬作業や交換作業時の持ち運びに
よる振動の問題もある。
Further, when a large current is applied to the superconducting coil or a frequency fluctuation occurs, electromagnetic vibration of the superconducting coil is conducted from the cryogenic container to the vacuum heat insulating container and its surrounding outer frame, thereby covering the cryogenic container and the liquid. The oxide superconducting conductor was damaged by conduction from the nitrogen container to the metal conductor. further,
In the case of a superconducting magnet device in which the superconducting coil itself receives frequency variable power supply, or in the case of a superconducting magnet device that is mounted on a traveling vehicle body and is constantly subjected to mechanical vibration, the vibration for that vibration frequency is It is clear from the experimental results that the displacement becomes large and gentle vibration, but at high frequency, the displacement becomes smaller but the amplitude becomes faster. When such abnormal vibrations are generated and transmitted during the operation of the superconducting magnet device, not only the oxide superconducting conductor itself but also the fixed part of the silver electrode where the oxide superconducting conductor is integrated and fixed, or the silver electrode and the metal conductor. A large amount of mechanical stress is applied to the connection terminal part of the item (1), causing mechanical fatigue and damage. Furthermore, there is also a problem of vibration due to carrying during the carrying work or replacement work accompanying the movement of the superconducting coil.

【0015】液体窒素温度以上となる高温側の金属導体
に、熱収縮応力と機械的振動を吸収する通電ベローズ、
吸振ベローズを介在させると、冷却媒体による熱収縮と
外部振動伝達を、その通電ベローズと吸振ベローズで吸
収され、直接酸化物超電導導体や金属導体に伝達される
ことは解消される。
An electrically conductive bellows which absorbs heat shrinkage stress and mechanical vibration in the metal conductor on the high temperature side above the liquid nitrogen temperature,
By interposing the vibration absorbing bellows, the heat shrinkage and the external vibration transmission by the cooling medium are absorbed by the energizing bellows and the vibration absorbing bellows and are not directly transmitted to the oxide superconducting conductor or the metal conductor.

【0016】また、本発明の第2の酸化物超電導電流リ
ードの支持構造は、低温容器内で金属導体の長手方向の
一部を形成するように介在させた通電用伸縮継手と、こ
の通電用伸縮継手の下端に設けたつば状フランジ板を下
から支え、金属導体の周囲に配置された吸振用伸縮部材
と、冷媒容器の底部に固定されて通電用伸縮継手と吸振
用伸縮部材を内包して垂下し、吸振用伸縮部材の下端を
支持する底板を有する筒体とを設け、この筒体の底板は
金属導体を通す穴を有することを特徴とする。ここで、
通電用伸縮継手は銅製ベローズであり記吸振用伸縮部材
は銅、銅合金あるいはステンレス鋼製ベローズである。
The second oxide superconducting current lead support structure of the present invention comprises an expansion joint for energization interposed so as to form a part of the metal conductor in the longitudinal direction in a low temperature container, and an energization expansion joint for this energization. It supports the flange-shaped flange plate provided at the lower end of the expansion joint from below, and includes the vibration absorption expansion member arranged around the metal conductor and the current expansion expansion joint and vibration expansion expansion member fixed to the bottom of the refrigerant container. And a cylinder having a bottom plate that supports the lower end of the vibration-absorbing elastic member, and the bottom plate of the cylinder has a hole for passing a metal conductor. here,
The energizing expansion joint is a copper bellows, and the vibration absorbing expansion member is a copper, copper alloy or stainless steel bellows.

【0017】上記第2の支持構造においては、金属導体
に設けた通電用伸縮継手と吸振用伸縮部材により、低温
容器外部から伝達する振動を吸収させ、低温側の熱収縮
も吸収できる他、外部電源側となる金属リードの重さの
圧縮応力と酸化物超電導導体側のつり下げ荷重を吸振用
伸縮部材で受ける。
In the second support structure described above, the expansion joint for energization and the expansion member for vibration absorption provided on the metal conductor can absorb the vibration transmitted from the outside of the low temperature container and also absorb the thermal contraction on the low temperature side. The vibration absorbing elastic member receives the compressive stress of the weight of the metal lead on the power source side and the hanging load on the oxide superconducting conductor side.

【0018】また本発明の第3の酸化物超電導電流リー
ドの支持構造は、低温容器内で金属導体の長手方向の一
部を形成するように介在させ、この介在位置で対向する
金属導体端面にそれぞれ接合された一対の金属製ダイヤ
フラムと各ダイヤフラムの周囲を固定する金属製管から
なる通電用伸縮継手と、この通電用伸縮継手の管外周に
設けたつば状フランジ板の上下各面に配置された上下一
対の吸振用伸縮部材と、冷媒容器の底部に固定されて吸
振用伸縮部材を内包して垂下し、下の吸振用伸縮部材下
端を支持する底板を有する筒体とを設け、そしてこの筒
体の底板は金属導体を通す穴を有し、両吸振用伸縮部材
は冷却容器底部方向に押圧されて設けられていることを
特徴とする。
The third oxide superconducting current lead supporting structure of the present invention is interposed so as to form a part of the metal conductor in the longitudinal direction in the cryogenic container, and the metal conductor end faces facing each other at this intervening position. Expansion joints for electricity, which consist of a pair of metal diaphragms joined together and metal pipes that fix the periphery of each diaphragm, and are arranged on the upper and lower surfaces of a flange-shaped flange plate provided on the outer circumference of the expansion joint for electricity. And a pair of upper and lower vibration-absorbing elastic members, and a cylindrical body having a bottom plate that is fixed to the bottom of the refrigerant container and encloses the vibration-absorbing elastic members, and supports the lower end of the lower vibration-absorbing elastic members. The bottom plate of the cylindrical body has a hole through which a metal conductor is passed, and both vibration absorbing elastic members are provided so as to be pressed toward the bottom of the cooling container.

【0019】上記第3の支持構造は、それぞれ金属製の
ダイアフラム及び管体からなる通電用の金属ダイアフラ
ムボックスと、一対の吸振用伸縮部材とにより、酸化物
超電導導体の熱収縮と外部からの振動とを吸収できる
他、大電流通電に適した酸化物超電導電流リードが得ら
れる。
The third support structure includes a metal diaphragm box for energization, each of which is composed of a metal diaphragm and a tubular body, and a pair of elastic members for vibration absorption, whereby the oxide superconducting conductor undergoes thermal contraction and external vibration. In addition to being able to absorb and, it is possible to obtain an oxide superconducting current lead suitable for carrying a large current.

【0020】また本発明の第4の酸化物超電導電流リー
ドの支持構造は、金属導体の下端に設けたつば状フラン
ジ板と金属導体の端子との間に通電用伸縮継手を介在さ
せて設け、フランジ板と上方の冷却容器底部との間で金
属導体の周囲に吸振用伸縮部材を設け、酸化物超電導導
体の下側端子を段付で小径先端部を下方に突出させた形
状とし、段部に上端を取り付けた別の吸振用伸縮部材を
設け、冷却容器底部に固定されて酸化物超電導導体の周
囲を垂下し、下端に上記別の吸振用伸縮部材を下支えす
る板材を取り付けた複数の長尺ボルトを設け、そして該
板材は酸化物超電導導体の下側端子の下先端部を通す穴
を有することを特徴とする。
The fourth oxide superconducting current lead support structure of the present invention is provided with an expansion joint for electric current interposed between a flange of the metal conductor and a terminal of the metal conductor. A vibration-absorbing elastic member was provided around the metal conductor between the flange plate and the bottom of the cooling container, and the lower terminal of the oxide superconducting conductor was stepped so that the tip of the small diameter protruded downward. A separate vibration-absorbing elastic member with the upper end attached to it is attached to the bottom of the cooling container to hang down the periphery of the oxide superconducting conductor, and the lower end is attached with a plate member that supports the above-described different vibration-absorbing elastic member. A scale bolt is provided, and the plate material has a hole through which the lower end of the lower terminal of the oxide superconducting conductor passes.

【0021】上記第4の支持構造は、酸化物超電導導体
の片振れを防止するために酸化物超電導導体の両端に吸
振用伸縮部材を設けることにより、酸化物超電導導体の
片振れはなく、周波数変動による変振にも対応できる支
持構造を構成でき、機械的強度の高い吸振熱収縮性と長
寿命化を図れるとともに、運搬作業が容易になる。
In the fourth support structure, the oxide superconducting conductor is provided with vibration absorbing elastic members at both ends of the oxide superconducting conductor in order to prevent the oxide superconducting conductor from being shaken. A supporting structure that can cope with vibration due to fluctuations can be configured, and vibration absorption and heat shrinkage with high mechanical strength and long life can be achieved, and transportation work becomes easy.

【0022】また本発明の第5の酸化物超電導電流リー
ドの支持構造は、金属導体の下端に設けたつば状のフラ
ンジ板と上方の冷却容器底部との間で金属導体の周囲に
吸振用伸縮部材を設け、酸化物超電導導体の下側端子を
段付で小径の下先端部を突出させた形状とし、該段部に
上端を取り付けた別の吸振用伸縮部材を設け、冷却容器
の底部に固定されて酸化物超電導導体を内包して垂下
し、上記別の吸振用伸縮部材を下支えする底板を有する
筒体を設け、そして筒体の底板は酸化物超電導導体の下
側端子の下先端部を通す穴を有することを特徴とする。
The fifth oxide superconducting current lead support structure according to the present invention is a vibration absorbing elastic member extending around the metal conductor between the flange-shaped flange plate provided at the lower end of the metal conductor and the upper bottom of the cooling container. A member is provided, the lower terminal of the oxide superconducting conductor is stepped, and the lower tip of the small diameter is projected, and another vibration absorbing elastic member having an upper end attached to the step is provided, and at the bottom of the cooling container. A tube body having a bottom plate which is fixed and encloses and hangs down the oxide superconducting conductor, and which supports the above-mentioned another elastic member for vibration absorption is provided, and the bottom plate of the cylinder is the lower tip of the lower terminal of the oxide superconducting conductor. It is characterized by having a hole for passing through.

【0023】上記第5の支持構造は、酸化物超電導導体
等を筒体に収納するので、組立作業が容易になり作業性
の向上を図れる他、酸化物超電導導体を吸振円筒体で包
囲することから、物が落下したり、あるいは周辺から物
が飛散してきても直接酸化物超電導導体に衝突すること
はなく、作業時や運搬時の保護性向上を図れる。
In the fifth support structure, since the oxide superconducting conductor and the like are housed in the cylindrical body, the assembling work is facilitated and the workability is improved, and the oxide superconducting conductor is surrounded by the vibration absorbing cylindrical body. Therefore, even if an object falls or is scattered from the surroundings, it does not directly collide with the oxide superconducting conductor, so that it is possible to improve protection during work and transportation.

