JPH0799111A - Current lead using oxide superconductor - Google Patents

Current lead using oxide superconductor

Info

Publication number
JPH0799111A
JPH0799111A JP5220871A JP22087193A JPH0799111A JP H0799111 A JPH0799111 A JP H0799111A JP 5220871 A JP5220871 A JP 5220871A JP 22087193 A JP22087193 A JP 22087193A JP H0799111 A JPH0799111 A JP H0799111A
Authority
JP
Japan
Prior art keywords
oxide superconductor
low temperature
lead
fitting
current lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5220871A
Other languages
Japanese (ja)
Other versions
JP3125532B2 (en
Inventor
Kiyoshi Takita
清 滝田
Takaaki Bono
敬昭 坊野
Kazuo Ueda
和雄 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05220871A priority Critical patent/JP3125532B2/en
Publication of JPH0799111A publication Critical patent/JPH0799111A/en
Application granted granted Critical
Publication of JP3125532B2 publication Critical patent/JP3125532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent the mechanical and thermal damage of a bar-shaped oxide superconductor by improving the structure of a lead on low temperature side. CONSTITUTION:In a current lead, which consists of the series-connected body composed of the lead 2 on the high temperature side consisting of a well conductive metal and the lead 15 on the low temperature side consisting of an oxide superconductor and is cooled with refrigerant gas GHe at low temperature, the lead 15 on low temperature side consists of the series-connected body composed of the bar-shaped oxide superconductor 18 conductively coupled between a middle coupling metal fitting 6 and a lower coupling metal fitting 20 and the flexible conductor 21 conductively coupled between a low coupling metal fitting and a low-temperature terminal metal fitting 19, and it is accommodated in the tubular container 17 for coupling the middle coupling metal fitting and the low-temperature terminal metal fitting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空断熱容器に収納
された超電導コイルに外部電源からの直流励磁電流を供
給する電流リード、ことに低温側リードに酸化物超電導
体を用いた電流リードの機械的保護構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for supplying a DC exciting current from an external power source to a superconducting coil housed in a vacuum insulation container, and more particularly to a current lead using an oxide superconductor for a low temperature side lead. Regarding mechanical protection structure.

【0002】[0002]

【従来の技術】超電導磁石装置の超電導コイルは液体ヘ
リウムなどの極低温冷媒により冷却されて超電導状態を
保持するので、液体窒素を用いた輻射シールドや多層断
熱層を持った真空断熱容器に液体ヘリウムに浸漬した状
態で収納される。また、電流リードは液体ヘリウムが気
化した低温のヘリウムガスにより冷却され、常温側から
の侵入熱及び電流リードで発生するジュール熱が極低温
部に侵入するのを阻止するよう構成される。従来の電流
リードには導体として銅などの電気良導体を用いていた
が、銅は良導電体であると同時に良熱伝導体でもあるた
め極低温部への侵入熱が増し、高価な液体ヘリウムの気
化損失が大きくなる。そこで、電流リードの低温側に高
温超電導体である酸化物超電導体を用い、ジュール熱を
零にすると同時にその低熱伝導性を利用して極低温部へ
の侵入熱を大幅に低減した電流リードが知られている。
2. Description of the Related Art A superconducting coil of a superconducting magnet device is kept in a superconducting state by being cooled by a cryogenic refrigerant such as liquid helium. It is stored as it is dipped in. Further, the current lead is cooled by the low temperature helium gas in which liquid helium is vaporized, and is configured so as to prevent the intrusion heat from the room temperature side and the Joule heat generated in the current lead from invading the cryogenic portion. In the conventional current lead, a good electric conductor such as copper was used as a conductor, but since copper is a good conductor and a good heat conductor at the same time, heat entering the cryogenic part increases, and expensive liquid helium Vaporization loss increases. Therefore, an oxide superconductor, which is a high-temperature superconductor, is used on the low temperature side of the current lead to reduce the Joule heat to zero, and at the same time, to utilize the low thermal conductivity of the current lead to significantly reduce the heat entering the cryogenic part. Are known.

【0003】図9は超電導磁石装置の電流リードの従来
構造を簡略化して示す側面図、図10は図9の要部の内
部構造を示す拡大断面図である。図において、超電導コ
イル10は図示しない真空断熱容器内に液体ヘリウムH
e に浸漬した状態で収納され、リード線10Aにより電
流リード1の低温端子9Aに導電接続される。電流リー
ド1は上部に常温端子2Aがある高温側リード2と低温
端子9Aがある低温側リード5の直列接続体として構成
され、低温のヘリウムガスGHe がリード内を通って常
温端子2A側に抜けることにより冷却される。高温側リ
ード2は図10にその一部を示すように、筒状容器4の
内部に下端部が中間接続金具6に導電結合された導体3
として、銅又は銅合金などの良導電性金属線材の束を収
納し、その隙間に形成された冷却通路を低温のヘリウム
ガスGHe が流れることにより発生するジュール熱の排
熱が行われる。
FIG. 9 is a side view schematically showing a conventional structure of a current lead of a superconducting magnet device, and FIG. 10 is an enlarged sectional view showing an internal structure of a main part of FIG. In the figure, the superconducting coil 10 is a liquid helium H
It is housed in a state of being immersed in e and electrically connected to the low temperature terminal 9A of the current lead 1 by the lead wire 10A. The current lead 1 is configured as a series connection body of a high temperature side lead 2 having a room temperature terminal 2A on the upper side and a low temperature side lead 5 having a low temperature terminal 9A, and low temperature helium gas GHe passes through the lead and escapes to the room temperature terminal 2A side. To be cooled. As shown in a part of FIG. 10, the high temperature side lead 2 has a conductor 3 whose lower end is conductively coupled to the intermediate connection fitting 6 inside the cylindrical container 4.
As a result, Joule heat generated by the low-temperature helium gas GHe flowing through the cooling passage formed in the gap is accommodated.

【0004】また、低温側リード5は、低熱伝導性金属
又は絶縁材からなる筒状容器7の内部に、例えばイット
リウム系、ビスマス系などからなる棒状の酸化物超電導
体8を、その上端部を中間接続金具6に導電結合し、下
端部を低温端子金具9に導電結合した状態で収納し、筒
状容器7との間に低温のヘリウムガスGHe による冷却
通路を形成し、酸化物超電導体8の温度を液体窒素温度
(約77K)以下に冷却することにより、酸化物超電導
体8は超電導状態となってジュール熱が零となり、かつ
低温端子9A側への侵入熱が少なく液体ヘリウムHe の
消費量が少ない超電導磁石装置の電流リード1が得られ
る。
The low temperature side lead 5 has a rod-shaped oxide superconductor 8 made of, for example, yttrium-based or bismuth-based in a cylindrical container 7 made of a low thermal conductive metal or an insulating material, and an upper end portion thereof. It is accommodated in a state in which it is conductively coupled to the intermediate connection fitting 6 and the lower end thereof is conductively coupled to the low-temperature terminal fitting 9, and a cooling passage for the low-temperature helium gas GHe is formed between the cylindrical container 7 and the oxide superconductor 8 By cooling the temperature of the liquid nitrogen to the liquid nitrogen temperature (about 77 K) or less, the oxide superconductor 8 becomes a superconducting state, the Joule heat becomes zero, and the heat entering into the low temperature terminal 9A is small and the consumption of liquid helium He is small. The current lead 1 of the superconducting magnet device having a small amount can be obtained.

【0005】さらに、低温側リード5の組立作業は、中
間接続金具6の凹所に棒状の酸化物超電導体8の端部を
挿入した状態で半田などによる導電結合を行い、次いで
酸化物超電導体8の他方端に低温端子金具9の凹所をは
め込んで半田などによる導電結合を行い、しかる後筒状
容器7を低温端子金具9側から挿入してその両端を中間
接続金具6及び低温端子金具9の外周面に固定する手順
で行われ、酸化物超電導体8の両端を一対の金具を介し
て筒状容器7に固定することにより、外力に耐える剛性
の高い低温側リード5を持った電流リード1が形成され
る。
Further, in the assembling work of the low temperature side lead 5, the rod-shaped oxide superconductor 8 is inserted into the recess of the intermediate connecting metal fitting 6 and the conductive coupling is performed by soldering, and then the oxide superconductor. 8 is fitted into the recess of the low temperature terminal metal fitting 9 for conductive coupling by soldering, and then the cylindrical container 7 is inserted from the low temperature terminal metal fitting 9 side and both ends thereof are connected to the intermediate connection metal fitting 6 and the low temperature terminal metal fitting. 9 is carried out in the procedure of fixing to the outer peripheral surface of the oxide superconductor 8, and by fixing both ends of the oxide superconductor 8 to the cylindrical container 7 through a pair of metal fittings, a current having a high rigidity low temperature side lead 5 that can withstand an external force. The lead 1 is formed.

