JP6738720B2 - Superconducting wire connection structure - Google Patents

Superconducting wire connection structure Download PDF

Info

Publication number
JP6738720B2
JP6738720B2 JP2016243543A JP2016243543A JP6738720B2 JP 6738720 B2 JP6738720 B2 JP 6738720B2 JP 2016243543 A JP2016243543 A JP 2016243543A JP 2016243543 A JP2016243543 A JP 2016243543A JP 6738720 B2 JP6738720 B2 JP 6738720B2
Authority
JP
Japan
Prior art keywords
superconducting wire
superconducting
based superconducting
coil
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016243543A
Other languages
Japanese (ja)
Other versions
JP2018098420A (en
Inventor
聡士 山野
聡士 山野
昭暢 中井
昭暢 中井
久樹 坂本
久樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2016243543A priority Critical patent/JP6738720B2/en
Publication of JP2018098420A publication Critical patent/JP2018098420A/en
Application granted granted Critical
Publication of JP6738720B2 publication Critical patent/JP6738720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導線材の接続構造に関する。 The present invention relates to a superconducting wire connection structure.

近年、臨界温度(Tc)が液体窒素温度(約77K)よりも高い酸化物超電導線材として、RE系超電導線材が注目されている。RE系超電導体(RE:希土類元素)、例えば化学式YBa2Cu37-yで表されるイットリウム系超電導体(以下、Y系超電導体)が代表的である。RE系超電導線材を、MRIやNMRなどの時間的に安定な磁場が要求される用途に適用する場合、磁場の減衰が極力抑えられる永久電流モードでの運転が有効な選択肢となるが、そのためには超電導コイル間、もしくは超電導コイルと永久電流スイッチの間で10-11Ω以下の接続抵抗で接続する必要がある。
RE系超電導線材は金属基板上にセラミックスからなる酸化物超電導膜が成膜されたのち、銀保護層で覆われた構造を有する。このようなRE系超電導線材同士の接続として最も簡便な方法は半田による接続であるが、その場合10-8Ω程度の接触抵抗が発生してしまい、理想的な永久電流モードとすることは困難であった。
このため、RE系超電導線材で製作された超電導コイル間を低抵抗で接続する方法として、酸化物超電導線材の金属皮膜を除去し、酸化物超電導芯材同士を焼結する方法が提案されている(例えば、特許文献1参照)。
In recent years, RE-based superconducting wire has attracted attention as an oxide superconducting wire whose critical temperature (Tc) is higher than liquid nitrogen temperature (about 77K). A typical example is an RE-based superconductor (RE: rare earth element), for example, an yttrium-based superconductor represented by the chemical formula YBa 2 Cu 3 O 7-y (hereinafter, Y-based superconductor). When applying a RE superconducting wire to applications such as MRI and NMR that require a stable magnetic field over time, operation in the persistent current mode, which minimizes magnetic field attenuation, is an effective option. Must be connected between the superconducting coils or between the superconducting coil and the persistent current switch with a connection resistance of 10 -11 Ω or less.
The RE superconducting wire has a structure in which an oxide superconducting film made of ceramics is formed on a metal substrate and then covered with a silver protective layer. The simplest method for connecting RE-based superconducting wires to each other is by soldering, but in that case a contact resistance of about 10 -8 Ω is generated and it is difficult to set the ideal permanent current mode. Met.
Therefore, as a method of connecting the superconducting coils made of the RE superconducting wire with low resistance, a method of removing the metal film of the oxide superconducting wire and sintering the oxide superconducting cores has been proposed. (For example, refer to Patent Document 1).

特許第3018534号公報Japanese Patent No. 3018534

しかしながら、図14に示すように、酸化物超電導線材Lの焼結接続された酸化物超電導膜L1はセラミックスL2を介して接続されているために機械的強度に乏しく、マグネットシステムなどのアプリケーションへの組み上げや、輸送において、曲げや衝撃が加わると破損することがあった。 However, as shown in FIG. 14, since the oxide superconducting film L1 of the oxide superconducting wire L, which is sintered and connected, is connected through the ceramics L2, the mechanical strength is poor, and it is suitable for applications such as magnet systems. When assembled or transported, it could be damaged by bending or impact.