【0024】また本発明の第6の酸化物超電導電流リー
ドの支持構造は、酸化物超電導導体の側面を囲う第1筒
体と、第1筒体上面と金属導体の端子上端に設けたつば
状のフランジ板との間に設けた第1吸振用伸縮部材と、
冷却容器の底部に固定されて第1筒体を内包して垂下す
る第2筒体及びこの第2筒体の底カバーと、この底カバ
ーの内面と第1筒体の下面間に設けた第2吸振用伸縮部
材と、酸化物超電導導体の下側端子を段付で小径の下先
端部を突出させた形状とし、該段部と底カバー内面間に
設けた第3吸振用伸縮部材と、第1筒体と第2筒体間で
少なくとも上下2か所に放射状に設けた複数の第4吸振
用伸縮部材とを備え、底カバーは下先端部を通す穴を有
することを特徴とする。
A sixth support structure for an oxide superconducting current lead according to the present invention has a first cylindrical body that surrounds a side surface of the oxide superconducting conductor, and a brim shape provided on the upper surface of the first cylindrical body and the upper end of the terminal of the metal conductor. A first vibration absorbing elastic member provided between the first vibration absorbing member and the flange plate,
A second cylinder fixed to the bottom of the cooling container and including the first cylinder to hang down, a bottom cover of the second cylinder, and a first cylinder provided between the inner surface of the bottom cover and the lower surface of the first cylinder. (2) a vibration-absorbing elastic member, a lower terminal of the oxide superconducting conductor having a stepped shape with a lower tip of a small diameter protruding, and a third vibration-absorbing elastic member provided between the step and the inner surface of the bottom cover. It is characterized in that it comprises a plurality of fourth vibration-absorbing elastic members radially provided at least at two upper and lower positions between the first cylinder and the second cylinder, and the bottom cover has a hole through which the lower tip portion is passed.

【0025】上記第6の支持構造において、縦方向振動
を吸収する第1〜第3吸振用伸縮部材と横方向振動を吸
収する第4吸振用伸縮部材を設け、第1、2の二重構造
の筒体を用いるので、外部から伝達する振動は、一極集
中ではなく分散して吸振され、振動変位が連続して変化
しても破損しにくく、機械的疲労に強い、そして信頼性
の高い長寿命の吸振体を得ることができる。
In the sixth support structure, first to third vibration absorbing elastic members for absorbing longitudinal vibration and a fourth vibration absorbing elastic member for absorbing lateral vibration are provided, and the first and second double structures are provided. Since the cylindrical body is used, the vibrations transmitted from the outside are not concentrated in one pole but are dispersed and absorbed, and even if the vibration displacement changes continuously, it is less likely to be damaged, resistant to mechanical fatigue, and highly reliable. A vibration absorber having a long life can be obtained.

【0026】また本発明の第7の酸化物超電導電流リー
ドの支持構造は、酸化物超電導導体の下側端子を段付で
小径の下先端部を突出させた形状とし、該段部に上端を
取り付けられた第1吸振用伸縮部材と、冷却容器の底部
に固定され、酸化物超電導導体の周囲を垂下する複数の
長尺ボルトと、該長尺ボルトの下端部に取り付けられ第
1吸振用伸縮部材を下支えする下板と、各長尺ボルトの
下端部で該ボルト周面に装着され下板を挟む一対の第2
吸振用伸縮部材と、長尺ボルトの上端部で該ボルト周面
に装着され金属導体の端子から張り出すフランジ板を挟
む一対の第3吸振用伸縮部材と、を備え、上記下板材は
酸化物超電導導体の下我を端子の下先端部を通す穴を有
することを特徴とする。そして第1吸振用伸縮部材は金
属製のベローズとし、第2、第3吸振用伸縮部材は金属
製のコイルばねとするのがよい。
The seventh oxide superconducting current lead supporting structure of the present invention has a step in which the lower terminal of the oxide superconducting conductor is stepped so that the lower tip of the small diameter is projected, and the upper end of the step is provided. The attached first vibration absorbing elastic member, a plurality of long bolts that are fixed to the bottom of the cooling container and hang down around the oxide superconducting conductor, and the first vibration absorbing elastic member attached to the lower end of the long bolt. A lower plate that supports the member, and a pair of second plates that are attached to the peripheral surfaces of the long bolts at the lower ends thereof to sandwich the lower plate.
A vibration absorbing elastic member, and a pair of third vibration absorbing elastic members sandwiching a flange plate that is attached to the peripheral surface of the long bolt and extends from the terminal of the metal conductor, and the lower plate member is an oxide. It is characterized by having a hole through which the lower end of the terminal of the terminal of the superconducting conductor passes. It is preferable that the first vibration absorbing elastic member is a metal bellows, and the second and third vibration absorbing elastic members are metal coil springs.

【0027】また、上記第7の支持構造は、吸振用ベロ
ーズの他に、長尺ボルトとコイルばねを用いて、外部か
らの振動を吸収させる構造としたので、構成を簡単にし
て容易に製作でき原価低減を図ることができる。
The seventh support structure has a structure in which long bolts and coil springs are used in addition to the vibration-absorbing bellows to absorb external vibrations. Therefore, the structure is simplified and easily manufactured. The cost can be reduced.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基ずいて詳細に説明する。図1は本発明の第1の実施
の形態である酸化物超電導電流リードの支持構造の要部
を示す図である。なお、以下でいう酸化物超電導電流リ
ードは、従来の技術の項で図8により説明したように、
酸化物超電導導体と金属導体とを組合せた部分を指す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing a main part of a support structure for an oxide superconducting current lead according to a first embodiment of the present invention. It should be noted that the oxide superconducting current lead described below has the same structure as described with reference to FIG.
It refers to a portion in which an oxide superconducting conductor and a metal conductor are combined.

【0029】第1の実施の形態の酸化物超電導電流リー
ドの支持構造は、図1に示すように、概して、円筒状芯
材16に超電導テープ線が複数層螺旋状に巻回されてな
る酸化物超電導導体17と、酸化物超電導導体17の上
部側に接続端子18、23を介して接続する通電ベロー
ズ20aと、通電ベローズ20aの上端に接続する金属
導体である銅製リード22と、銅製リード22の下端に
設けられた鍔状の端子28とその上方に配置された液体
窒素容器15底部との間に銅製リード22を加工ように
設けた吸振ベローズ21aとから構成されている。
As shown in FIG. 1, the oxide superconducting current lead support structure of the first embodiment is generally an oxidation in which a superconducting tape wire is spirally wound around a cylindrical core material 16. Object superconducting conductor 17, conductive bellows 20a connected to the upper side of oxide superconducting conductor 17 via connection terminals 18, 23, copper lead 22 which is a metal conductor connected to the upper end of conductive bellows 20a, and copper lead 22 The vibration absorption bellows 21a is provided between the brim-shaped terminal 28 provided at the lower end of the base and the bottom of the liquid nitrogen container 15 disposed above the flange 28 so as to be processed.

【0030】酸化物超電導導体17を構成する、円筒状
芯材16に巻回された超電導テープ線は、下層から順番
に階段的に段差を持って銀電極18に接着固定され、終
端部外周には銀テープ27を巻き、燒結して固定され
る。この酸化物超電導導体17の上下端に設けられた銀
電極18は接続端子である。上端の銀電極18は通電ベ
ローズ20a下端に接合された接続端子23と結合され
る、すなわち、通電ベローズ20aの接続端子23に設
けた凹部24に、金属スペーサ19を介在させて、銀電
極18に設けた凸部25を差し込み、これらの凹凸部2
4、25を固定ボルト26で締めつけて結合されてい
る。
The superconducting tape wire which is wound around the cylindrical core material 16 and which constitutes the oxide superconducting conductor 17 is adhesively fixed to the silver electrode 18 in a stepwise manner from the lower layer in order, and is attached to the outer periphery of the end portion. Is wrapped with silver tape 27, sintered and fixed. The silver electrodes 18 provided on the upper and lower ends of the oxide superconducting conductor 17 are connection terminals. The silver electrode 18 at the upper end is combined with the connection terminal 23 joined to the lower end of the energization bellows 20a, that is, the recess 24 provided in the connection terminal 23 of the energization bellows 20a is interposed with the metal spacer 19 to form the silver electrode 18. Insert the protrusions 25 provided to these protrusions 2
4 and 25 are fastened with a fixing bolt 26 to be joined.

【0031】また、通電ベローズ20aの上端は、銅製
リード22の下端部を構成するフランジ板状端子28に
接合され、さらにフランジ板状端子28上には銅製リー
ド22を囲うように吸振用伸縮部材としての吸振ベロー
ズ21aが接合されている。吸振ベローズ21a上端を
ボルトで固定する固定フランジ29は、絶縁体30を介
して液体窒素容器14の底に固定された箱状の固定枠3
1に取り付けられている。そして銅製リード22は液体
窒素容器15を貫通して上方に延びている。
The upper end of the energization bellows 20a is joined to a flange plate-like terminal 28 which constitutes the lower end of the copper lead 22, and the vibration absorbing elastic member is arranged on the flange plate-like terminal 28 so as to surround the copper lead 22. The vibration absorbing bellows 21a is joined thereto. The fixing flange 29 for fixing the upper end of the vibration absorbing bellows 21a with a bolt is a box-shaped fixing frame 3 fixed to the bottom of the liquid nitrogen container 14 via an insulator 30.
It is attached to 1. The copper lead 22 penetrates the liquid nitrogen container 15 and extends upward.

【0032】以上のように構成された、第1の実施の形
態の酸化物超電導電流リードは、金属リード22の接続
端子部23近傍に通電ベローズ20aを設けているの
で、その下に配置された酸化物超電導導体17側が液体
ヘリウム9の熱伝導や蒸発ガスで冷却されても、その熱
収縮は通電ベローズ20aで吸収される。
In the oxide superconducting current lead of the first embodiment having the above-described structure, the conductive bellows 20a is provided in the vicinity of the connecting terminal portion 23 of the metal lead 22, so that the conductive bellows 20a is arranged below the conductive bellows 20a. Even if the oxide superconducting conductor 17 side is cooled by the heat conduction of the liquid helium 9 or the evaporative gas, the heat shrinkage is absorbed by the energizing bellows 20a.