【0006】図11は複数本の酸化物超電導体が使用さ
れた電流リードの要部断面図であり、図10と同じ部材
については共通の符号を、同じ機能の部材については1
0の桁に5を追加した符号をそれぞれ付けて重複する説
明を省く。この図において、中間接続金具56と低温端
子金具59にはそれぞれ対向する側に突出部61,91
が設けられており、これにボルトで取付けられた接続片
62,92を介して棒状の酸化物超電導体58が取付け
られている。このような構成を採用することによって、
酸化物超電導体58の中間接続金具56、低温端子金具
59への取付けは単に接続片62,92を突出部61,
91にボルトで取付けるだけの簡単な作業になる。
FIG. 11 is a cross-sectional view of a main part of a current lead using a plurality of oxide superconductors. The same members as those in FIG.
The duplicated description will be omitted by adding a code obtained by adding 5 to the digit of 0. In this figure, the intermediate connecting fitting 56 and the low temperature terminal fitting 59 are provided with protrusions 61 and 91 on the opposite sides, respectively.
Is provided, and the rod-shaped oxide superconductor 58 is attached to this via connecting pieces 62 and 92 attached by bolts. By adopting such a configuration,
To attach the oxide superconductor 58 to the intermediate connecting fitting 56 and the low temperature terminal fitting 59, simply connect the connecting pieces 62 and 92 to the projecting portion 61,
It's a simple task, just attach it to 91 with bolts.

【0007】図12は図11のD−D断面図であり、筒
状容器7の図示は省略してあり、中間接続金具56、突
出部61及び接続片62は矢印の方向から見た矢視図で
もある。この図において、突出部61は正方形の断面を
していてそれぞれの片に接続片62が取付けられ、それ
ぞれの接続片62に酸化物超電導体58が取付けられて
おり、結局酸化物超電導体58は4本の棒状の酸化物超
電導体からなっている。1本の酸化物超電導体58の電
流容量が図10の酸化物超電導体8と同じであるとすれ
ば、この低温側リード55は図10の低温側リード5の
4倍の電流容量を持つことになる。酸化物超電導体58
と接続片62とは半田付けで導電結合される。その際、
結合部の抵抗を小さくするために、酸化物超電導体58
の半田付けされる部分に銀を蒸着するか銀箔を張り付け
るかなどの構成が採用される。
FIG. 12 is a sectional view taken along the line D--D in FIG. 11, in which the tubular container 7 is not shown, and the intermediate connecting fitting 56, the protruding portion 61 and the connecting piece 62 are viewed in the direction of the arrow. It is also a figure. In this figure, the projecting portion 61 has a square cross section, a connecting piece 62 is attached to each piece, and an oxide superconductor 58 is attached to each connecting piece 62. It consists of four rod-shaped oxide superconductors. Assuming that the current capacity of one oxide superconductor 58 is the same as that of the oxide superconductor 8 in FIG. 10, the low temperature side lead 55 has a current capacity four times that of the low temperature side lead 5 in FIG. become. Oxide superconductor 58
And the connecting piece 62 are conductively coupled by soldering. that time,
In order to reduce the resistance of the joint, the oxide superconductor 58
A structure is adopted in which silver is vapor-deposited or a silver foil is attached to a portion to be soldered.

【0008】[0008]

【発明が解決しようとする課題】上述のように、棒状の
酸化物超電導体8,58の両端を筒状容器に強固に固定
した従来の低温側リード5,55においては、酸化物超
電導体8,58に機械的歪みが加わった状態で組立加工
を終了することが多い。ところが、酸化物超電導体8,
58は焼成材であるため機械的にもろく、かつ高い寸法
精度を期待できないという性質が有るため、低温側リー
ド5,55の組立加工時に酸化物超電導体8,58に加
わる機械的応力や歪みによって微小なクラックが発生す
ることがあり、さらに組立終了後電流リード1を冷却し
た際に構成材料の熱収縮差により発生する熱応力が、微
小クラックに集中して機械的弱点部を形成するため、と
きには酸化物超電導体8,58が破損するという問題が
発生する。また、酸化物超電導体の破損が電流リードの
組立作業終了後に発見された場合には、低温側リード
5,58又は電流リード1全体を分解し、新たな酸化物
超電導体に交換する大掛かりな分解修理が必要であり、
多大な経済的損失を招くばかりか、この間電流リードを
使用できないという不都合が発生する。
As described above, in the conventional low temperature side leads 5 and 55 in which both ends of the rod-shaped oxide superconductors 8 and 58 are firmly fixed to the cylindrical container, the oxide superconductor 8 is used. , 58 is often finished with the mechanical strain applied thereto. However, the oxide superconductor 8,
Since 58 is a fired material, it has the property of being mechanically brittle, and high dimensional accuracy cannot be expected. Therefore, 58 due to mechanical stress or strain applied to the oxide superconductors 8, 58 during assembly of the low temperature side leads 5, 55. Since minute cracks may occur, and thermal stress generated by the difference in thermal contraction of the constituent materials when the current lead 1 is cooled after completion of assembly concentrates on the minute cracks and forms mechanical weak points, Occasionally, there arises a problem that the oxide superconductors 8, 58 are damaged. If damage to the oxide superconductor is found after the current lead assembly work is completed, the low temperature side leads 5, 58 or the current lead 1 as a whole is disassembled and replaced with a new oxide superconductor. Needs repair,
Not only does this lead to a large economic loss, but the current lead cannot be used during this time.

【0009】一方、超電導コイル10の両端子に接続さ
れる一対の電流リードが互いに平行して配置されるよう
な場合、励磁電流のオンオフに伴う電流磁界の変化によ
って大きな電磁機械力が酸化物超電導体8,58に作用
する。このような場合、両端が固定された酸化物超電導
体8,58に過大な曲げ応力が加わり、機械的に脆い酸
化物超電導体が破損するという問題が発生する。
On the other hand, when a pair of current leads connected to both terminals of the superconducting coil 10 are arranged in parallel with each other, a large electromechanical force is generated due to the change of the current magnetic field accompanying the turning on and off of the exciting current. It acts on the body 8,58. In such a case, excessive bending stress is applied to the oxide superconductors 8 and 58 whose both ends are fixed, which causes a problem that the mechanically fragile oxide superconductor is damaged.

【0010】この発明の目的は、低温側リードの構造改
善により、酸化物超電導体の機械的安定性、熱的安定
性、又は耐電磁機械力性を強化することにある。
An object of the present invention is to enhance the mechanical stability, thermal stability, or resistance to electromagnetic mechanical force of an oxide superconductor by improving the structure of the low temperature side lead.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、真空断熱容器に収納されて極低
温に保持された超電導コイルに外部電源からの励磁電流
を通流する電流リードが、良導電性金属からなる高温側
リードと、酸化物超電導体からなる低温側リードとの直
列接続体からなり、低温の冷媒ガスで冷却されるものに
おいて、前記低温側リードが、中間接続金具及び下部接
続金具間に導電結合された棒状の酸化物超電導体と、前
記下部接続金具と低温端子金具との間に導電結合された
可撓性導体との直列接続体からなり、前記中間接続金具
と低温端子金具とを連結する筒状容器内に収納してなる
ものとする。
In order to solve the above-mentioned problems, according to the present invention, a current for passing an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and kept at a cryogenic temperature. In the case where the lead comprises a series connection body of a high temperature side lead made of a good conductive metal and a low temperature side lead made of an oxide superconductor and is cooled by a low temperature refrigerant gas, the low temperature side lead is an intermediate connection. The rod-shaped oxide superconductor conductively coupled between the metal fitting and the lower connection metal fitting, and the flexible conductor conductively coupled between the lower metal fitting and the low temperature terminal metal fitting in series, and the intermediate connection. It shall be housed in a cylindrical container that connects the metal fitting and the low temperature terminal metal fitting.

【0012】また、可撓性導体が、良導電性金属編組材
の束又は良導電性金属箔材の束、金属系超電導線材の
束、あるいは酸化物超電導線材又は酸化物超電導リボン
材の束のいずれかで構成されてなるものとする。更に、
下部接続金具が筒状容器の内壁面との間に隙間を保持す
るとともに、棒状の酸化物超電導体の周囲に振れ止め材
を配してなるものとする。
The flexible conductor may be a bundle of good conductive metal braids, a bundle of good conductive metal foils, a bundle of metallic superconducting wires, or a bundle of oxide superconducting wires or oxide superconducting ribbons. It shall consist of either. Furthermore,
The lower connecting fitting holds a gap between the lower connecting fitting and the inner wall surface of the tubular container, and a steady rest is arranged around the rod-shaped oxide superconductor.

【0013】一方、真空断熱容器に収納されて極低温に
保持された超電導コイルに外部電源からの励磁電流を通
流する電流リードが、良導電性金属からなる高温側リー
ドと、酸化物超電導体からなる低温側リードとの直列接
続体からなり、低温の冷媒ガスで冷却されるものにおい
て、前記低温側リードが、中間接続金具及び低温端子金
具間に導電結合された複数の酸化物超電導体と、この複
数の酸化物超電導体に係合する凹溝を外周側に有する中
間支持体とを備え、前記中間接続金具と低温端子金具と
を連結する筒状容器内に収納されてなるものとする。
On the other hand, the current leads for passing the exciting current from the external power source to the superconducting coil housed in the vacuum heat insulating container and kept at the cryogenic temperature are the high temperature side lead made of a good conductive metal and the oxide superconductor. Consisting of a series connection body with a low temperature side lead, which is cooled by a low temperature refrigerant gas, wherein the low temperature side lead and a plurality of oxide superconductors conductively coupled between the intermediate connection metal fitting and the low temperature terminal metal fitting. And an intermediate support having a groove on the outer peripheral side that engages with the plurality of oxide superconductors, and is housed in a cylindrical container that connects the intermediate connection fitting and the low temperature terminal fitting. .