また、酸化物超電導膜の焼結にあたっては800℃程度の高温を要するため、長尺線材の一部を接続予定部として炉の加熱領域に引き込む必要がある。その場合、コイル全体を焼結炉に入れることはできないので、接続部分のみを長く引き出して焼結させる必要があった。
そして、酸化物超電導膜の焼結接続後に要求の性能が出ない、あるいは破損したなどの問題が生じた場合、接続のやり直しが必要となるが、酸化物超電導膜の焼結接続プロセスが同一の接続部で複数回行われると、超電導線材の接続部における金属基板が熱疲労を起こすため歪みが発生し、結果接続部の超電導特性が劣化することが経験によって見出されている。
そのため接続のやり直しにあたっては、焼結接続プロセスを経た部位を切り捨て、近傍の超電導線材部位を新たに接続予定部として焼結接続を試みることが必要となる。したがって、酸化物超電導膜の接続にあたっては、やり直しの可能性を考慮し、実際に焼結作業に必要となる長さ以上の余長を確保した上で焼結接続に臨むことが必要であった。
一方、RE系超電導線材はテープ形状をしており、特定方向の曲がりや折り曲げに弱いことから、余長部分は破損が生じないように機械的に固定されていることが好ましく、余長の調整にあたっては焼結接続箇所が破損しないよう注意する必要があった。
Further, since a high temperature of about 800° C. is required for sintering the oxide superconducting film, it is necessary to draw a part of the long wire into the heating region of the furnace as a planned connection part. In that case, the entire coil cannot be put into the sintering furnace, so that it was necessary to pull out only the connecting portion for sintering.
Then, if there is a problem that the required performance does not appear after the sintered connection of the oxide superconducting film, or if the oxide superconducting film has a problem such as breakage, it is necessary to redo the connection, but the sintering connection process of the oxide superconducting film is the same. It has been found from experience that, if it is performed a plurality of times at the connection portion, the metal substrate in the connection portion of the superconducting wire rod is distorted due to thermal fatigue, resulting in deterioration of the superconducting characteristics of the connection portion.
Therefore, when reconnecting, it is necessary to cut off the portion that has undergone the sintering connection process and try sintering connection by making a neighboring superconducting wire material portion a new planned connection portion. Therefore, when connecting the oxide superconducting film, it was necessary to consider the possibility of redoing and secure a surplus length more than the length actually required for the sintering work before the sintering connection. ..
On the other hand, the RE superconducting wire has a tape shape and is weak in bending and bending in a specific direction. Therefore, it is preferable that the extra length part is mechanically fixed so that damage does not occur. At that time, it was necessary to take care so that the sintered joint was not damaged.

また、酸化物超電導膜の焼結接続された部位はセラミックスであるために熱伝導率が低く、何らかの原因で常電導状態に転移すると非常に高抵抗となってしまうため、過電流等によって一度電圧が発生し始めると、たちまちにホットスポット化し焼損に至るという問題もあった。 In addition, since the portion of the oxide superconducting film that is sintered and connected is a ceramic, its thermal conductivity is low, and if it changes to the normal conducting state for some reason, the resistance becomes extremely high. There was also a problem in that when the occurrence of the phenomenon occurred, it immediately became a hot spot and burned out.

以上のように、本発明は、焼結接続された超電導線材の接続部を効果的に保護する超電導線材の接続構造を提供することをその目的とする。
また、焼結接続された超電導線材の余長部分を好適に保護する超電導線材の接続構造を提供することをさらなる目的とする。
また、焼結接続された超電導線材の接続部分を焼損から好適に保護する超電導線材の接続構造を提供することをさらなる目的とする。
As described above, an object of the present invention is to provide a superconducting wire connecting structure that effectively protects a connecting portion of a sintered superconducting wire.
Another object of the present invention is to provide a superconducting wire connecting structure that suitably protects an extra length portion of a superconducting wire that is sintered and connected.
Another object of the present invention is to provide a connection structure for a superconducting wire, which is capable of suitably protecting a connecting portion of a sintered and connected superconducting wire from burnout.