【0033】また、金属リード22の下端部を囲うよう
に吸振ベローズ21aを設け、この吸振ベローズ21aを
固定枠31に固定しているので、超電導コイル8に大電
流が通電された時あるいは変動周波数が加わった時に生
じる電磁振動や機械的振動は、箱状の固定枠31と吸振
ベローズ21aの相互作用で吸収される。
Further, since the vibration absorbing bellows 21a is provided so as to surround the lower end portion of the metal lead 22 and the vibration absorbing bellows 21a is fixed to the fixed frame 31, when the superconducting coil 8 is energized with a large current or at a variable frequency. Electromagnetic vibrations and mechanical vibrations that occur when a force is applied are absorbed by the interaction between the box-shaped fixed frame 31 and the vibration absorbing bellows 21a.

【0034】上記したように、金属リード22に通電ベ
ローズ20aと吸振ベローズ21aを設け、吸振ベロー
ズ21aを箱状の固定枠31を設けて支持することによ
り、冷却による熱収縮吸収はもとより、給電周波数変動
による異変位電磁振動や真空断熱容器、あるいは周辺外
枠から伝達される外部機械的振動、または組立作業時や
超電導コイル8側からの一方的な無理な片振れ変心がか
かっても、酸化物超電導導体17あるいは酸化物超電導
導体17を固定している銀電極18部、また銀電極18
と金属リード22の接続端子部23に集中伝達されるこ
とは解消されるので破損のしにくい、電磁的機械的振動
に強く、吸振性がよく安心して長期間使用のできる、そ
して信頼性と長寿命化の図れる酸化物超電導電流リード
の支持構造を形成できる。なお、液体窒素容器14の底
部に設けた固定枠31は吸振ベローズあるいは後述の筒
体、長尺ボルトの取付けを容易にするために設けたもの
で、固定枠に限らず、適宜に液体窒素容器14の底部と
して、それらを取付け易い構造とすればよい。
As described above, the metal lead 22 is provided with the energizing bellows 20a and the vibration absorbing bellows 21a, and the vibration absorbing bellows 21a is provided with the box-shaped fixing frame 31 so as to be supported. Different displacement electromagnetic vibrations due to fluctuations, external mechanical vibrations transmitted from the vacuum insulation container, or the surrounding outer frame, or unilateral unreasonable swinging eccentricity from the superconducting coil 8 side during assembly work, oxide A silver electrode 18 portion fixing the superconducting conductor 17 or the oxide superconducting conductor 17, and also a silver electrode 18
Since the centralized transmission to the connection terminal portion 23 of the metal lead 22 is eliminated, it is less likely to be damaged, is resistant to electromagnetic mechanical vibration, has good vibration absorption and can be used for a long time with peace of mind, and is reliable and long-lasting. It is possible to form a support structure for an oxide superconducting current lead, which has a long life. The fixed frame 31 provided at the bottom of the liquid nitrogen container 14 is provided for facilitating the attachment of the vibration absorbing bellows, the cylindrical body to be described later, and the long bolt, and is not limited to the fixed frame, and the liquid nitrogen container can be appropriately used. The bottom of 14 may have a structure that facilitates attachment thereof.

【0035】次に、本発明の第2の実施の形態を図2を
用いて詳細に説明する。第2の実施の形態は、図1に示
す第1の実施の形態の酸化物超電導電流リードの支持構
造を、酸化物超電導導体17の接続端子部23に隣接し
て設けていた通電ベローズ20aの位置を、金属リード
22の途中に設け、通電ベローズの下端を吸振ベローズ
で支持するように構成したものである。図2において、
低温側の酸化物超電導導体17の熱収縮を吸収させる通
電ベローズ20bを接続端子部23から少し離れた位置
に配置し、通電ベローズ20bの上部端板32は絶縁体
30を介在して固定枠31に、そして通電ベローズ20
bの下部側端板33を吸振ベローズ21bで支えている。
この時、吸振ベローズ21bの上端は下部側端板33下
面に設けた環状凹溝34に精度よく装着され、その吸振
ベローズ21bの下端を筒体である収納ケース36で受
けさせ、この収納ケース36を固定枠31にボルト37
aで固定している。そして、通電ベローズ20bと吸振ベ
ローズ21bを収納固定している収納ケース36には、
組立作業ボルト38が設けられ、通電ベローズ20bと
吸振ベローズ21bの強弱度合を調節できるように構成
されている。
Next, a second embodiment of the present invention will be described in detail with reference to FIG. In the second embodiment, the support structure for the oxide superconducting current lead of the first embodiment shown in FIG. 1 is provided for the conducting bellows 20a provided adjacent to the connection terminal portion 23 of the oxide superconducting conductor 17. The position is provided in the middle of the metal lead 22, and the lower end of the conductive bellows is supported by the vibration absorbing bellows. In FIG.
A conductive bellows 20b that absorbs thermal contraction of the oxide superconducting conductor 17 on the low temperature side is arranged at a position slightly apart from the connection terminal portion 23, and the upper end plate 32 of the conductive bellows 20b has a fixing frame 31 with an insulator 30 interposed therebetween. And the energized bellows 20
The lower end plate 33 of b is supported by the vibration absorbing bellows 21b.
At this time, the upper end of the vibration absorbing bellows 21b is accurately mounted in the annular groove 34 provided on the lower surface of the lower end plate 33, and the lower end of the vibration absorbing bellows 21b is received by the storage case 36 which is a cylindrical body. To the fixed frame 31 and bolt 37
It is fixed at a. Then, in the storage case 36 that stores and fixes the energizing bellows 20b and the vibration absorbing bellows 21b,
An assembling work bolt 38 is provided and is configured so that the strength of the energizing bellows 20b and the vibration absorbing bellows 21b can be adjusted.

【0036】また、図2においては、金属リード22の
長手方向の途中でボルト37bで接続しているが、これ
は収納ケース36を固定する固定枠31から接続端子部
23まで長かったのでボルト37bで接続し、組立作業
の容易性を考慮して設けたものである。
Further, in FIG. 2, the bolts 37b are connected in the middle of the metal leads 22 in the longitudinal direction. However, since this is long from the fixed frame 31 for fixing the storage case 36 to the connection terminal portion 23, the bolts 37b are provided. It is provided in consideration of the ease of assembly work.

【0037】以上のように構成された第2の実施の形態
の酸化物超電導電流リードの支持構造は、通電ベローズ
20bの下部側端板33下に吸振ベローズ21bを配置し
て、酸化物超電導電流リードを支えた支持構造としてい
るので、金属リード22の荷重、あるいは酸化物超電導
導体17側の収縮荷重は圧縮荷重となって通電ベローズ
20b、吸振ベローズ21bにかかることから、吸振性向
上と機械的強度向上が図れること、そして通電ベローズ
20bと吸振ベローズ21bを収納ケース36に収められ
ているため、例えばどちらかのベローズが破損しても、
酸化物超電導導体17の周辺に落下することはなく、ベ
ローズ破損時の飛散防止を図りながら、第1の実施の形
態と同等の作用効果を得る、すなわち電磁的機械的振動
に強く、吸振性がよく長寿命化を図ることができる。
In the support structure for the oxide superconducting current lead of the second embodiment having the above-described structure, the vibration absorbing bellows 21b is arranged below the lower end plate 33 of the energizing bellows 20b, and the oxide superconducting current flow is controlled. Since the support structure supports the leads, the load of the metal leads 22 or the contraction load on the oxide superconducting conductor 17 side becomes a compressive load and is applied to the conductive bellows 20b and the vibration absorbing bellows 21b. Since the strength can be improved and the energizing bellows 20b and the vibration absorbing bellows 21b are housed in the housing case 36, for example, even if one of the bellows is damaged,
It does not fall around the oxide superconducting conductor 17 and achieves the same effect as that of the first embodiment while preventing scattering when the bellows is broken, that is, strong against electromagnetic mechanical vibration and vibration absorbing property. The life can be extended well.

【0038】図3に本発明の第3の実施の形態となる酸
化物超電導電流リードの支持構造を示す。第1(第2)
の実施の形態では、低温側の熱収縮と外部からの振動
は、金属リード22側に直列的に設けた金属製の通電ベ
ローズ20a(20b)と吸振ベローズ21a(21b)によ
り、吸収させていたが、第3の実施の形態では、金属リ
ード22の途中に、上下二枚の金属ダイアフラム39
a、39bとこれらダイアフラム39a、39bの外周を囲
む筒体41とからなる通電用ダイアフラム継手としての
金属ダイアフラムボックス40を設け、管体41外周に
つば状のフランジ板42を取付け、フランジ板42の上
下に金属製の吸振ベローズ21c、21dを配置し、吸振
ベローズ21c、21dを筒体である固定ケース43に収
納し、固定ケース43を絶縁体30を介して液体窒素容
器14の下に設けた固定枠31にボルト37c、37dで
固定している。なお、金属ダイアフラムボックス40は
通電ベローズの代る通電体である。
FIG. 3 shows a support structure for an oxide superconducting current lead according to a third embodiment of the present invention. First (second)
In the embodiment, the heat shrinkage on the low temperature side and the vibration from the outside are absorbed by the metal conductive bellows 20a (20b) and the vibration absorbing bellows 21a (21b) provided in series on the metal lead 22 side. However, in the third embodiment, the upper and lower two metal diaphragms 39 are provided in the middle of the metal lead 22.
A metal diaphragm box 40 as an energizing diaphragm joint including a and 39b and a cylindrical body 41 surrounding the outer circumferences of the diaphragms 39a and 39b is provided, and a flange-shaped flange plate 42 is attached to the outer circumference of the pipe body 41. The vibration-absorbing bellows 21c and 21d made of metal are arranged above and below, the vibration-absorbing bellows 21c and 21d are housed in a fixed case 43 which is a cylindrical body, and the fixed case 43 is provided below the liquid nitrogen container 14 via an insulator 30. It is fixed to the fixed frame 31 with bolts 37c and 37d. The metal diaphragm box 40 is a current-carrying body instead of the current-carrying bellows.

【0039】以上のように、金属リード22に金属ダイ
アフラムボックス40を設け、金属ダイアフラムボック
ス40を吸振ベローズ21c、21dで支持する構造とし
ても、低温側の酸化物超電導導体17の熱収縮を十分に
金属ダイアフラム39bで吸収でき、そして、外部側か
らの振動伝達についても、金属ダイアフラムボックス4
0のガイド板42の上下に吸振ベローズ21c、21dを
設置しているので、外部振動を完全に遮断できる。
As described above, even when the metal diaphragm 22 is provided with the metal diaphragm box 40 and the metal diaphragm box 40 is supported by the vibration absorbing bellows 21c and 21d, the oxide superconducting conductor 17 on the low temperature side is sufficiently contracted by heat. The metal diaphragm 39b can absorb the vibration, and the vibration transmission from the outside can also be prevented by the metal diaphragm box 4.
Since the vibration absorbing bellows 21c and 21d are installed above and below the zero guide plate 42, external vibration can be completely shut off.