【0014】また、中間支持体が低熱伝導体からなり、
中間接続金具と下部接続金具との中間に位置するよう中
間接続金具に連結支持されてなるものとする。更に、中
間支持体と酸化物超電導体とが、接着剤層により凹溝内
で相互に結合されてなるものとする。更にまた、中間支
持体の複数の凹溝とこれに係合する酸化物超電導体と
が、この部分を外側から緊縛する緊縛線材により相互に
一体化してなるものとする。
The intermediate support is made of a low heat conductor,
It shall be connected and supported by the intermediate connection fitting so as to be positioned between the intermediate connection fitting and the lower connection fitting. Further, the intermediate support and the oxide superconductor are bonded to each other in the groove by the adhesive layer. Furthermore, the plurality of recessed grooves of the intermediate support and the oxide superconductor engaged therewith are integrated with each other by a binding wire that binds this portion from the outside.

【0015】また、真空断熱容器に収納されて極低温に
保持された超電導コイルに外部電源からの励磁電流を通
流する電流リードが、良導電性金属からなる高温側リー
ドと、複数本の棒状の酸化物超電導体からなる低温側リ
ードと、高温側リードと低温側リードとを導電結合する
中間接続金具と、超電導コイルに接続される低温端子が
設けられ低温側リードに導電結合された低温端子金具と
からなり、それぞれの酸化物超電導体が、中間接続金具
と低温端子金具とにそれぞれ接続片を介して接続されて
なるものにおいて、中間接続金具に取付けられる接続片
と低温端子金具に取付けられる接続片との間に橋渡しさ
れた連結材が設けられてなるものとする。
Further, the current lead for passing the exciting current from the external power source to the superconducting coil housed in the vacuum heat insulation container and kept at the cryogenic temperature is composed of a high temperature side lead made of a good conductive metal and a plurality of rods. Low-temperature lead made of oxide superconductor, intermediate connecting fitting for conductively coupling the high-temperature lead and the low-temperature lead, and a low-temperature terminal connected to the superconducting coil. A metal fitting, in which each oxide superconductor is connected to an intermediate connecting fitting and a low temperature terminal fitting via a connecting piece, respectively, which is attached to the intermediate connecting fitting and the low temperature terminal fitting A connecting material bridging between the connecting piece and the connecting piece shall be provided.

【0016】また、連結材が、酸化物超電導体と同軸の
筒状の連結筒、又は酸化物超電導体の周りに配置された
所定の本数の棒状の連結棒であるものとする。
Further, the connecting material is assumed to be a cylindrical connecting cylinder coaxial with the oxide superconductor, or a predetermined number of rod-like connecting rods arranged around the oxide superconductor.

【0017】[0017]

【作用】この発明の構成において、低温側リードを、中
間接続金具及び下部接続金具間に導電結合された棒状の
酸化物超電導体と、下部接続金具と低温端子金具との間
に導電結合された可撓性導体との直列接続体として、中
間接続金具と低温端子金具とを連結する筒状容器内に収
納するよう構成したことにより、棒状の酸化物超電導体
の下端部が結合した下部接続金具の拘束を柔軟な可撓性
導体によって開放する機能が得られる。従って、低温側
リードの組立作業時に棒状の酸化物超電導体に作用する
機械的ストレス、及び部材の熱収縮差により棒状の酸化
物超電導体に加わる熱応力を緩和し、その損傷を防止す
ることが可能となり、機械的、熱的弱点部が排除されて
信頼性の高い電流リードが得られる。
In the structure of the present invention, the low temperature side lead is conductively coupled between the lower connection metal fitting and the low temperature terminal metal fitting, and the rod-shaped oxide superconductor conductively bonded between the intermediate connection metal fitting and the lower connection metal fitting. As a series connection body with a flexible conductor, a lower connection metal fitting in which the lower end portion of a rod-shaped oxide superconductor is joined by being configured to be housed in a cylindrical container connecting the intermediate connection metal fitting and the low temperature terminal metal fitting. The function of releasing the restraint of (1) by the flexible conductor is obtained. Therefore, the mechanical stress acting on the rod-shaped oxide superconductor during the assembly work of the low temperature side lead, and the thermal stress applied to the rod-shaped oxide superconductor due to the difference in thermal contraction of the members can be relaxed and its damage can be prevented. This makes it possible to eliminate mechanical and thermal weak points and obtain a reliable current lead.

【0018】また、棒状の酸化物超電導体の低温部側に
直列に良導電性金属製の可撓性導体を設けるよう構成す
れば、良好な可撓性が得られるとともに、常温部側から
の侵入熱を棒状の酸化物超電導体により遮断し、可撓性
導体を設けたことにより増加するジュール熱を最小限に
抑制する機能が得られる。一方、可撓性導体を金属系超
電導線材の束で構成すれば、低温端子を液体ヘリウムで
直接冷却することにより可撓性導体は超電導状態となる
ので、可撓性導体におけるジュール熱を排除し、液体ヘ
リウムの消費量を一層低減する機能が得られる。また、
可撓性導体を酸化物超電導線材又は酸化物超電導リボン
材の束で構成すれば、低温側リードが液体窒素温度で超
電導状態を示して液体ヘリウムの消費量を大幅に低減
し、且つ低温側リードの機械的、熱的安定性を向上する
機能が得られる。
Further, if a flexible conductor made of a good conductive metal is provided in series on the low temperature side of the rod-shaped oxide superconductor, good flexibility can be obtained and at the same time from the room temperature side. The intruding heat is cut off by the rod-shaped oxide superconductor, and the function of suppressing the increased Joule heat by providing the flexible conductor is obtained. On the other hand, if the flexible conductor is composed of a bundle of metal-based superconducting wires, the flexible conductor becomes superconducting by directly cooling the low temperature terminal with liquid helium, so Joule heat in the flexible conductor is eliminated. , The function of further reducing the consumption of liquid helium is obtained. Also,
If the flexible conductor is composed of a bundle of oxide superconducting wire material or oxide superconducting ribbon material, the low temperature side lead shows the superconducting state at the liquid nitrogen temperature and the consumption of liquid helium is significantly reduced, and the low temperature side lead is The function of improving the mechanical and thermal stability of is obtained.

【0019】さらに、下部接続金具と筒状容器の内壁面
との間に隙間を設けるとともに、棒状の酸化物超電導体
の周囲に振れ止め材を配するよう構成すれば、棒状の酸
化物超電導体の下端部の拘束を一層効果的に開放して棒
状の酸化物超電導体の損傷を防止できるとともに、電流
リードの振動や輸送中横倒しすることにより棒状の酸化
物超電導体に加わる機械的ストレスを振れ止め材が緩和
するので、電流リードの信頼性を一層向上する機能が得
られる。
Further, if a gap is provided between the lower connecting fitting and the inner wall surface of the cylindrical container and a steady rest is arranged around the rod-shaped oxide superconductor, the rod-shaped oxide superconductor can be formed. The restraint at the lower end of the rod-shaped oxide superconductor can be released more effectively, and damage to the rod-shaped oxide superconductor can be prevented, and the mechanical stress applied to the rod-shaped oxide superconductor can be shaken by vibrating the current lead or laying it down during transportation. Since the stopper is relaxed, the function of further improving the reliability of the current lead can be obtained.

【0020】一方、互いに平行する電流リード間の電流
磁界によって酸化物超電導体が電磁機械力を受けると予
想される場合、低温側リードが、中間接続金具及び低温
端子金具間に導電結合された複数の酸化物超電導体と、
この複数の酸化物超電導体に係合する凹溝を外周側に有
する中間支持体と、中間接続金具と低温端子金具とを連
結する筒状容器とを備えるよう構成すれば、酸化物超電
導体を複数分割してその導体断面積を縮小することによ
り、酸化物超電導体の焼成時に生ずる寸法誤差が減るの
で、電流リードの組み立て時に酸化物超電導体の両端を
拘束することによって酸化物超電導体に加わる歪みを低
減してその損傷を防止する機能が得られる。
On the other hand, when it is expected that the oxide superconductor is subjected to an electromagnetic mechanical force due to the current magnetic field between the current leads parallel to each other, the low temperature side leads are electrically connected to each other between the intermediate connection fitting and the low temperature terminal fitting. Oxide superconductor of
If an intermediate support having a groove on the outer peripheral side that engages with the plurality of oxide superconductors and a tubular container that connects the intermediate connection fitting and the low-temperature terminal fitting are provided, the oxide superconductor can be provided. By dividing the conductor into multiple sections and reducing the conductor cross-sectional area, dimensional errors that occur during firing of the oxide superconductor are reduced. The function of reducing strain and preventing its damage is obtained.