請求項1記載の発明は、
片側の面に超電導導体層が形成されたテープ状の基材と、
前記基材を被覆する保護層とを備えるRE系の超電導線材の接続構造において、
二本の前記超電導線材の前記保護層から露出した前記超電導導体層を焼結接続した接続部と、
前記接続部が固定された溝部を有する溝付き枠材と
片方の前記超電導線材の余長部分が巻き付けられた無誘導巻き取り枠材と、
を備えていることを特徴とする。
The invention according to claim 1 is
A tape-shaped base material having a superconducting conductor layer formed on one surface,
In a connection structure of a RE-based superconducting wire comprising a protective layer covering the base material,
A connection portion in which the superconducting conductor layer exposed from the protective layer of the two superconducting wires is sintered and connected ,
A frame member with a groove having a groove portion to which the connecting portion is fixed ,
A non-inductive winding frame member around which the extra length of one of the superconducting wires is wound,
It is characterized by having.

請求項2記載の発明は、請求項1記載の超電導線材の接続構造において、
前記溝付き枠材は円柱形状部を備え、
前記接続部で接続された前記二本の前記超電導線材が前記円柱形状部に巻線されていることを特徴とする。
The invention according to claim 2 is the connection structure for the superconducting wire according to claim 1,
The grooved frame material includes a columnar portion,
The two superconducting wires connected by the connecting portion are wound around the columnar portion.

請求項3記載の発明は、請求項1又は2記載の超電導線材の接続構造において、
前記二本の前記超電導線材は、前記接続部以外の部分で導通可能に接続されていることを特徴とする。
The invention according to claim 3 is the connection structure of the superconducting wire according to claim 1 or 2,
It is characterized in that the two superconducting wires are connected so as to be able to conduct at portions other than the connecting portion.

請求項4記載の発明は、請求項2記載の超電導線材の接続構造において、
前記二本の前記超電導線材は、前記接続部以外であって前記溝付き枠材に巻線されている部分で導通可能に接続されていることを特徴とする。
The invention according to claim 4 is the connection structure for a superconducting wire according to claim 2,
It is characterized in that the two superconducting wires are electrically connected to each other at a portion other than the connecting portion and wound around the grooved frame material.

請求項5記載の発明は、請求項3又は4記載の超電導線材の接続構造において、
前記二本の前記超電導線材は、前記接続部以外の部分で、前記二本の前記超電導線材以外の超電導線材により接続されていることを特徴とする。
The invention according to claim 5 is the connection structure for the superconducting wire according to claim 3 or 4,
The two superconducting wires are connected by a superconducting wire other than the two superconducting wires at a portion other than the connecting portion.

請求項6記載の発明は、請求項1から5のいずれか一項に記載の超電導線材の接続構造において、
前記溝部に樹脂又は低融点金属を有することを特徴とする。
The invention according to claim 6 is the connection structure for a superconducting wire according to any one of claims 1 to 5,
It is characterized in that the groove portion has a resin or a low melting point metal.

請求項7記載の発明は、請求項1から6のいずれか一項に記載の超電導線材の接続構造において、
前記二本の前記超電導線材は、
前記超電導線材の長手方向における前記接続部側に向かう方向が同じ向きになるように接続されていることを特徴とする。
The invention according to claim 7 is the connection structure for a superconducting wire according to any one of claims 1 to 6, wherein:
The two superconducting wires,
It is characterized in that the superconducting wires are connected so that the directions toward the connecting portion side in the longitudinal direction are the same.