【0040】また、金属ダイアフラムボックス40の熱
収縮構造にすると、金属リード22が大電流用と大型に
なっても製作が容易であるとともに、熱収縮部を頑丈に
できるので、機械的強度の向上を図ることができる他、
第1の実施の形態と同等の作用効果を得ることができ
る。
Further, if the metal diaphragm box 40 has a heat-shrinkable structure, the metal lead 22 can be easily manufactured even for a large current and is large in size, and the heat-shrinkable portion can be made sturdy, so that the mechanical strength is improved. Other than that,
It is possible to obtain the same effect as that of the first embodiment.

【0041】図4に本発明の第4の実施の形態の酸化物
超電導電流リードの支持構造を示す。前記第1〜3の実
施の形態においては、金属リード22の途中に金属製の
通電ベローズ20a、20bを、あるいは金属ダイアフラ
ムボックス40を設け、それを吸振ベローズ21a、2
1b、あるいは吸振ベローズ21cと吸振ベローズ21d
で固定し、酸化物超電導導体17の片側だけで固定して
外部からの振動伝達防止と熱収縮吸収をさせていた。第
4の実施の形態においては、酸化物超電導導体17の上
部の金属リード22部と下部側銀電極44の上下双方で
吸振するように支持している。第4の実施の形態を図4
を用いて詳細に説明する。この酸化物超電導電流リード
の支持構造においては、酸化物超電導導体17の上部銀
電極45に接続される金属リード22の接続端子部23
に隣接して通電ベローズ20cを設け、通電ベローズ2
0c上端のフランジ板46の上面に一体的に吸振ベロー
ズ47を設けている。そして、この吸振ベローズ47上
端は、固定枠31に固定されている絶縁フランジ48の
段差部49に精度よく装着されている。一方、低温側と
なる下部側銀電極44は、その下方から金属吸振ベロー
ズ51により持ち上げられるように支持されている。す
なわち、固定枠31から絶縁フランジ48を通して複数
の長尺ボルト50を吊り下げ、これら長尺ボルト50下
端部に円板52を固定し、円板52上に金属製吸振ベロ
ーズ51を装着し、この吸振ベローズ51上に下部側銀
電極44が設置される。かくして酸化物超電導電流リー
ド53は上下双方から吸振ベローズ47、51によって
吸振支持されることになる。
FIG. 4 shows a support structure for an oxide superconducting current lead according to a fourth embodiment of the present invention. In the first to third embodiments, the metal conductive bellows 20a and 20b or the metal diaphragm box 40 are provided in the middle of the metal lead 22, and the vibration absorbing bellows 21a and 2b are provided.
1b, or vibration absorbing bellows 21c and vibration absorbing bellows 21d
Then, the oxide superconducting conductor 17 is fixed only on one side to prevent vibration transmission from the outside and to absorb heat shrinkage. In the fourth embodiment, both the upper and lower metal leads 22 of the oxide superconducting conductor 17 and the lower silver electrode 44 are supported so as to absorb vibrations. FIG. 4 shows the fourth embodiment.
This will be described in detail with reference to FIG. In this oxide superconducting current lead support structure, the connection terminal portion 23 of the metal lead 22 connected to the upper silver electrode 45 of the oxide superconducting conductor 17 is used.
Conductive bellows 20c is provided adjacent to the
A vibration absorbing bellows 47 is integrally provided on the upper surface of the flange plate 46 at the upper end of 0c. The upper end of the vibration absorbing bellows 47 is accurately mounted on the step portion 49 of the insulating flange 48 fixed to the fixed frame 31. On the other hand, the lower silver electrode 44 on the low temperature side is supported so as to be lifted by the metal vibration bellows 51 from below. That is, a plurality of long bolts 50 are hung from the fixed frame 31 through the insulating flange 48, a disc 52 is fixed to the lower ends of these long bolts 50, and a metal vibration absorption bellows 51 is mounted on the disc 52. The lower silver electrode 44 is installed on the vibration absorbing bellows 51. Thus, the oxide superconducting current flow lead 53 is vibration-supported by the vibration-absorbing bellows 47, 51 from both upper and lower sides.

【0042】以上のように構成された第4の実施の形態
の酸化物超電導電流リード53の支持構造は、酸化物超
電導導体17の両端で熱収縮を吸収させながら、同時に
真空断熱容器1、あるいはその外部からの振動伝達を吸
収できる上下支持構造となっているので、外部振動伝達
による酸化物超電導導体17の下部側加振の防止、そし
て組立作業時や移動時の片振れを防止し、機械的強度に
強く熱収縮性と振動吸収を同時にできる支持構造を構成
できるので、吸振熱収縮性の向上と長寿命化が図れ、運
搬作業にも適した酸化物超電導電流リード53の支持構
造が得られる。
The support structure of the oxide superconducting current lead 53 of the fourth embodiment configured as described above absorbs thermal contraction at both ends of the oxide superconducting conductor 17, and at the same time, the vacuum insulation container 1 or Since it has a vertical support structure capable of absorbing the vibration transmission from the outside, it prevents the lower side vibration of the oxide superconducting conductor 17 due to the external vibration transmission, and prevents the one-sided shake during the assembly work or the movement. Since it is possible to construct a supporting structure that is strong in dynamic strength and capable of simultaneously performing heat shrinkage and vibration absorption, it is possible to obtain a support structure for the oxide superconducting current flow lead 53 that is capable of improving vibration absorbing heat shrinkage and extending the life, and that is also suitable for transportation work. To be

【0043】図5に、本発明の第5の実施の形態の酸化
物超電導電流リードの支持構造を示す。第5の実施の形
態は、酸化物超電導電流リード53のつり下げ支持を液
体窒素容器14と、液体窒素容器14に固定される固定
枠31と、それに外部からの振動伝達を吸収させる吸振
ベローズとで持たせるようにしたものである。冷却によ
る酸化物超電導導体17側の熱収縮は金属リード22を
固定する液体窒素容器14の底板54で吸収させる。外
部からの機械的振動と超電導コイル側から伝達される振
動は、上部高温側では、金属リード22の接続端子部2
3近傍に設けた吸振ベローズ59aで吸振させ、下部低
温側では、酸化物超電導体17下側の銀電極60を支え
る吸振ベローズ59bで吸振させる。上部の吸振ベロー
ズ59a及び下部の吸振ベローズ59bは、固定枠31に
絶縁体57を介して吊り下がるように固定された吸振円
筒体62内に収納されている。上部高温側の吸振ベロー
ズ59aは、金属リード22の接続端子部23外周に設
けたつば状のフランジ板56とその上方にある固定枠3
1の間に設置され、吸振ベローズ59aの上端面と固定
枠31間に絶縁体57が介在し、吸振ベローズ59aの
下端面とガイド板56間に絶縁層55が介在して、吸振
ベローズ59aを電気的に絶縁している。下部低温側の
吸振ベローズ59bはその上端面で銀電極60を支え、
その下端面が吸振円筒体62の底板内面に絶縁層64を
介して取り付けられている。吸振円筒体62には筒壁を
貫通する冷却ガス通流孔61が形成されている。また吸
振円筒体62の底板内面には吸振ベローズ59bを位置
決めする環状の溝63が形成され、この溝63を含む底
板内面に設けられた絶縁層64が銀電極60と吸振円筒
体62が短絡しないように形成されている。さらに銀電
極60の下端子部は底板中央部に形成された穴から突き
出している。
FIG. 5 shows a supporting structure for an oxide superconducting current lead according to a fifth embodiment of the present invention. The fifth embodiment includes a liquid nitrogen container 14 for suspending and supporting the oxide superconducting current lead 53, a fixed frame 31 fixed to the liquid nitrogen container 14, and a vibration absorbing bellows for absorbing vibration transmission from the outside thereof. It is designed to be held in. The heat shrinkage on the oxide superconducting conductor 17 side due to cooling is absorbed by the bottom plate 54 of the liquid nitrogen container 14 for fixing the metal lead 22. On the upper high temperature side, the mechanical vibration from the outside and the vibration transmitted from the superconducting coil side are connected to the connection terminal portion 2 of the metal lead 22.
Vibration is absorbed by the vibration absorbing bellows 59a provided in the vicinity of No. 3, and vibration absorbing bellows 59b supporting the silver electrode 60 below the oxide superconductor 17 at the lower low temperature side. The upper vibration-absorbing bellows 59a and the lower vibration-absorbing bellows 59b are housed in a vibration-absorbing cylindrical body 62 fixed to the fixed frame 31 via an insulator 57 so as to be suspended. The vibration bellows 59a on the upper high temperature side includes a flange-like flange plate 56 provided on the outer periphery of the connection terminal portion 23 of the metal lead 22 and the fixed frame 3 above the flange plate 56.
1, the insulator 57 is interposed between the upper end surface of the vibration absorbing bellows 59a and the fixed frame 31, and the insulating layer 55 is interposed between the lower end surface of the vibration absorbing bellows 59a and the guide plate 56. It is electrically isolated. The vibration bellows 59b on the lower temperature side supports the silver electrode 60 on its upper end surface,
The lower end surface is attached to the inner surface of the bottom plate of the vibration absorbing cylindrical body 62 via an insulating layer 64. The vibration absorbing cylindrical body 62 is provided with a cooling gas flow hole 61 penetrating the cylinder wall. Further, an annular groove 63 for positioning the vibration absorbing bellows 59b is formed on the inner surface of the bottom plate of the vibration absorbing cylindrical body 62, and the insulating layer 64 provided on the inner surface of the bottom plate including this groove 63 does not short-circuit the silver electrode 60 and the vibration absorbing cylindrical body 62. Is formed. Further, the lower terminal portion of the silver electrode 60 projects from a hole formed in the central portion of the bottom plate.

【0044】以上のように構成された第5の実施の形態
によれば、酸化物超電導電流リード53の酸化物超電導
導体17を上下で吸振支持する他に、吸振円筒体62内
に設置するするので、周辺から物が飛散してもそれが直
接酸化物超電導導体17に衝突するのを防ぐことができ
る。
According to the fifth embodiment configured as described above, the oxide superconducting conductor 17 of the oxide superconducting current lead 53 is installed in the vibration absorbing cylindrical body 62 in addition to vertically supporting the vibration. Therefore, even if an object is scattered from the periphery, it can be prevented from directly colliding with the oxide superconducting conductor 17.