【0021】また、中間支持体に低熱伝導体を用い、中
間接続金具と低温端子金具との中間に位置するよう中間
接続金具に連結支持するよう構成すれば、酸化物超電導
体を中間支持体に支承した状態で酸化物超電導体の両端
を金具に半田付けする作業が行えるため、作業中に酸化
物超電導体を損傷するトラブルを防止する機能が得られ
る。
If a low thermal conductor is used for the intermediate support and the intermediate support is connected and supported so as to be positioned between the intermediate connector and the low temperature terminal, the oxide superconductor can be used as the intermediate support. Since both ends of the oxide superconductor can be soldered to the metal fittings while being supported, a function of preventing a trouble of damaging the oxide superconductor during the work can be obtained.

【0022】さらに、中間支持体と酸化物超電導体を凹
溝内で接着剤層により相互に結合するか、あるいは外側
から緊縛する緊縛線材により中間支持体と酸化物超電導
体を相互に一体化するよう構成すれば、分割した酸化物
超電導体間に同じ方向に流れる電流によって酸化物超電
導体相互間に作用する電磁吸引力は中間支持体の径方向
の圧縮力として吸収され、並行した電流リード間に作用
する電磁反発力は中間支持体及び中間接続金具を介して
筒状容器に伝達吸収されて酸化物超電導体に作用する曲
げ応力を大幅に低減するので、電磁機械力による酸化物
超電導体の損傷を防止する機能が得られる。
Further, the intermediate support and the oxide superconductor are bonded to each other in the groove by an adhesive layer, or the intermediate support and the oxide superconductor are integrated with each other by a binding wire for binding from the outside. With this configuration, the electromagnetic attraction force acting between the oxide superconductors due to the current flowing in the same direction between the divided oxide superconductors is absorbed as the radial compressive force of the intermediate support, and the parallel current leads are The electromagnetic repulsive force that acts on the oxide superconductor is greatly reduced by being transmitted and absorbed by the cylindrical container through the intermediate support and the intermediate connecting metal and acting on the oxide superconductor. The function of preventing damage is obtained.

【0023】また、棒状の酸化物超電導体がその両端に
取付けられた接続片を介して中間接続金具と低温端子金
具とにそれぞれ取付けられる構成が採用された電流リー
ドにおいて、中間接続金具に取付ける接続片と低温端子
金具に取付ける接続片との間を橋渡しする連結材を設け
ることによって、電流リードに外力が加わったときに連
結材が力を負担して酸化物超電導体にかかる応力が低減
する機能が得られる。また、連結材は、酸化物超電導体
と同軸の筒状の連結筒、又は酸化物超電導体の周りに配
置された所定の本数の棒状の連結棒のいずれでもよい。
In addition, in a current lead having a structure in which rod-shaped oxide superconductors are respectively attached to the intermediate connecting fitting and the low temperature terminal fitting via connecting pieces attached to both ends thereof, a connection to be attached to the intermediate connecting fitting A function to reduce the stress applied to the oxide superconductor when the external force is applied to the current lead and the connecting material bears the force by providing the connecting material bridging between the connecting piece and the connection piece attached to the low temperature terminal fitting. Is obtained. Further, the connecting material may be either a tubular connecting tube coaxial with the oxide superconductor or a predetermined number of rod-like connecting rods arranged around the oxide superconductor.

【0024】[0024]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる酸化物超電導体を用
いた電流リードの要部を示す断面図であり、従来技術と
同じ構成部分には同一参照符号を付すことにより、重複
した説明を省略する。図において、高温側リード2に中
間接続金具6を介して連結された低温側リード15は、
上端部が中間接続金具6に、下端部が下部接続金具20
にそれぞれ導電結合された棒状の酸化物超電導体18
と、下部接続金具20及び低温端子金具19に上下端が
導電接続された可撓性導体21と、中間接続金具6及び
低温端子金具19とに上下端が連結されて酸化物超電導
体18及び可撓性導体21を収納する筒状容器17とで
構成される。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a cross-sectional view showing a main part of a current lead using an oxide superconductor according to an embodiment of the present invention. The same components as those of the prior art are designated by the same reference numerals, and the duplicated description will be omitted. To do. In the figure, the low temperature side lead 15 connected to the high temperature side lead 2 via the intermediate connection metal fitting 6 is
The upper end is the middle connecting fitting 6, and the lower end is the lower connecting fitting 20.
Rod-shaped oxide superconductor 18 conductively coupled to the
A flexible conductor 21 whose upper and lower ends are conductively connected to the lower connecting metal fitting 20 and the low temperature terminal metal fitting 19, and upper and lower ends are connected to the intermediate connecting metal fitting 6 and the low temperature terminal metal fitting 19 to form the oxide superconductor 18 and It is configured with a cylindrical container 17 that houses the flexible conductor 21.

【0025】また、可撓性導体21は、良導電性金属編
組材又は良導電性金属箔材の束、金属系超電導線材の
束、あるいは酸化物超電導線材又は酸化物超電導リボン
材の束のいずれかで構成される。さらに、下部接続金具
20と筒状容器17の内壁面との間には隙間20Gを設
けるとともに、酸化物超電導体18の周囲には例えば繊
維強化プラスチック材などからなる振れ止め材22を配
置し、低温端子金具19、振れ止め材22、中間接続金
具6をそれぞれ貫通して筒状容器内を高温側リード側に
向けて流れる低温のヘリウムガスGHe により冷却さ
れ、酸化物超電導体18が超電導状態となり、そのジュ
ール熱が排除されるとともに、高温側リードからの侵入
熱を低減するよう構成される。
Further, the flexible conductor 21 is either a bundle of good conductive metal braided material or a good conductive metal foil material, a bundle of metal-based superconducting wire material, or a bundle of oxide superconducting wire material or oxide superconducting ribbon material. It is composed of Further, a gap 20G is provided between the lower connecting fitting 20 and the inner wall surface of the cylindrical container 17, and a steady rest 22 made of, for example, a fiber reinforced plastic material is arranged around the oxide superconductor 18. The low temperature helium gas GHe flowing through the low temperature terminal fitting 19, the steady rest 22 and the intermediate connecting fitting 6 in the cylindrical container toward the high temperature side lead side cools the oxide superconductor 18 into a superconducting state. The Joule heat is eliminated and the heat entering from the high temperature side lead is reduced.

【0026】このように構成された電流リードにおいて
は、酸化物超電導体18の下端部が結合した下部接続金
具20の機械的拘束が、柔軟な可撓性導体21、及び下
部接続金具20の周囲の隙間20Gによって開放される
ので、酸化物超電導体18の両端が固定されることによ
って生ずる機械的ストレス、及び低温側リード15の各
部材の熱収縮差によって酸化物超電導体18に作用する
熱応力が排除され、且つ振れ止め材22が酸化物超電導
体18を緩やかに支持して電流リードの振動や横置きし
た際作用する曲げ荷重を緩和するので、低温側リード1
5の組立加工終了後に酸化物超電導体18に作用すると
予想される機械的ストレスの殆ど全てを排除することが
可能になる。従って、低温側リードの組立加工に際して
酸化物超電導体18に過度の機械的ストレスが加わらな
いよう、例えば酸化物超電導体18及び可撓性導体21
を各金具の凹所に挿入した状態で、各金具を相互に連結
する組立治具を取り付け、この状態で各導電接続部の半
田付け作業を行うなどの対策により、機械的弱点部がな
く信頼性に優れた電流リードを容易に得ることができ
る。
In the thus constructed current lead, the mechanical restraint of the lower connecting fitting 20 to which the lower end portion of the oxide superconductor 18 is coupled is such that the flexible flexible conductor 21 and the surroundings of the lower connecting fitting 20. 20 G of the oxide superconductor, the mechanical stress caused by fixing both ends of the oxide superconductor 18 and the thermal stress acting on the oxide superconductor 18 due to the difference in thermal contraction of each member of the low temperature side lead 15. Is eliminated, and the steady rest 22 gently supports the oxide superconductor 18 to alleviate the vibration of the current lead and the bending load that acts when placed horizontally, so that the low temperature side lead 1
It becomes possible to eliminate almost all the mechanical stress that is expected to act on the oxide superconductor 18 after the assembling process of No. 5 is completed. Therefore, in order to prevent excessive mechanical stress from being applied to the oxide superconductor 18 when assembling the low temperature side lead, for example, the oxide superconductor 18 and the flexible conductor 21.
Insert the assembly jig that connects the metal fittings with each other in the recess of each metal fitting, and solder the conductive connection parts in this condition. It is possible to easily obtain an excellent current lead.