本発明は、溝付き枠材の溝部内に二本の超電導線材の接続部が固定されているので、接続部の周囲が溝部の内壁に囲まれて機械的強度が高く維持され、曲げや衝撃,その他の外力から保護し、破損の発生を効果的に低減することが可能である。
また、溝付き枠材が円柱形状部を備える構成とした場合には、超電導線材を巻き付けにより保持することができ、超電導線材の余長部分を特定方向の曲がりや折り曲げから保護することが可能となる。
また、二本の超電導線材を接続部以外の部分で導通可能に接続する構成とした場合には、接続部において常電導状態への転移が生じた場合に、バイパス接続部に電流を逃がすことができ、接続部のホットスポット化を抑制し、焼損の発生を低減することが可能となる。
According to the present invention, since the connecting portion of the two superconducting wire members is fixed in the groove portion of the grooved frame member, the periphery of the connecting portion is surrounded by the inner wall of the groove portion and the mechanical strength is kept high, and bending or impact ,It is possible to protect from other external forces and effectively reduce the occurrence of breakage.
Further, when the grooved frame member is configured to have a columnar portion, the superconducting wire can be held by winding, and the extra length portion of the superconducting wire can be protected from bending or bending in a specific direction. Become.
Further, in the case where two superconducting wires are connected so as to be able to conduct at a portion other than the connecting portion, when the transition to the normal conducting state occurs at the connecting portion, current may be released to the bypass connecting portion. Therefore, it is possible to suppress hot spots in the connection portion and reduce the occurrence of burnout.

RE系超電導線材の構造を示す斜視図である。It is a perspective view which shows the structure of RE type|system|group superconducting wire. 第一の実施形態であるRE系超電導線材の接続構造の平面図である。It is a top view of the connection structure of the RE superconducting wire which is a first embodiment. 焼結接続部の周辺の平面図である。It is a top view of the periphery of a sintered connection part. 溝付き枠材の斜視図である。It is a perspective view of a frame material with a groove. 第二の実施形態である超電導コイルを用いた電流システムの概略構成図である。It is a schematic block diagram of the electric current system which uses the superconducting coil which is 2nd embodiment. 電流システムの永久電流ループ側の構成を示す概略構造図である。It is a schematic structure figure showing composition of a permanent current loop side of a current system. 第一コイルと第二コイルの斜視図である。It is a perspective view of a 1st coil and a 2nd coil. 接続器の斜視図である。It is a perspective view of a connector. 図9(A)は永久電流スイッチの斜視図、図9(B)は永久電流スイッチの断面図である。FIG. 9A is a perspective view of the persistent current switch, and FIG. 9B is a sectional view of the persistent current switch. 図10(A)は超電導コイルユニットの斜視図、図10(B)はコイルの中心線を通る断面を示す断面図である。FIG. 10(A) is a perspective view of the superconducting coil unit, and FIG. 10(B) is a cross-sectional view showing a cross section passing through the center line of the coil. 図11(A)は超電導コイルユニットの平面図、図11(B)は部分拡大図である。11A is a plan view of the superconducting coil unit, and FIG. 11B is a partially enlarged view. 焼結接続部の斜視図である。It is a perspective view of a sinter connection part. 図13(A)はRE系超電導線材が巻回された状態の溝付き枠材の斜視図、図13(B)はRE系超電導線材が巻回されていない状態の溝付き枠材の斜視図である。FIG. 13(A) is a perspective view of the grooved frame material in which the RE-based superconducting wire is wound, and FIG. 13(B) is a perspective view of the grooved frame material in which the RE-based superconducting wire is not wound. Is. 図14(A)は焼結接続された酸化物超電導線材の側面図、図14(B)は斜視図である。FIG. 14(A) is a side view of the sinter-connected oxide superconducting wire, and FIG. 14(B) is a perspective view.

[第一の実施形態]
以下に、本発明を実施するための好ましい第一の実施の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。
本実施形態は、個別に用途が定められた二本の超電導線材としてのRE系超電導線材100を超電導状態で接続可能とするRE系超電導線材の接続構造10に関する。
[First embodiment]
A preferred first embodiment for carrying out the present invention will be described below with reference to the drawings. However, the embodiments described below are provided with various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.
The present embodiment relates to an RE-based superconducting wire connection structure 10 that enables connection of two RE-based superconducting wires 100, which are individually defined for use, as a superconducting wire in a superconducting state.