【0045】また、組立作業時には、吸振円筒体62が
保護カバーの役目をなすことから作業が容易になり、安
心して作業ができるので作業能率向上を図れるととも
に、酸化物超電導導体17を吸振円筒体62の中に収納
し支持しているので、接続作業時に銀電極60に無理な
機械的応力をかけたり、あるいは部品等をぶっつけて酸
化物超電導導体17を破損させることなく、保護性の向
上を図りつつ前記実施の形態と同等の作用効果を発揮す
ることができる。
Further, during the assembly work, the vibration absorbing cylindrical body 62 serves as a protective cover, so that the work can be facilitated and the work can be carried out with peace of mind, so that the work efficiency can be improved and the oxide superconducting conductor 17 can be absorbed. Since it is housed and supported in 62, the silver electrode 60 is not subjected to excessive mechanical stress at the time of connection work, or the oxide superconducting conductor 17 is not damaged by hitting parts or the like to improve protection. While working, it is possible to exhibit the same effect as that of the above-described embodiment.

【0046】図6に、本発明の第6の実施の形態の酸化
物超電導電流リードの支持構造を示す。第6の実施の形
態の支持構造は、酸化物超電導電流リード53を、上下
に吸振ベローズ59c、78を設けた絶縁材でなる小径
円筒体72(第1筒体)内に収容し、さらにこの円筒体
72を非磁性金属でなる大径円筒体73(第2筒体)内
に支持するように構成されている。大径円筒体73は、
その上方の固定枠31に絶縁体57を介して垂下するよ
うに、固定枠31の底板内側から絶縁ワッシャ76を介
してボルト37cで固定されている。この実施の形態に
おいては、酸化物超電導電流リード53の上部を構成す
る金属リード66は、接続端子部23の近傍で太径部分
を有している。小径円筒体72上端側の振ベローズ59
c(第1吸振用伸縮部材)の上端は、金属リード66の
太径部分の段差部65にネジ70で固定された板フラン
ジ69下面に取り付けられ、小径円筒体72下端部の吸
振ベローズ78(第2吸振用伸縮部材)は、大径円筒体
73の底カバー79の内面に取り付けられている。小径
円筒体72と大径円筒体73との間には上下端部2か所
に、複数の横方向吸振ベローズ74(第4吸振用伸縮部
材)を放射状に装着している。
FIG. 6 shows a support structure for an oxide superconducting current lead according to a sixth embodiment of the present invention. In the support structure of the sixth embodiment, the oxide superconducting current flow lead 53 is housed in a small diameter cylindrical body 72 (first cylindrical body) made of an insulating material provided with vibration absorbing bellows 59c and 78 on the upper and lower sides, and The cylindrical body 72 is configured to be supported in a large-diameter cylindrical body 73 (second cylindrical body) made of a nonmagnetic metal. The large-diameter cylindrical body 73 is
It is fixed by bolts 37c from the inside of the bottom plate of the fixed frame 31 via an insulating washer 76 so as to hang down on the fixed frame 31 above it via an insulator 57. In this embodiment, the metal lead 66 constituting the upper portion of the oxide superconducting current lead 53 has a large diameter portion in the vicinity of the connection terminal portion 23. Swing bellows 59 on the upper end side of the small diameter cylindrical body 72
The upper end of the c (first vibration absorbing elastic member) is attached to the lower surface of the plate flange 69 fixed to the step portion 65 of the large diameter portion of the metal lead 66 with the screw 70, and the vibration absorbing bellows 78 of the lower end portion of the small diameter cylindrical body 72 ( The second vibration absorbing elastic member) is attached to the inner surface of the bottom cover 79 of the large-diameter cylindrical body 73. A plurality of lateral vibration absorption bellows 74 (fourth vibration expansion / contraction members) are radially mounted between the small-diameter cylindrical body 72 and the large-diameter cylindrical body 73 at two upper and lower ends.

【0047】そして、酸化物超電導電流リード53の下
部を構成する酸化物超電導導体下端部の銀電極60と、
大径円筒体73の底カバー79内面との間に縦方向吸振
ベローズ77(第3吸振用伸縮部材)を設けている。内
外2重に縦方向吸振ベローズ77、78を装着した底カ
バー79は大径円筒体73の下端にボルト37dで固定
されている。
Then, the silver electrode 60 at the lower end of the oxide superconducting conductor which constitutes the lower part of the oxide superconducting current lead 53,
A vertical vibration absorbing bellows 77 (third vibration absorbing elastic member) is provided between the large diameter cylindrical body 73 and the inner surface of the bottom cover 79. A bottom cover 79, in which the vertical vibration absorbing bellows 77 and 78 are attached to the inside and outside, is fixed to the lower end of the large-diameter cylindrical body 73 with a bolt 37d.

【0048】また、小径円筒体72と大径円筒体73の
間の横方向吸振ベローズ74の介在位置には、外部振動
によって横方向吸振ベローズ74が移動しないように部
分的に装着溝80b、80aが設けられている。そし
て、その横方向吸振ベローズ74介在位置の大径円筒体
73にはネジ穴81を設け、ネジ穴81に調節ネジ82
を差し込むことによって、必要に応じて酸化物超電導導
体17上下を、接続端子部23と銀電極60を介して強
力に固定できるように構成されている。
At the interposition of the lateral vibration bellows 74 between the small diameter cylindrical body 72 and the large diameter cylindrical body 73, the mounting grooves 80b, 80a are partially installed so that the lateral vibration absorbing bellows 74 does not move due to external vibration. Is provided. A screw hole 81 is provided in the large-diameter cylindrical body 73 at the position where the lateral vibration absorbing bellows 74 is interposed, and the adjusting screw 82 is provided in the screw hole 81.
By inserting, the upper and lower portions of the oxide superconducting conductor 17 can be strongly fixed via the connection terminal portion 23 and the silver electrode 60 as needed.

【0049】以上のように構成された第6の実施の形態
は、酸化物超電導電流リード53を、縦方向振動を吸収
させる吸振ベローズ59c、縦方向吸振ベローズ77、
78及び横方向吸振ベローズ74とを備えた小径円筒体
72と大径円筒体73とによって、外部からの縦横両方
向の振動伝達遮断はもとより、振動変位が変化しても、
多数のベローズで吸振させることができるので、吸振性
がよく、機械的強度の高い吸振支持構造を得ることがで
きる。
In the sixth embodiment configured as described above, the vibration absorbing bellows 59c, the vertical absorbing bellows 77, for absorbing the longitudinal vibration of the oxide superconducting current flow lead 53,
By the small-diameter cylindrical body 72 and the large-diameter cylindrical body 73 having the 78 and the lateral vibration absorbing bellows 74, it is possible to prevent vibration transmission in both vertical and horizontal directions from the outside, and also to change the vibration displacement.
Since a large number of bellows can be used for vibration absorption, it is possible to obtain a vibration absorption support structure having good vibration absorption properties and high mechanical strength.

【0050】また、超電導装置が大形化し、電源容量に
伴って酸化物超電導電流リード53が太くなっても、そ
の吸振支持は容易に強弱調節することができる。また酸
化物超電導電流リード53を一つの部品として運搬する
時等は、横方向吸振ベローズ74のネジ穴81に調節ネ
ジ82を差し込み調節することによって、酸化物超電導
導体17を機械的振動から守ることができるので、破損
防止を図ることができるとともに吸振性の高い吸振収納
容器として利用することができる。
Further, even if the superconducting device becomes large in size and the oxide superconducting current lead 53 becomes thick due to the capacity of the power source, its vibration absorption support can be easily adjusted. When the oxide superconducting current lead 53 is carried as one component, the adjusting screw 82 is inserted into the screw hole 81 of the lateral vibration bellows 74 to adjust the oxide superconducting conductor 17 from mechanical vibration. Since it is possible to prevent damage, it can be used as a vibration absorbing container having high vibration absorbing property.

【0051】図7に、本発明の第7の実施の形態の酸化
物超電導電流リードの支持構造を示す。第7の実施の形
態は、金属リード22とそれに連なる酸化物超電導導体
17とからなる酸化物超電導電流リードの周囲に、固定
枠31から垂下する複数の長尺ボルト50nを設け、各
長尺ボルト50n上部に上下2段一対で装着したコイル
ばね84a、84bと、各長尺ボルト50n下部に上下
2段一対で装着したコイルばね84c、84dと、酸化
物超電導導体17下端の銀電極60の下に装着した吸振
ベローズ59bなどを用いて、支持構造を構成してい
る。さらに詳しくは、金属リード22の接続端子部23
近傍に円盤状固定ガイド板83を設け、さらに絶縁層8
9を挟んで固定ガイド板83上から周方向に張り出す円
板状ガイド板85を設けて、この固定ガイド板85を長
尺ボルト50nの上部に挿着したコイルばね84a、8
4b間に挟んで支持し、また低温側の銀電極60に取り
付けた吸振ベローズ59bを下から支持する固定円板8
6を設け、固定円板86を長尺ボルト50nの下部に装
着したコイルばね84c、84d間に挟んで支持してい
る。かくして、酸化物超電導導体17に加わる熱的収
縮、機械的振動および衝撃は、コイルばね84a〜84d
と吸振ベローズ59bで吸収することができる。なお各
長尺ボルト50nは絶縁体57を介して固定枠31の底
板内面にナット88で固定されている。
FIG. 7 shows a support structure for an oxide superconducting current lead according to the seventh embodiment of the present invention. In the seventh embodiment, a plurality of long bolts 50n hanging from the fixed frame 31 are provided around the oxide superconducting current lead composed of the metal lead 22 and the oxide superconducting conductor 17 connected to the metal lead 22. 50n upper and lower coil springs 84a and 84b mounted in a pair of two upper and lower stages, each long bolt 50n lower and upper two coil springs 84c and 84d mounted in a pair, and below the silver electrode 60 at the lower end of the oxide superconducting conductor 17. The support structure is configured by using the vibration absorbing bellows 59b or the like attached to the. More specifically, the connection terminal portion 23 of the metal lead 22
A disk-shaped fixed guide plate 83 is provided in the vicinity of the insulating layer 8.
A disk-shaped guide plate 85 is provided to project from the fixed guide plate 83 in the circumferential direction with the fixed guide plate 85 interposed therebetween, and the fixed guide plate 85 is attached to the upper portion of the long bolt 50n.
A fixed disc 8 for sandwiching and supporting between 4b and a vibration absorbing bellows 59b attached to the silver electrode 60 on the low temperature side from below.
6 is provided, and the fixed disc 86 is supported by being sandwiched between coil springs 84c and 84d attached to the lower portion of the long bolt 50n. Thus, the thermal contraction, mechanical vibration, and shock applied to the oxide superconducting conductor 17 are prevented by the coil springs 84a to 84d.
It can be absorbed by the vibration absorbing bellows 59b. Each long bolt 50n is fixed to the inner surface of the bottom plate of the fixed frame 31 with a nut 88 via an insulator 57.