【0027】また、可撓性導体21を銅又は銅合金など
の良導電性金属編組材の束、又は良導電性金属箔の束で
構成すれば、良好な可撓性が得られるとともに、常温部
側からの侵入熱を棒状の酸化物超電導体により遮断し、
可撓性導体を設けたことにより増加するジュール熱を最
小限に抑制する機能が得られる。更に、可撓性導体を金
属系超電導線材の束で構成すれば、低温端子を液体ヘリ
ウムで直接冷却するなどの対策により可撓性導体が超電
導状態となるので、可撓性導体におけるジュール熱を排
除し、液体ヘリウムの消費量を一層低減する機能が得ら
れる。更にまた、可撓性導体を酸化物超電導線材又は酸
化物超電導リボン材の束で構成すれば、超電導コイルの
冷却に液体窒素を用いた場合にも可撓性導体を超電導状
態に保持し、電流リードを低損失化する機能が得られる
ので、よりランニングコストの低い電流リードを得るこ
とができる。
Further, if the flexible conductor 21 is composed of a bundle of braided material of good conductive metal such as copper or copper alloy or a bundle of metal foil of good conductive property, good flexibility can be obtained and at room temperature. Insect heat from the side is cut off by a rod-shaped oxide superconductor,
By providing the flexible conductor, the function of suppressing the increased Joule heat can be obtained. Furthermore, if the flexible conductor is composed of a bundle of metal-based superconducting wires, the flexible conductor will be in a superconducting state by taking measures such as directly cooling the low temperature terminal with liquid helium. The function of eliminating and further reducing the consumption of liquid helium is obtained. Furthermore, if the flexible conductor is composed of a bundle of oxide superconducting wire material or oxide superconducting ribbon material, even when liquid nitrogen is used to cool the superconducting coil, the flexible conductor is kept in a superconducting state, and Since the function of reducing the loss of the leads can be obtained, it is possible to obtain the current leads with a lower running cost.

【0028】図2はこの発明の他の実施例になる酸化物
超電導体を用いた電流リードの要部を示す断面図、図3
は図2のA−A位置における断面図である。図におい
て、高温側リード2に中間接続金具36を介して連結し
た低温側リード35は、上端部が中間接続金具36に、
下端部が低温端子金具39にそれぞれ導電結合された複
数分割された細い棒状の酸化物超電導体38と、この酸
化物超電導体38に沿ってU字状に形成された凹溝33
を外周側に有する中間支持体32と、中間接続金具36
及び低温端子金具39に両端が連結された筒状容器37
とを備え、繊維強化プラスチック材などで構成される中
間支持体32はその棒状の連結部32Aが中間接続金具
36に例えばねじ結合され、中間接続金具36と低温端
子金具39との中間に位置するよう強固に支持されると
ともに、酸化物超電導体38と中間支持体32とを凹溝
33内においてエポキシ樹脂などの接着剤層34により
相互に固着するよう構成した点が前述の実施例と異なっ
ている。
FIG. 2 is a sectional view showing the main part of a current lead using an oxide superconductor according to another embodiment of the present invention.
FIG. 3 is a sectional view taken along the line AA in FIG. In the drawing, the low temperature side lead 35 connected to the high temperature side lead 2 via the intermediate connecting metal fitting 36 has the upper end portion to the intermediate connecting metal fitting 36,
A plurality of divided thin rod-shaped oxide superconductors 38 each having a lower end electrically conductively coupled to the low temperature terminal fitting 39, and a U-shaped recess 33 formed along the oxide superconductors 38.
Intermediate support 32 having an outer peripheral side and an intermediate connection fitting 36
And a cylindrical container 37 whose both ends are connected to the low temperature terminal fitting 39.
The rod-shaped connecting portion 32A of the intermediate support 32, which is provided with a fiber reinforced plastic material, is screwed to the intermediate connection fitting 36, for example, and is located between the intermediate connection fitting 36 and the low temperature terminal fitting 39. Unlike the above-mentioned embodiment, the oxide superconductor 38 and the intermediate support 32 are firmly supported by each other and are fixed to each other in the groove 33 by an adhesive layer 34 such as an epoxy resin. There is.

【0029】また、低温側リードの組み立て作業は、先
ず中間支持体32の連結部32Aを中間接続金具36に
形成されたねじ穴にねじ込んで所定位置に固定し、酸化
物超電導体38を凹溝33に挿入、支持した状態でその
両端部を中間接続金具36及び低温端子金具39とに半
田付けする作業を行い、さらに酸化物超電導体38と中
間支持体32を凹溝33内で接着処理した後、筒状容器
37を被せてその両端を金具36,39に連結する手順
で行われる。
In the assembly work of the low temperature side lead, first, the connecting portion 32A of the intermediate support 32 is screwed into the screw hole formed in the intermediate connecting fitting 36 and fixed at a predetermined position, and the oxide superconductor 38 is recessed. In the state of being inserted into and supported by 33, both ends thereof are soldered to the intermediate connection fitting 36 and the low temperature terminal fitting 39, and further the oxide superconductor 38 and the intermediate support 32 are bonded in the groove 33. After that, the procedure is performed by covering the tubular container 37 and connecting both ends thereof to the metal fittings 36 and 39.

【0030】このように構成された電流リードにおいて
は、凹溝33を低温のヘリウムガスGHe の通路に利用
して酸化物超電導体38が冷却されて超電導状態を維持
し、かつ低熱伝導性の酸化物超電導体38及び中間支持
体32によって高温側リード2側からの侵入熱が遮断さ
れるので、前述の実施例と同様に液体ヘリウムの気化損
失が少ない電流リードが得られる。また、酸化物超電導
体38が複数分割されて製造時における寸法誤差が減
り、両端を拘束することによって酸化物超電導体38に
生ずる歪みを低減でき、かつ酸化物超電導体38を中間
支持体32で支承した状態で酸化物超電導体38の両端
を金具36,39に半田付けする作業を行えるため、作
業中に酸化物超電導体38を損傷するトラブルを防止で
きるとともに、中間支持体32と酸化物超電導体38と
を複数の凹溝33内で接着処理することによって酸化物
超電導体38の耐電磁機械力性を強化できるので、組み
立て加工時に酸化物超電導体38を損傷することなく、
かつ並行する他の電流リードとの間に作用する電磁機械
力によって酸化物超電導体38が損傷することの無い、
機械的安定性に優れた電流リードを得ることができる。
In the current lead thus constructed, the recessed groove 33 is used as a passage for the low temperature helium gas GHe so that the oxide superconductor 38 is cooled to maintain the superconducting state and has low thermal conductivity. Since the intruding heat from the high temperature side lead 2 side is blocked by the object superconductor 38 and the intermediate support 32, a current lead with a small vaporization loss of liquid helium can be obtained as in the above-described embodiment. Further, the oxide superconductor 38 is divided into a plurality of pieces to reduce a dimensional error during manufacturing, and the strain generated in the oxide superconductor 38 by restraining both ends can be reduced, and the oxide superconductor 38 can be supported by the intermediate support 32. Since both ends of the oxide superconductor 38 can be soldered to the metal fittings 36, 39 while being supported, troubles that damage the oxide superconductor 38 during the work can be prevented, and the intermediate support 32 and the oxide superconductor can be prevented. Since the electromagnetic mechanical resistance of the oxide superconductor 38 can be enhanced by bonding the body 38 to the inside of the plurality of recessed grooves 33, the oxide superconductor 38 is not damaged during assembly processing.
In addition, the oxide superconductor 38 is not damaged by the electromagnetic mechanical force acting between another parallel current lead,
A current lead having excellent mechanical stability can be obtained.

【0031】図4はこの発明の異なる他の実施例になる
酸化物超電導体を用いた電流リードの要部を示す断面
図、図5は図4のB−B位置における断面図であり、低
温側リード45は中間支持体42のU字状の凹溝43の
深さが、酸化物超電導体38の径と同等程度に浅く形成
され、この凹溝43に酸化物超電導体38を挿入した状
態でその外側を緊縛線材44で緊縛し、中間支持体42
と酸化物超電導体38を一体化するよう構成した点が前
述の各実施例と異なっており、前述の実施例におけると
同様に、組み立て加工時に酸化物超電導体を損傷するこ
となく、かつ並行する他の電流リードとの間に作用する
電磁機械力によって酸化物超電導体が損傷することの無
い、機械的安定性に優れた電流リードを得ることができ
る。
FIG. 4 is a sectional view showing a main part of a current lead using an oxide superconductor according to another embodiment of the present invention, and FIG. 5 is a sectional view taken along line BB in FIG. The side lead 45 is formed such that the depth of the U-shaped concave groove 43 of the intermediate support body 42 is as shallow as the diameter of the oxide superconductor 38, and the oxide superconductor 38 is inserted into the concave groove 43. Then, the outside is tightly bound with a tight binding wire 44, and the intermediate support 42
Is different from each of the above-described embodiments in that the oxide superconductor 38 and the oxide superconductor 38 are integrated. In the same manner as in the above-described embodiments, the oxide superconductor is not damaged during the assembly process and is parallel to each other. It is possible to obtain a current lead excellent in mechanical stability in which the oxide superconductor is not damaged by the electromagnetic mechanical force acting between the current lead and another current lead.