【0052】以上のように構成された第7の実施の形態
においては、酸化物超電導電流リードは、高温側の金属
リード22の接続端子部23から固定ガイド板83介し
て張り出す固定円板86を挟んで支持するコイルばね8
4a、84bと、低温側の銀電極60下に設けた吸振ベロ
ーズ59bと、吸振ベローズ59bを取付けて下支えする
固定円板86を挟んで支持するコイルばね84c、84d
とによって、弾性的に支持されるので、これまでの実施
の形態と同様に、コイルばね84a〜84dと吸振ベロー
ズ59bで外部と内部双方からの電磁的機械的振動を吸
収させることができる。そして、振動を吸収させるコイ
ルばね84a、84b、84c、84dと酸化物超電導導体
17を固定する円板状ガイド板85、あるいは固定円板
86等は簡単に、強度に見合った製作ができるので、例
えば、酸化物超電導導体17の長さ、あるいは太さ等の
寸法的なものが変わっても簡単に組み替え固定すること
ができる。
In the seventh embodiment configured as described above, the oxide superconducting current lead is projected from the connection terminal portion 23 of the metal lead 22 on the high temperature side through the fixed guide plate 83 through the fixed disc 86. Coil spring 8 that sandwiches and supports
4a, 84b, a coil spring 84c, 84d for sandwiching and supporting a vibration absorbing bellows 59b provided below the silver electrode 60 on the low temperature side, and a fixed disc 86 for mounting and supporting the vibration absorbing bellows 59b.
Since it is elastically supported by, the coil springs 84a to 84d and the vibration absorbing bellows 59b can absorb electromagnetic mechanical vibrations from both outside and inside, as in the previous embodiments. The disk-shaped guide plate 85 for fixing the coil springs 84a, 84b, 84c, 84d for absorbing vibration and the oxide superconducting conductor 17, or the fixed disk 86, can be easily manufactured in accordance with the strength. For example, the oxide superconducting conductor 17 can be easily recombined and fixed even if the length or thickness of the oxide superconducting conductor 17 changes.

【0053】また、酸化物超電導導体17の吸振支持
は、長尺ボルト50nの両端にネジ部90を切り、その
ネジ部90にコイルばね84a、84bおよび84c、8
4dと円板状ガイド板85、吸振ベローズ59bを備えた
固定円板86等を介在し、そのコイルばね84a、84b
および84c、84dを締め付けナット91a、91bおよ
び91cで締め付けをして吸振固定するので、その吸振
力を簡単に調節できるので、機械的振動の発生場所ある
いは衝撃のある場所、または電磁振動の大きい場所等、
周辺環境や機械装置に対応した吸振固定支持を容易にで
きるとともに、構造を簡単にして低価格で製作できるの
で、製作対応性を敏速にし原価低減を図り、かつ熱収縮
と振動吸振性向上に効果的な酸化物超電導電流リードの
支持構造を提供することができる。
Further, for supporting the oxide superconducting conductor 17 for vibration absorption, a threaded portion 90 is cut at both ends of the long bolt 50n, and the coil springs 84a, 84b and 84c, 8 are attached to the threaded portion 90.
4d, a disc-shaped guide plate 85, a fixed disc 86 having a vibration absorbing bellows 59b, and the like, and coil springs 84a, 84b thereof.
And 84c, 84d are tightened with tightening nuts 91a, 91b, and 91c to absorb and fix the vibration, so that the vibration absorbing force can be easily adjusted. Therefore, the place where mechanical vibration occurs or the place where shock occurs, or the place where electromagnetic vibration is large. etc,
It is possible to easily fix and support vibration absorption that corresponds to the surrounding environment and mechanical devices, and because the structure is simple and it can be manufactured at low cost, it is possible to promptly respond to manufacturing, reduce cost, and improve heat shrinkage and vibration absorption. A support structure for a conventional oxide superconducting current lead can be provided.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
本発明の第1から第3の酸化物超電導電流リードの支持
構造は、金属導体側に通電用伸縮継手と吸振用伸縮継手
を設けて、酸化物超電導導体の熱収縮と電磁振動および
酸化物超電導電流リードを収納する容器外部からの機械
的振動を吸収するように構成したので、熱収縮応力や各
振動が、酸化物超電導導体を固定する銀電極端子や金属
導体の端子部に集中伝達されることがなく、熱収縮や振
動に強い、信頼性向上と長寿命化に好適な酸化物超電導
電流リードの支持構造を得ることができる。
As described above, according to the present invention,
The first to third oxide superconducting current flow support structures according to the present invention are provided with an expansion joint for energization and an expansion joint for vibration absorption on the metal conductor side, so that thermal contraction and electromagnetic vibration of the oxide superconducting conductor and oxide superconducting conductor can be achieved. Since it is configured to absorb mechanical vibration from the outside of the container that houses the current lead, heat contraction stress and each vibration are concentrated and transmitted to the silver electrode terminal that fixes the oxide superconducting conductor and the terminal portion of the metal conductor. It is possible to obtain a support structure for an oxide superconducting current lead that is resistant to thermal contraction and vibration and that is suitable for improving reliability and extending life.

【0055】また、本発明によれば、本発明の第4から
第7の酸化物超電導電流リードの支持構造は、酸化物超
電導導体上側につながる金属導体側に通電用伸縮継手な
いし吸振用伸縮部材を設け、さらに酸化物超電導導体下
側にも吸振用伸縮部材を設けて構成したので、酸化物超
電導導体の熱収縮を吸収すると共に、外部からの振動に
より酸化物超電導導体が片振れすることなく、振動を吸
収でき、熱収縮や振動に強い、信頼性向上と長寿命化に
好適な酸化物超電導電流リードの支持構造を得ることが
できる。また第5、第6の支持構造では、酸化物超電導
導体、通電用伸縮継手、吸振用伸縮部材を筒体に収納す
るように構成したので、周辺から物が飛散しても酸化物
超電導導体にあたらず、酸化物超電導電流リードを低温
容器に組み込む作業を容易にし、また酸化物超電導電流
リードの運搬を容易にすることができる。さらに第6の
支持構造では、縦方向の吸振用伸縮部材の他に、横方向
の吸振用伸縮部材を設けたので、外部振動に対する吸振
性を一層良くすることができる。
Further, according to the present invention, in the fourth to seventh oxide superconducting current lead supporting structures of the present invention, the expansion joint for conduction or the expansion member for vibration absorption is provided on the metal conductor side connected to the upper side of the oxide superconducting conductor. In addition, since the expansion and contraction member for vibration absorption is also provided on the lower side of the oxide superconducting conductor, the oxide superconducting conductor absorbs heat contraction, and the oxide superconducting conductor does not shake off due to external vibration. In addition, it is possible to obtain a support structure for an oxide superconducting current lead that can absorb vibrations, is resistant to heat shrinkage and vibrations, and is suitable for improving reliability and extending life. In addition, in the fifth and sixth support structures, the oxide superconducting conductor, the expansion joint for energization, and the expansion and contraction member for vibration absorption are configured to be housed in the cylindrical body. Therefore, the work of incorporating the oxide superconducting current lead into the cryogenic container can be facilitated, and the transportation of the oxide superconducting current lead can be facilitated. Further, in the sixth support structure, since the horizontal vibration-absorbing elastic member is provided in addition to the vertical vibration-absorbing elastic member, the vibration absorbing property against external vibration can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す酸化物超電導
電流リードの支持構造を示す部分破断斜視図である。
FIG. 1 is a partially cutaway perspective view showing a support structure for an oxide superconducting current lead according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の酸化物超電導電流
リードの支持構造を示す破断斜視図である。
FIG. 2 is a cutaway perspective view showing a support structure for an oxide superconducting current lead according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態の酸化物超電導電流
リードの支持構造を示す破断斜視図である。
FIG. 3 is a cutaway perspective view showing a support structure for an oxide superconducting current lead according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態の酸化物超電導電流
リードの支持構造を示す破断斜視図である。
FIG. 4 is a cutaway perspective view showing a supporting structure for an oxide superconducting current lead according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施の形態の酸化物超電導電流
リードの支持構造を示す破断斜視図である。
FIG. 5 is a cutaway perspective view showing a supporting structure for an oxide superconducting current lead according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施の形態の酸化物超電導電流
リードの支持構造を示す破断斜視図である。
FIG. 6 is a cutaway perspective view showing a supporting structure for an oxide superconducting current lead according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施の形態の酸化物超電導電流
リードの支持構造を示す破断斜視図である。
FIG. 7 is a cutaway perspective view showing a support structure for an oxide superconducting current lead according to a seventh embodiment of the present invention.

【図8】超電導磁石装置の一般的な構造を簡略化して示
す断面図である。
FIG. 8 is a sectional view showing a simplified general structure of a superconducting magnet device.