【0032】なお、接着剤層34と緊縛線材44とを併
用するよう構成されてよく、より機械的安定性に優れた
電流リードを得ることができる。図6はこの発明の別の
実施例を示す要部断面図であり、図11の酸化物超電導
体58の1本を取り出して図示したものであり、図11
と同じ部材については共通の符号を付けて詳しい説明を
省く。図6において、接続片62C及び92Cは中間接
続金具56や低温端子金具59への取付け部621,9
21を除いた支持部622,922は酸化物超電導体5
8の軸に対して軸対称の構造をしており、酸化物超電導
体58はこれら接続片62C,92Cに設けられた穴に
挿入されて半田付けされ、接続片62C,92Cの外周
にはリング部623,923が設けられていてこのリン
グ部623,923で連結棒51を支持、固定した構造
である。
It should be noted that the adhesive layer 34 and the binding wire 44 may be configured to be used together, so that a current lead having more excellent mechanical stability can be obtained. FIG. 6 is a cross-sectional view of an essential part showing another embodiment of the present invention, in which one oxide superconductor 58 of FIG. 11 is taken out and shown.
The same reference numerals are given to the same members as those described above and detailed description is omitted. In FIG. 6, connecting pieces 62C and 92C are attachment parts 621, 9 to the intermediate connecting fitting 56 and the low temperature terminal fitting 59.
The support parts 622 and 922 except 21 are oxide superconductors 5.
The oxide superconductor 58 has an axially symmetric structure with respect to the axis of 8, and the oxide superconductor 58 is inserted into the holes provided in the connection pieces 62C and 92C and soldered, and a ring is provided on the outer periphery of the connection pieces 62C and 92C. Portions 623 and 923 are provided, and the connecting rod 51 is supported and fixed by the ring portions 623 and 923.

【0033】接続片62Cと92Cとは類似の構造なの
で主に接続片62Cについて更に詳しく説明する。接続
片62Cは中間接続金具56にボルト締めで取付けられ
る取付け部621、酸化物超電導体58が挿入される穴
が設けられている支持部622及び支持部622の外周
に突出して設けられたリング部623からなり、リング
部623に連結棒51が取付けられている。
Since the connecting pieces 62C and 92C have a similar structure, the connecting piece 62C will be mainly described in more detail. The connecting piece 62C includes a mounting portion 621 that is bolted to the intermediate connecting metal fitting 56, a support portion 622 provided with a hole into which the oxide superconductor 58 is inserted, and a ring portion provided so as to project to the outer periphery of the support portion 622. 623, and the connecting rod 51 is attached to the ring portion 623.

【0034】図7は図6のC−C断面図であり、図11
と同様に4本の酸化物超電導体を図示してある。この図
において、接続片62Cの支持部622及びリング部6
23は酸化物超電導体58に同軸対称になっていて連結
棒51はリング部623の周方向に沿って4本が等配に
配置されている。リング部623には連結棒51が挿入
される穴を設けこの穴に連結棒51を挿入して接着して
固定する。
FIG. 7 is a sectional view taken along line CC of FIG.
Similarly, four oxide superconductors are shown. In this figure, the support portion 622 and the ring portion 6 of the connection piece 62C are shown.
23 is coaxially symmetric with respect to the oxide superconductor 58, and four connecting rods 51 are arranged at equal intervals along the circumferential direction of the ring portion 623. The ring portion 623 is provided with a hole into which the connecting rod 51 is inserted, and the connecting rod 51 is inserted into this hole and adhered and fixed.

【0035】4本の連結棒51は接続片62Cと92C
とによって1本の酸化物超電導体58と機械的に一体化
されておりしかも連結棒51は酸化物超電導体58の外
径側にあるので曲げ力などの外力がかかったときに連結
棒51がこの外力をより多く負担して酸化物超電導体5
8にかかる曲げ応力が低減することから、電流リードの
機械的強度が向上する。なお、酸化物超電導体58の接
続片62C,92Cとの接続構造は、図11,図12と
は異なり酸化物超電導体58を接続片62C,92Cに
設けられた穴に挿入する構成を採用してあるが、軸対称
構造にこだわらず図11、図12と同様の構成を採用す
ることもできる。
The four connecting rods 51 are connecting pieces 62C and 92C.
Is mechanically integrated with one oxide superconductor 58 by means of and the connecting rod 51 is on the outer diameter side of the oxide superconductor 58, so that the connecting rod 51 does not move when an external force such as a bending force is applied. Oxide superconductor 5 should bear this external force more.
Since the bending stress applied to No. 8 is reduced, the mechanical strength of the current lead is improved. The structure for connecting the oxide superconductor 58 to the connecting pieces 62C and 92C is different from that shown in FIGS. 11 and 12 in that the oxide superconductor 58 is inserted into the holes provided in the connecting pieces 62C and 92C. However, it is also possible to adopt a configuration similar to that shown in FIGS. 11 and 12 regardless of the axially symmetric structure.

【0036】図8は図7とは異なる実施例を示す部7と
同じ位置の断面図である。この図の図7との違いは連結
棒51の代わりに連結筒52を使用したものである。こ
れに合わせて接続片63のリング部633には同心状の
溝を設け、この溝に連結筒52を挿入し接着することに
よって固定する。この構成はいわば図7の場合で連結棒
51の本数を多くした場合の極限と解釈することができ
る。
FIG. 8 is a sectional view of the same position as the portion 7 showing an embodiment different from FIG. The difference from FIG. 7 in this figure is that a connecting cylinder 52 is used instead of the connecting rod 51. In accordance with this, a concentric groove is provided in the ring portion 633 of the connecting piece 63, and the connecting cylinder 52 is inserted into this groove and fixed by adhering. This structure can be interpreted as the limit when the number of connecting rods 51 is increased in the case of FIG.

【0037】連結棒51や連結筒52などの連結材は単
に機械的強度が要求されるだけではなく侵入熱を低減す
るために低熱伝導性も要求される。このような連結材に
適したものとしては、繊維強化複合材、ステンレス鋼な
どがある。連結材として必要な強度を確保するには連結
棒51の場合、連結棒51の太さとその本数を適切な値
にする。また連結筒52の場合にはその厚み寸法と直径
を適切な値にする。なお、連結筒52の場合、酸化物超
電導体58は連結筒52によって遮蔽された形になって
冷却効果が悪くなるので、連結筒52に貫通孔を設ける
などして連結筒52の内部にも冷媒であるヘリウムガス
が流れるようにする。
The connecting members such as the connecting rods 51 and the connecting cylinders 52 are required not only to have mechanical strength but also to have low thermal conductivity in order to reduce invasion heat. Suitable for such connecting materials are fiber reinforced composite materials, stainless steel and the like. In order to secure the strength required as the connecting member, in the case of the connecting rod 51, the thickness and the number of the connecting rods 51 are set to appropriate values. Further, in the case of the connecting cylinder 52, its thickness dimension and diameter are set to appropriate values. In the case of the connecting cylinder 52, the oxide superconductor 58 is shielded by the connecting cylinder 52 and the cooling effect is deteriorated. Therefore, a through hole is provided in the connecting cylinder 52 and the like. Allow helium gas, which is a refrigerant, to flow.

【0038】連結棒51、連結筒52などの連結材とし
てステンレス鋼を使用した場合、ステンレス鋼は導電材
なので万一酸化物超電導体58がクエンチを起こして常
電導状態になったときに連結材に電流が転流して酸化物
超電導体58の損傷を防ぐ効果を期待することができ
る。
When stainless steel is used as a connecting material for the connecting rod 51, the connecting cylinder 52, etc., since the stainless steel is a conductive material, the connecting material should be in the normal conducting state by quenching the oxide superconductor 58. It can be expected that the current is commutated to prevent the oxide superconductor 58 from being damaged.

【0039】[0039]

【発明の効果】この発明は前述のように、低温側リード
の構成を棒状の酸化物超電導体の低温側に直列に可撓性
導体を連結した構造とし、かつ棒状の酸化物超電導体に
振れ止め材を配するよう構成した。その結果、棒状の酸
化物超電導体に作用する機械的ストレス及び熱応力を可
撓性導体が吸収して緩和するので、棒状の酸化物超電導
体を接続金具を介して筒状容器に固定した従来の電流リ
ードで問題となった棒状の酸化物超電導体の損傷を回避
することが可能となり、機械的、熱的に安定で信頼性の
高い低温側リードを備えた電流リードを提供することが
できる。また、可撓性導体を設けたことにより増加する
ジュール熱は、可撓性導体に金属系超電導材の束あるい
は酸化物超電導材の束などを用いることにより阻止でき
るので、高価な液体ヘリウムの消費量が少なくランニン
グコストの低い酸化物超電導体を用いた電流リードを提
供できるとともに、信頼性の向上によって分解修理の必
要も無くなるので、従来分解修理に要した費用及び時間
が不要になるという利点も得られる。
As described above, according to the present invention, the low temperature side lead has a structure in which a flexible conductor is connected in series to the low temperature side of a rod-shaped oxide superconductor, and the rod-shaped oxide superconductor is swung. It was configured to have a stopper. As a result, the flexible conductor absorbs and relaxes the mechanical stress and thermal stress acting on the rod-shaped oxide superconductor, so that the rod-shaped oxide superconductor is fixed to the cylindrical container through the connection fitting. It is possible to avoid damage to the rod-shaped oxide superconductor, which is a problem with the current lead, and it is possible to provide a current lead with a low temperature lead that is mechanically and thermally stable and highly reliable. . In addition, the Joule heat that increases due to the provision of the flexible conductor can be stopped by using a bundle of metal-based superconducting material or a bundle of oxide superconducting material for the flexible conductor, which consumes expensive liquid helium. It is possible to provide a current lead using an oxide superconductor that has a small amount and low running cost, and the reliability improves so that the need for disassembly and repair is eliminated, so the cost and time required for disassembly and repair are eliminated. can get.