【符号の説明】[Explanation of symbols]

1…真空断熱容器 2a、2b…真空断
熱層 3…真空容器 4…容器カバー 5…低温容器 6…空間部 7a、7b…液体窒素 8…超電導コイル 9…液体ヘリウム 10…接続リード線 11…酸化物超電導電流リード 12…銅製電流リー
ド 13…酸化物超電導導体 14…液体窒素容器 15…低温容器カバー 16…円筒状芯材 17…酸化物超電導導体 18…銀電極 19…金属スペーサ 20a、20b、20
c…通電ベローズ 21a、21b、21c、21d…吸振ベローズ 22…銅製リード 23…接続端子部 24…凹部 25…凸部 26…固定ボルト 27…銀テープ 28…フランジ状端
子 29…固定フランジ 30…絶縁体 31…固定枠 32…上部端板 33…下部側端板 34…凹溝 36…収納ケース 38…組立作業ボル
ト 39a、39b…金属ダイアフラム 40…金属ダイアフ
ラムボックス 41…管体 42…フランジ板 43…固定ケース 44…下部側銀電極 45…上部銀電極 46…フランジ板 47…吸振ベローズ 48…絶縁フランジ 49…段差部 50n…長尺ボルト 51…吸振ベローズ 52…固定円板 53…酸化物超電導電流リード 54…底板 55…絶縁層 56…フランジ板 57…絶縁体 58…固定端板 59a、59b…吸振ベローズ 59c… 60…銀電極 61…冷却ガス通流孔 62…吸振円筒体 63…ベローズ装着溝 64…絶縁層 65…段差部 66…段つき金属リ
ード 67…内径部 69…板フランジ 71…下部端板 72…小径円筒体 73…大径円筒体 74…横方向吸振ベ
ローズ 76…絶縁ワッシャ 77…縦方向吸振ベ
ローズ 78…縦方向吸振ベローズ 79…底カバー 81…ネジ穴 82…調節ネジ 83…固定ガイド板 84a、84b、84c、84d…伸縮バネ 85…円板状フランジ板 86…固定円板 88 ナット 89…絶縁層 90…ネジ部
DESCRIPTION OF SYMBOLS 1 ... Vacuum heat insulation container 2a, 2b ... Vacuum heat insulation layer 3 ... Vacuum container 4 ... Container cover 5 ... Low temperature container 6 ... Space part 7a, 7b ... Liquid nitrogen 8 ... Superconducting coil 9 ... Liquid helium 10 ... Connection lead wire 11 ... Oxidation Superconducting current lead 12 ... Copper current lead 13 ... Oxide superconducting conductor 14 ... Liquid nitrogen container 15 ... Low temperature container cover 16 ... Cylindrical core material 17 ... Oxide superconducting conductor 18 ... Silver electrode 19 ... Metal spacers 20a, 20b, 20
c ... energizing bellows 21a, 21b, 21c, 21d ... vibration absorbing bellows 22 ... copper lead 23 ... connecting terminal part 24 ... concave part 25 ... convex part 26 ... fixing bolt 27 ... silver tape 28 ... flange terminal 29 ... fixing flange 30 ... insulation Body 31 ... Fixed frame 32 ... Upper end plate 33 ... Lower end plate 34 ... Recessed groove 36 ... Storage case 38 ... Assembly work bolts 39a, 39b ... Metal diaphragm 40 ... Metal diaphragm box 41 ... Tube 42 ... Flange plate 43 ... Fixed case 44 ... Lower side silver electrode 45 ... Upper silver electrode 46 ... Flange plate 47 ... Vibration absorbing bellows 48 ... Insulating flange 49 ... Step portion 50n ... Long bolt 51 ... Vibration absorbing bellows 52 ... Fixed disk 53 ... Oxide superconducting current lead 54 ... Bottom plate 55 ... Insulating layer 56 ... Flange plate 57 ... Insulator 58 ... Fixed end plate 59a, 59b ... Vibration absorbing bellows 9c ... 60 ... Silver electrode 61 ... Cooling gas flow hole 62 ... Vibration absorbing cylindrical body 63 ... Bellows mounting groove 64 ... Insulating layer 65 ... Step portion 66 ... Stepped metal lead 67 ... Inner diameter portion 69 ... Plate flange 71 ... Lower end plate 72 ... Small diameter cylindrical body 73 ... Large diameter cylindrical body 74 ... Horizontal vibration absorption bellows 76 ... Insulation washer 77 ... Vertical vibration absorption bellows 78 ... Vertical vibration absorption bellows 79 ... Bottom cover 81 ... Screw hole 82 ... Adjusting screw 83 ... Fixed guide plate 84a, 84b, 84c, 84d ... Expansion spring 85 ... Disc-shaped flange plate 86 ... Fixed disc 88 Nut 89 ... Insulating layer 90 ... Screw part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に接続する酸化物超電導導体と、該酸化物超電
導導体の上側端子と結合する端子を有し、前記冷却容器
を貫通して上方に延びる金属導体と、からなる酸化物超
電導電流リードの支持構造において、前記金属導体の下
端に設けたつば状のフランジ板と前記金属導体の端子間
に通電用伸縮継手を設けるとともに、前記フランジ板と
上方の前記冷媒容器の底部との間で前記金属導体の周囲
に吸振用伸縮部材を設けたことを特徴とする酸化物超電
導電流リードの支持構造。
1. An oxide superconducting conductor connecting a cooling container containing a first cooling medium to a superconducting device immersed in a second cooling medium in a cryocontainer installed at an upper portion, and an oxide superconducting conductor of the oxide superconducting conductor. In a support structure of an oxide superconducting current lead, which has a terminal that is coupled to an upper terminal and that extends upward through the cooling container, a flange-shaped flange plate provided at the lower end of the metal conductor. An oxide, characterized in that an expansion joint for energization is provided between the terminals of the metal conductor, and an expansion and contraction member for vibration absorption is provided around the metal conductor between the flange plate and the bottom portion of the refrigerant container above. Support structure for superconducting current leads.
【請求項2】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に接続する酸化物超電導導体と、該酸化物超電
導導体の上側端子と結合する端子を有し、前記冷却容器
を貫通して上方に延びる金属導体と、からなる酸化物超
電導電流リードの支持構造において、前記低温容器内で
前記金属導体の長手方向の一部を形成するように介在さ
せた通電用伸縮継手と、該通電用伸縮継手の下端に設け
たつば状フランジ板を下から支え前記金属導体の周囲に
配置された吸振用伸縮部材と、前記冷媒容器の底部に固
定されて前記通電用伸縮継手と前記吸振用伸縮部材を内
包して垂下し、前記吸振用伸縮部材の下端を支持する底
板を有する筒体とを設け、該筒体の底板は前記金属導体
を通す穴を有することを特徴とする酸化物超電導電流リ
ードの支持構造。
2. An oxide superconducting conductor connecting a cooling container containing a first cooling medium to a superconducting device immersed in a second cooling medium in a cryocontainer installed above, and an oxide superconducting conductor of the oxide superconducting conductor. A support structure for an oxide superconducting current lead, comprising: a metal conductor having a terminal to be coupled to an upper terminal and extending upward through the cooling container; and a part of the metal conductor in the longitudinal direction in the cryocontainer. An expansion joint for energization interposed so as to form an expansion joint for supporting vibration from below and a flange-shaped flange plate provided at the lower end of the expansion joint for energization, and the refrigerant container A tubular body having a bottom plate that is fixed to the bottom of the energizing expansion joint and the vibration absorbing elastic member and hangs down, and that supports a lower end of the vibration absorbing elastic member. A hole with a metal conductor And a support structure for an oxide superconducting current lead.
【請求項3】 前記通電用伸縮継手は銅製ベローズで、
前記吸振用伸縮部材は銅、銅合金あるいはステンレス鋼
製ベローズであることを特徴とする請求項1または2に
記載の酸化物超電導電流リードの支持構造。
3. The expansion joint for energization is a copper bellows,
The support structure for an oxide superconducting current lead according to claim 1 or 2, wherein the vibration absorbing elastic member is made of copper, a copper alloy or a bellows made of stainless steel.
【請求項4】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に接続する酸化物超電導導体と、該酸化物超電
導導体の上側端子と結合する端子を有し、前記冷却容器
を貫通して上方に延びる金属導体と、からなる酸化物超
電導電流リードの支持構造において、前記低温容器内で
前記金属導体の長手方向の一部を形成するように介在さ
せ、該介在位置で対向する金属導体端面にそれぞれ接合
された一対の金属製ダイヤフラムと該各ダイヤフラムの
周囲を固定する金属製管からなる通電用伸縮継手と、該
通電用伸縮継手の管外周に設けたつば状フランジ板の上
下各面に配置された上下一対の吸振用伸縮部材と、前記
冷媒容器の底部に固定されて前記吸振用伸縮部材を内包
して垂下し、前記下の吸振用伸縮部材下端を支持する底
板を有する筒体とを設け、そして該筒体の底板は前記前
記金属導体は通す穴を有し、前記両吸振用伸縮部材は前
記冷却容器底部方向に押圧されて設けられていることを
特徴とする酸化物超電導電流リードの支持構造。
4. An oxide superconducting conductor connecting a cooling container containing a first cooling medium to a superconducting device immersed in a second cooling medium in a cryocontainer installed at an upper part, and an oxide superconducting conductor of the oxide superconducting conductor. A support structure for an oxide superconducting current lead, comprising: a metal conductor having a terminal to be coupled to an upper terminal and extending upward through the cooling container; and a part of the metal conductor in the longitudinal direction in the cryocontainer. An expansion joint for energization, which includes a pair of metal diaphragms and metal pipes that fix the periphery of each diaphragm and are joined to the end faces of the metal conductors facing each other at the intervening position. A pair of upper and lower vibration-absorbing elastic members arranged on each of the upper and lower surfaces of the flange-shaped flange plate provided on the outer circumference of the expansion joint, and is hung down by including the vibration-absorbing elastic member fixed to the bottom of the refrigerant container. Below And a cylindrical body having a bottom plate for supporting the lower end of the vibration absorbing elastic member, and the bottom plate of the cylindrical member has a hole through which the metal conductor passes, and both vibration absorbing elastic members are pressed toward the bottom of the cooling container. A support structure for an oxide superconducting current lead, characterized in that it is provided separately.
【請求項5】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に、下側端子を介して接続する酸化物超電導導
体と、該酸化物超電導導体の上側端子と結合する端子を
有し、前記冷却容器を貫通して上方に延びる金属導体
と、からなる酸化物超電導電流リードの支持構造におい
て、 前記金属導体の下端に設けたつば状フランジ板と前記金
属導体の端子との間に通電用伸縮継手を介在させて設
け、前記フランジ板と上方の前記冷却容器底部との間で
前記金属導体の周囲に吸振用伸縮部材を設け、前記酸化
物超電導導体の下側端子を段付で小径先端部を下方に突
出させた形状とし、前記段部に上端を取り付けた別の吸
振用伸縮部材を設け、前記冷却容器底部に固定されて前
記酸化物超電導導体の周囲を垂下し、下端に前記別の吸
振用伸縮部材を下支えする板材を取り付けた複数の長尺
ボルトを設け、そして該板材は前記下側端子の下先端部
を通す穴を有することを特徴とする酸化物超電導電流リ
ードの支持構造。
5. An oxide superconducting conductor connecting a cooling container containing a first cooling medium to a superconducting device immersed in a second cooling medium in a cryogenic container installed at an upper portion via a lower terminal. A support structure for an oxide superconducting current lead, comprising: a metal conductor having a terminal coupled to an upper terminal of the oxide superconducting conductor and extending upward through the cooling container; An expansion joint for energization is provided between the flange-shaped flange plate and the terminal of the metal conductor, and a vibration absorbing expansion member is provided around the metal conductor between the flange plate and the bottom portion of the cooling container above. Provided, the lower terminal of the oxide superconducting conductor has a stepped shape with a small diameter tip protruding downward, and another vibration absorbing elastic member having an upper end attached to the stepped portion is provided and fixed to the bottom of the cooling container. Is the oxide superconductivity Is provided with a plurality of long bolts attached to the lower end of the lower end of the lower terminal, and a plurality of long bolts attached to the lower end of the elastic member for supporting the vibration absorption are provided. Support structure for oxide superconducting current lead.
【請求項6】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に、下側端子を介して接続する酸化物超電導導
体と、該酸化物超電導導体の上側端子と結合する端子を
有し、前記冷却容器を貫通して上方に延びる金属導体
と、からなる酸化物超電導電流リードの支持構造におい
て、 前記金属導体の下端に設けたつば状のフランジ板と上方
の前記冷却容器底部との間で前記金属導体の周囲に吸振
用伸縮部材を設け、前記酸化物超電導導体の下側端子を
段付で小径の下先端部を突出させた形状とし、前記段部
に上端を取り付けた別の吸振用伸縮部材を設け、前記冷
却容器の底部に固定されて前記酸化物超電導導体を内包
して垂下し、前記別の吸振用伸縮部材を下支えする底板
を有する筒体を設け、そして筒体の底板は前記下先端部
を通す穴を有することを特徴とする酸化物超電導電流リ
ードの支持構造。
6. An oxide superconducting conductor connecting a cooling container containing a first cooling medium to a superconducting device immersed in a second cooling medium in a cryogenic container installed at an upper portion via a lower terminal. A support structure for an oxide superconducting current lead, comprising: a metal conductor having a terminal coupled to an upper terminal of the oxide superconducting conductor and extending upward through the cooling container; A vibration-absorbing elastic member is provided around the metal conductor between the flange-shaped flange plate and the bottom of the cooling container above, and the lower end of the oxide superconducting conductor is stepped to project the lower tip of the small diameter. A different vibration absorbing elastic member having an upper end attached to the stepped portion, is fixed to the bottom of the cooling container and hangs down with the oxide superconducting conductor included, and the other vibration absorbing elastic member A cylinder with a bottom plate to support Only, and the bottom plate of the cylindrical body support structure of the oxide superconducting current lead and having a hole through which the lower tip.
【請求項7】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に、下側端子を介して接続する酸化物超電導導
体と、該酸化物超電導導体の上側端子と結合する端子を
有し、前記冷却容器を貫通して上方に延びる金属導体
と、からなる酸化物超電導電流リードの支持構造におい
て、 前記酸化物超電導導体の側面を囲う第1筒体と、該第1
筒体上面と前記金属導体の端子上端に設けたつば状のフ
ランジ板との間に設けた第1吸振用伸縮部材と、前記冷
却容器の底部に固定されて前記第1筒体を内包して垂下
する第2筒体及び該第2筒体の底カバーと、該底カバー
の内面と前記第1筒体の下面間に設けた第2吸振用伸縮
部材と、前記酸化物超電導導体の下側端子を段付で小径
の下先端部を突出させた形状とし、該段部と前記底カバ
ー内面間に設けた第3吸振用伸縮部材と、前記第1筒体
と前記第2筒体間で少なくとも上下2か所に放射状に設
けた複数の第4吸振用伸縮部材とを備え、前記底カバー
は前記下先端部を通す穴を有することを特徴とする酸化
物超電導電流リードの支持構造。
7. An oxide superconducting conductor, which is connected to a superconducting device in which a cooling container containing a first cooling medium is immersed in a second cooling medium in a cryogenic container installed at an upper portion via a lower terminal. A support structure for an oxide superconducting current lead, comprising: a metal conductor having a terminal coupled to an upper terminal of the oxide superconducting conductor and extending upward through the cooling container; A first cylindrical body surrounding the
A first vibration absorbing elastic member provided between the upper surface of the cylindrical body and a flange-shaped flange plate provided on the upper end of the terminal of the metal conductor, and the first cylindrical body fixed to the bottom of the cooling container. A second cylindrical body which hangs down, a bottom cover of the second cylindrical body, a second vibration absorbing elastic member provided between an inner surface of the bottom cover and a lower surface of the first cylindrical body, and a lower side of the oxide superconducting conductor. Between the stepped portion and the bottom cover inner surface, a third vibration-absorbing elastic member provided between the stepped portion and the inner surface of the bottom cover, and between the first tubular body and the second tubular body are provided. A support structure for an oxide superconducting current flow lead, comprising: a plurality of fourth vibration absorbing elastic members provided at least at two upper and lower portions in a radial pattern, and the bottom cover has a hole through which the lower tip portion passes.
【請求項8】 前記各吸振用伸縮部材は銅、銅合金ある
いはステンレス鋼製のベローズであることを特徴とする
請求項7記載の酸化物超電導電流リードの支持構造。
8. The support structure for an oxide superconducting current lead according to claim 7, wherein each of the vibration absorbing elastic members is a bellows made of copper, copper alloy or stainless steel.
【請求項9】 第1冷却媒体を入れた冷却容器を上部に
設置された低温容器内で第2冷却媒体中に浸漬された超
電導装置に、下側端子を介して接続する酸化物超電導導
体と、該酸化物超電導導体の上側端子と結合する端子を
有し、前記冷却容器を貫通して上方に延びる金属導体
と、からなる酸化物超電導電流リードの支持構造におい
て、 前記酸化物超電導導体の下側端子を段付で小径の下先端
部を突出させた形状とし、該段部に上端を取り付けられ
た第1吸振用伸縮部材と、前記冷却容器の底部に固定さ
れ、前記酸化物超電導導体の周囲を垂下する複数の長尺
ボルトと、該長尺ボルトの下端部に取り付けられ前記第
1吸振用伸縮部材を下支えする下板と、前記各長尺ボル
トの下端部で該ボルト周面に装着され前記下板を挟む一
対の第2吸振用伸縮部材と、前記長尺ボルトの上端部で
該ボルト周面に装着され前記金属導体の端子から張り出
すフランジ板を挟む一対の第3吸振用伸縮部材と、を備
え、前記下板材は前記下先端部を通す穴を有することを
特徴とする酸化物超電導電流リードの支持構造。
9. An oxide superconducting conductor connecting a cooling container containing a first cooling medium to a superconducting device immersed in a second cooling medium in a cryogenic container installed at an upper portion via a lower terminal. A support structure for an oxide superconducting current lead, comprising: a metal conductor having a terminal coupled to an upper terminal of the oxide superconducting conductor and extending upward through the cooling container; The side terminal has a stepped shape with the lower tip of the small diameter protruding, and the first vibration absorbing elastic member having an upper end attached to the step and the bottom portion of the cooling container fixed to the oxide superconducting conductor. A plurality of long bolts that hang down around, a lower plate that is attached to the lower ends of the long bolts and supports the first vibration absorbing elastic member, and a lower plate of each of the long bolts that is attached to the bolt peripheral surface. A pair of second vibration absorbers sandwiching the lower plate And a pair of third vibration absorbing elastic members sandwiching a flange plate that is attached to the peripheral surface of the bolt at the upper end of the elongated bolt and projects from the terminal of the metal conductor. A support structure for an oxide superconducting current lead, characterized by having a hole through which a tip portion passes.
【請求項10】 前記第1吸振用伸縮部材は金属製のベ
ローズであり、前記第2及び第3吸振用伸縮部材は金属
製のコイルばねであることを特徴とする請求項9記載の
酸化物超電導電流リードの支持構造。
10. The oxide according to claim 9, wherein the first vibration absorbing elastic member is a metal bellows, and the second and third vibration absorbing elastic members are metal coil springs. Support structure for superconducting current leads.
JP31237095A 1995-11-30 1995-11-30 Support structure of oxide superconducting current lead Pending JPH09153407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31237095A JPH09153407A (en) 1995-11-30 1995-11-30 Support structure of oxide superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31237095A JPH09153407A (en) 1995-11-30 1995-11-30 Support structure of oxide superconducting current lead