【0040】一方、酸化物超電導体を複数分割し、中間
接続金具に支持された中間支持体の凹溝内に接着する
か、あるいは緊縛線材で緊縛して一体化するよう構成し
た。その結果、互いに並行する電流リード間の電流磁界
によって酸化物超電導体に作用する電磁機械力を中間支
持体が吸収し、酸化物超電導体に加わる曲げ応力を軽減
するとともに、低温側リードの組み立て作業時に酸化物
超電導体に加わる機械的ストレスをも軽減できるので、
中間支持体に低熱伝導体を用いることにより、熱的、機
械的に安定で耐電磁機械力性にも優れた低温側リードを
備えた電流リードを提供することができる。
On the other hand, the oxide superconductor is divided into a plurality of pieces and bonded to the inside of the concave groove of the intermediate support body supported by the intermediate connection fitting, or bound by a binding wire to be integrated. As a result, the intermediate support absorbs the electromagnetic mechanical force acting on the oxide superconductor by the current magnetic field between the parallel current leads, reducing the bending stress applied to the oxide superconductor and assembling the low temperature side lead. Sometimes the mechanical stress on the oxide superconductor can be reduced,
By using a low heat conductor for the intermediate support, it is possible to provide a current lead having a low temperature side lead that is thermally and mechanically stable and has excellent electromagnetic mechanical resistance.

【0041】また、棒状の酸化物超電導体の両端に接続
片を取付けこれを介して中間接続金具と低温端子金具と
にそれぞれ取付ける構成を採用した電流リードにおい
て、中間接続金具に取付ける接続片と下部接続金具に取
付ける接続片との間を橋渡しする連結材を設けることに
よって、電流リードに外力が加わったときに連結材が力
を負担して酸化物超電導体に生ずる応力が低減すること
から電流リードの機械的耐力が向上するという効果が得
られる。また、連結材は、酸化物超電導体と同軸の筒状
の連結筒、又は酸化物超電導体の周りに配置した所定の
本数の棒状の連結棒のいずれでも同様の効果を得ること
ができる。
In addition, in a current lead having a structure in which connecting pieces are attached to both ends of a rod-shaped oxide superconductor and the intermediate connecting fitting and the low temperature terminal fitting are respectively attached via the connecting pieces, the connecting piece to be attached to the intermediate connecting fitting and the lower portion are attached. By providing the connecting material bridging between the connecting piece attached to the connecting fitting, the connecting material bears the force when the external force is applied to the current lead, and the stress generated in the oxide superconductor is reduced. The effect of improving the mechanical strength of is obtained. Further, as the connecting material, the same effect can be obtained with any of a cylindrical connecting cylinder coaxial with the oxide superconductor or a predetermined number of rod-like connecting rods arranged around the oxide superconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる酸化物超電導体を用い
た電流リードの要部を示す断面図
FIG. 1 is a sectional view showing a main part of a current lead using an oxide superconductor according to an embodiment of the present invention.

【図2】この発明の他の実施例になる酸化物超電導体を
用いた電流リードの要部を示す断面図
FIG. 2 is a sectional view showing a main part of a current lead using an oxide superconductor according to another embodiment of the present invention.

【図3】図2のA−A位置における断面図FIG. 3 is a sectional view taken along the line AA in FIG.

【図4】この発明の異なる他の実施例になる酸化物超電
導体を用いた電流リードの要部を示す断面図
FIG. 4 is a sectional view showing a main part of a current lead using an oxide superconductor according to another embodiment of the present invention.

【図5】図4のB−B位置における断面図5 is a sectional view taken along line BB in FIG.

【図6】この発明の異なる他の実施例になる酸化物超電
導体を用いた電流リードの要部を示す断面図
FIG. 6 is a sectional view showing a main part of a current lead using an oxide superconductor according to another embodiment of the present invention.

【図7】図6のC−C断面図7 is a sectional view taken along line CC of FIG.

【図8】図7とは異なる実施例を示す図6のC−C断面
8 is a sectional view taken along line CC of FIG. 6 showing an embodiment different from that of FIG.

【図9】超電導磁石装置の電流リードの従来構造を簡略
化して示す側面図
FIG. 9 is a side view showing a simplified conventional structure of a current lead of a superconducting magnet device.

【図10】図9の要部の内部構造を示す拡大断面図10 is an enlarged cross-sectional view showing the internal structure of the main part of FIG.

【図11】複数本の酸化物超電導体が使用された従来の
電流リードの要部断面図
FIG. 11 is a sectional view of a main part of a conventional current lead using a plurality of oxide superconductors.

【図12】図11のD−D断面図12 is a cross-sectional view taken along the line DD of FIG.

【符号の説明】[Explanation of symbols]

1 電流リード 2 高温側リード 2A 常温端子 3 良導電性金属線材の束 4 筒状容器 5,15,35,45,55 低温側リード 6,36,56 中間接続金具 7,17,37 筒状容器 8,18,38,58 酸化物超電導体 、 9,19,39,59 低温端子金具 9A 低温端子 10 超電導コイル 20 下部接続金具 20G 隙間 21 可撓性導体 22 振れ止め材 32,42 中間支持体 32A 連結部 33,43 凹溝 34 接着剤層 44 緊縛線材 51 連結棒(連結材) 52 連結筒(連結材) 61,91 突出部 62,92,62C,92C 接続片 He 液体ヘリウム GHe ヘリウムガス 1 Current lead 2 High temperature side lead 2A Room temperature terminal 3 Bundle of good conductive metal wire 4 Cylindrical container 5,15,35,45,55 Low temperature side lead 6,36,56 Intermediate connection metal fitting 7,17,37 Cylindrical container 8,18,38,58 Oxide superconductor, 9,19,39,59 Low temperature terminal fitting 9A Low temperature terminal 10 Superconducting coil 20 Lower connection fitting 20G Gap 21 Flexible conductor 22 Steady stop material 32,42 Intermediate support 32A Connecting part 33,43 Recessed groove 34 Adhesive layer 44 Bonding wire material 51 Connecting rod (connecting material) 52 Connecting cylinder (connecting material) 61,91 Projection part 62,92,62C, 92C Connecting piece He Liquid helium GHe Helium gas

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/00 C 9276−4M H01F 5/08 ZAA E ZAA B Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01L 39/00 C 9276-4M H01F 5/08 ZAA E ZAA B

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】真空断熱容器に収納されて極低温に保持さ
れた超電導コイルに外部電源からの励磁電流を通流する
電流リードが、良導電性金属からなる高温側リードと、
酸化物超電導体からなる低温側リードとの直列接続体か
らなり、低温の冷媒ガスで冷却されるものにおいて、前
記低温側リードが、中間接続金具及び下部接続金具間に
導電結合された棒状の酸化物超電導体と、前記下部接続
金具と低温端子金具との間に導電結合された可撓性導体
との直列接続体からなり、前記中間接続金具と低温端子
金具とを連結する筒状容器内に収納されてなることを特
徴とする酸化物超電導体を用いた電流リード。
1. A current lead for passing an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulating container and kept at a cryogenic temperature, and a high temperature side lead made of a good conductive metal,
An oxide superconductor consisting of a series connection body with a low temperature side lead, which is cooled by a low temperature refrigerant gas, wherein the low temperature side lead is a rod-shaped oxidation conductively coupled between an intermediate connection fitting and a lower connection fitting. A superconductor and a series connection body of a flexible conductor conductively coupled between the lower connection fitting and the low temperature terminal fitting, and in a cylindrical container connecting the intermediate connection fitting and the low temperature terminal fitting. A current lead using an oxide superconductor characterized by being housed.
【請求項2】可撓性導体が、良導電性金属編組材の束又
は良導電性金属箔材の束からなることを特徴とする請求
項1記載の酸化物超電導体を用いた電流リード。
2. The current lead using an oxide superconductor according to claim 1, wherein the flexible conductor is composed of a bundle of a good conductive metal braid material or a bundle of a good conductive metal foil material.
【請求項3】可撓性導体が、金属系超電導線材の束から
なることを特徴とする請求項1記載の酸化物超電導体を
用いた電流リード。
3. The current lead using an oxide superconductor according to claim 1, wherein the flexible conductor comprises a bundle of metal-based superconducting wires.
【請求項4】可撓性導体が、酸化物超電導線材又は酸化
物超電導リボン材の束からなることを特徴とする請求項
1記載の酸化物超電導体を用いた電流リード。
4. The current lead using an oxide superconductor according to claim 1, wherein the flexible conductor comprises a bundle of oxide superconducting wire or oxide superconducting ribbon material.
【請求項5】下部接続金具が筒状容器の内壁面との間に
隙間を保持するとともに、棒状の酸化物超電導体の周囲
に振れ止め材を配してなることを特徴とする請求項1記
載の酸化物超電導体を用いた電流リード。
5. The lower connecting fitting holds a gap between the lower connecting fitting and the inner wall surface of the cylindrical container, and a steady rest is arranged around the rod-shaped oxide superconductor. A current lead using the described oxide superconductor.
【請求項6】真空断熱容器に収納されて極低温に保持さ
れた超電導コイルに外部電源からの励磁電流を通流する
電流リードが、良導電性金属からなる高温側リードと、
酸化物超電導体からなる低温側リードとの直列接続体か
らなり、低温の冷媒ガスで冷却されるものにおいて、前
記低温側リードが、中間接続金具及び低温端子金具間に
導電結合された複数の酸化物超電導体と、この複数の酸
化物超電導体に係合する凹溝を外周側に有する中間支持
体とを備え、前記中間接続金具と低温端子金具とを連結
する筒状容器内に収納されてなることを特徴とする酸化
物超電導体を用いた電流リード。
6. A current lead for passing an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and kept at an extremely low temperature, and a high temperature side lead made of a good conductive metal,
In the case where the low temperature side lead is made of a series connection body with a low temperature side lead made of an oxide superconductor and is cooled by a low temperature refrigerant gas, the low temperature side lead is a plurality of oxidation conductively coupled between the intermediate connection metal fitting and the low temperature terminal metal fitting. Object superconductor and an intermediate support having a groove on the outer peripheral side that engages with the plurality of oxide superconductors, and is housed in a cylindrical container that connects the intermediate connection fitting and the low temperature terminal fitting. A current lead using an oxide superconductor.
【請求項7】中間支持体が低熱伝導体からなり、中間接
続金具と下部接続金具との中間に位置するよう中間接続
金具に連結支持されてなることを特徴とする請求項6記
載の超電導装置の電流リード。
7. The superconducting device according to claim 6, wherein the intermediate supporting member is made of a low heat conductor and is connected to and supported by the intermediate connecting member so as to be positioned between the intermediate connecting member and the lower connecting member. Current lead.
【請求項8】中間支持体と酸化物超電導体とが、接着剤
層により凹溝内で相互に結合されてなることを特徴とす
る請求項6記載の酸化物超電導体を用いた電流リード。
8. The current lead using an oxide superconductor according to claim 6, wherein the intermediate support and the oxide superconductor are bonded to each other in the groove by an adhesive layer.
【請求項9】中間支持体の複数の凹溝と、これに係合す
る酸化物超電導体とが、この部分を外側から緊縛する緊
縛線材により相互に一体化してなることを特徴とする酸
化物超電導体を用いた電流リード。
9. An oxide characterized in that a plurality of recessed grooves of an intermediate support and an oxide superconductor engaging with the recesses are integrated with each other by a binding wire that binds this portion from the outside. A current lead using a superconductor.
【請求項10】真空断熱容器に収納されて極低温に保持
された超電導コイルに外部電源からの励磁電流を通流す
る電流リードが、良導電性金属からなる高温側リード
と、複数本の棒状の酸化物超電導体からなる低温側リー
ドと、高温側リードと低温側リードとを導電結合した中
間接続金具と、超電導コイルに接続された低温端子が設
けられ低温側リードに導電結合された低温端子金具とか
らなり、それぞれの酸化物超電導体が、中間接続金具と
低温端子金具とにそれぞれ接続片を介して接続されてな
るものにおいて、中間接続金具に取付けられる接続片と
低温端子金具に取付けられる接続片との間に橋渡しされ
た連結材が設けられてなることを特徴とする酸化物超電
導体を用いた電流リード。
10. A current lead for passing an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and kept at a cryogenic temperature, a high temperature side lead made of a good conductive metal, and a plurality of rod-shaped leads. Low temperature lead made of oxide superconductor, intermediate connecting metal fitting conductively coupling high temperature lead and low temperature lead, and low temperature terminal conductively coupled to low temperature lead provided with low temperature terminal connected to superconducting coil A metal fitting, in which each oxide superconductor is connected to an intermediate connecting fitting and a low temperature terminal fitting via a connecting piece, respectively, which is attached to the intermediate connecting fitting and the low temperature terminal fitting A current lead using an oxide superconductor, characterized in that a connecting material bridging between the connecting piece and the connecting piece is provided.
【請求項11】連結材が、酸化物超電導体と同軸の筒状
をした連結筒であることを特徴とする請求項10記載の
酸化物超電導体を用いた電流リード。
11. The current lead using an oxide superconductor according to claim 10, wherein the connecting member is a connecting pipe having a tubular shape coaxial with the oxide superconductor.
【請求項12】連結材が、酸化物超電導体の周りに配置
された所定の本数の棒状をした連結棒であることを特徴
とする請求項10記載の酸化物超電導体を用いた電流リ
ード。
12. The current lead using an oxide superconductor according to claim 10, wherein the connecting member is a connecting rod having a predetermined number of rods arranged around the oxide superconductor.
JP05220871A 1992-09-11 1993-09-06 Current lead using oxide superconductor Expired - Lifetime JP3125532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05220871A JP3125532B2 (en) 1992-09-11 1993-09-06 Current lead using oxide superconductor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP24242792 1992-09-11
JP9343293 1993-04-21
JP5-93432 1993-04-21
JP4-242427 1993-04-21
JP05220871A JP3125532B2 (en) 1992-09-11 1993-09-06 Current lead using oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0799111A true JPH0799111A (en) 1995-04-11
JP3125532B2 JP3125532B2 (en) 2001-01-22

Family

ID=27307284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05220871A Expired - Lifetime JP3125532B2 (en) 1992-09-11 1993-09-06 Current lead using oxide superconductor

Country Status (1)

Country Link
JP (1) JP3125532B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394024B2 (en) * 2003-02-06 2008-07-01 Dowa Mining Co., Ltd. Oxide superconductor current lead and method of manufacturing the same, and superconducting system
EP2104197A1 (en) * 2008-03-20 2009-09-23 Nexans Electric connection structure for superconductor element
WO2014080591A1 (en) * 2012-11-21 2014-05-30 昭和電線ケーブルシステム株式会社 Electric current lead
JP2014212257A (en) * 2013-04-19 2014-11-13 株式会社神戸製鋼所 Current supply device for superconducting magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394024B2 (en) * 2003-02-06 2008-07-01 Dowa Mining Co., Ltd. Oxide superconductor current lead and method of manufacturing the same, and superconducting system
EP2104197A1 (en) * 2008-03-20 2009-09-23 Nexans Electric connection structure for superconductor element
FR2929052A1 (en) * 2008-03-20 2009-09-25 Nexans Sa ELECTRICAL CONNECTION STRUCTURE FOR SUPERCONDUCTING ELEMENT
WO2014080591A1 (en) * 2012-11-21 2014-05-30 昭和電線ケーブルシステム株式会社 Electric current lead
JP2014103324A (en) * 2012-11-21 2014-06-05 Swcc Showa Cable Systems Co Ltd Current lead
JP2014212257A (en) * 2013-04-19 2014-11-13 株式会社神戸製鋼所 Current supply device for superconducting magnet

Also Published As

Publication number Publication date
JP3125532B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
JP3590150B2 (en) Ceramic superconducting lead wire assembly
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JPH0277106A (en) Ceramic superconductor very low temperature current conductor
JPH0284936A (en) Low heat conductance apparatus for radiation shield body of magnet for magnetic resonance
JPH07142237A (en) Superconducting magnet device
JP5531664B2 (en) Superconducting current lead
US5552211A (en) Ceramic superconducting lead resistant to breakage
KR100918450B1 (en) temperature sensor module for measuring pipe of an extremely low temperature
JP5940361B2 (en) Superconducting current lead manufacturing method, superconducting current lead, and superconducting magnet device
ES364847A1 (en) Superconductive circuit
JPH0799111A (en) Current lead using oxide superconductor
JPH0335818B2 (en)
JPS5998505A (en) Super conductive current lead
JP2011018536A (en) Connection structure of superconducting wire rod and superconducting coil device
JP7040730B2 (en) Permanent current switch
JP5778064B2 (en) Superconducting current lead and superconducting magnet device using the superconducting current lead
JPS63268204A (en) Superconducting magnet
US5759960A (en) Superconductive device having a ceramic superconducting lead resistant to breakage
JP2022056502A (en) Superconducting current lead and superconducting magnet device
JP2003324013A (en) Oxide superconductor current lead
JP4734004B2 (en) Superconducting current lead
JP3185521B2 (en) Current lead
JP6392028B2 (en) Superconducting electromagnet
US11769615B2 (en) Superconducting joints
JP3127705B2 (en) Current lead using oxide superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13