Publications (1)

Publication Number Publication Date
JPH09153407A true JPH09153407A (en) 1997-06-10

Family

ID=18028446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31237095A Pending JPH09153407A (en) 1995-11-30 1995-11-30 Support structure of oxide superconducting current lead

Country Status (1)

Country Link
JP (1) JPH09153407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305765A (en) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009230912A (en) * 2008-03-19 2009-10-08 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009259520A (en) * 2008-04-15 2009-11-05 Fuji Electric Systems Co Ltd Superconductive current lead
CN110415911A (en) * 2019-08-26 2019-11-05 西南交通大学 A kind of pluggable binary current lead device and its cooling container
CN110440477A (en) * 2019-08-26 2019-11-12 西南交通大学 A kind of plug type low-temperature (low temperature) vessel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305765A (en) * 2007-06-11 2008-12-18 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009230912A (en) * 2008-03-19 2009-10-08 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead
JP2009259520A (en) * 2008-04-15 2009-11-05 Fuji Electric Systems Co Ltd Superconductive current lead
CN110415911A (en) * 2019-08-26 2019-11-05 西南交通大学 A kind of pluggable binary current lead device and its cooling container
CN110440477A (en) * 2019-08-26 2019-11-12 西南交通大学 A kind of plug type low-temperature (low temperature) vessel
CN110415911B (en) * 2019-08-26 2024-03-22 西南交通大学 Pluggable binary current lead device and cooling container thereof
CN110440477B (en) * 2019-08-26 2024-05-28 西南交通大学 Pluggable low-temperature container

Similar Documents

Publication Publication Date Title
JP2017509310A (en) Electromechanical transducer device for converting between mechanical energy and electrical energy
JPH09153407A (en) Support structure of oxide superconducting current lead
EP0452046A2 (en) Superconductive magnet
EP0450972A2 (en) Superconductive magnet
JPH1116719A (en) Mri superconducting magnet assembly
JP2006351654A (en) Reactor device
JP3901217B2 (en) Vibration isolation cryogenic equipment
JP5208481B2 (en) Cryogenic container support equipment
EP0450971A2 (en) Superconductive magnet
JPH0722231A (en) Superconducting magnet for mri system
JPS6350844B2 (en)
JP5375599B2 (en) Superconducting equipment
JP2010016025A (en) Superconducting device
US4639231A (en) Retainer for electrically fired getter
JP3856086B2 (en) Magnetic resonance imaging system
JPS64805B2 (en)
JPH10116725A (en) Superconducting magnet device
JPH1145807A (en) Superconducting magnet device
JPH11341709A (en) Superconductor power storage device
JPH08264354A (en) Superconducting electromagnetic shielding air-core reactor
JP7200539B2 (en) superconducting magnet
JPH0799111A (en) Current lead using oxide superconductor
JP3068898B2 (en) Current lead
JP6517112B2 (en) Superconducting lead structure
JP3665264B2 (en) Electroacoustic transducer using superconducting coil