[RE系超電導線材]
図1は接続の対象となるRE系超電導線材100の構造を示す斜視図である。
RE系超電導線材100は、超電導成膜用基材1(以下、「基材1」とする)の厚み方向の一方の主面(以下、成膜面11という)に、中間層2及び酸化物超電導導体層3、内部保護層4がこの順に積層されており、さらに、基材1の主面とは逆側の面にも内部保護層4aが形成されている。即ち、RE系超電導線材100は、内部保護層4、基材1、中間層2、酸化物超電導導体層3(以下、「超電導導体層3」とする)、内部保護層4aによる積層構造を有しており、さらに、この積層構造の周囲を被覆する外部保護層5(安定化層)を有している。
なお、以下において、内部保護層4,4a及び外部保護層5を総称して「保護層」という場合がある。
また上記図1以外では、RE系超電導線材100の中間層2、内部保護層4及び内部保護層4aの図示は省略する。
[RE superconducting wire]
FIG. 1 is a perspective view showing the structure of an RE-based superconducting wire 100 to be connected.
The RE-based superconducting wire 100 includes an intermediate layer 2 and an oxide on one main surface (hereinafter, referred to as a film-forming surface 11) in the thickness direction of a superconducting film-forming substrate 1 (hereinafter, referred to as a "substrate 1"). A superconducting conductor layer 3 and an internal protective layer 4 are laminated in this order, and an internal protective layer 4a is also formed on the surface opposite to the main surface of the base material 1. That is, the RE-based superconducting wire 100 has a laminated structure including the inner protective layer 4, the base material 1, the intermediate layer 2, the oxide superconducting conductor layer 3 (hereinafter referred to as “superconducting conductor layer 3”), and the inner protective layer 4a. In addition, an external protective layer 5 (stabilizing layer) that covers the periphery of this laminated structure is provided.
In the following, the inner protective layers 4, 4a and the outer protective layer 5 may be collectively referred to as "protective layer".
Further, except for FIG. 1, the illustration of the intermediate layer 2, the inner protective layer 4, and the inner protective layer 4a of the RE-based superconducting wire 100 is omitted.

基材1は、テープ状の低磁性の金属基板やセラミックス基板が用いられる。金属基板の材料としては、例えば、強度及び耐熱性に優れた、Co、Cu、Cr、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Ag等の金属又はこれらの合金が用いられる。特に、耐食性及び耐熱性が優れているという観点からハステロイ(登録商標)、インコネル(登録商標)等のNi基合金、またはステンレス鋼等のFe基合金を用いることが好ましい。
また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基板の材料としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア等が用いられる。その他にも、サファイアを基材として用いてもよい。
基材1の厚さは50μm程度である(なお、厚さの数値は一例でありこれに限定されない。RE系超電導線材100の他の各層の厚さについても同様である)。
As the base material 1, a tape-shaped low magnetic metal substrate or ceramic substrate is used. As the material of the metal substrate, for example, a metal such as Co, Cu, Cr, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, Ag or the like or an alloy thereof having excellent strength and heat resistance is used. .. In particular, it is preferable to use Ni-based alloys such as Hastelloy (registered trademark) and Inconel (registered trademark), or Fe-based alloys such as stainless steel from the viewpoint of excellent corrosion resistance and heat resistance.
Further, various ceramics may be arranged on these various metal materials. Further, as the material of the ceramic substrate, for example, MgO, SrTiO 3 , or yttrium-stabilized zirconia is used. Besides, sapphire may be used as the base material.
The thickness of the base material 1 is about 50 μm (note that the numerical value of the thickness is an example and is not limited to this. The same applies to the thickness of each of the other layers of the RE-based superconducting wire 100).

成膜面11は、略平滑な面とされており、例えば成膜面11の表面粗さが10nm以下とされていることが好ましい。
なお、表面粗さとは、JISB-0601-2001において規定する表面粗さパラメータの「高さ方向の振幅平均パラメータ」における算術平均粗さRaである。
The film forming surface 11 is a substantially smooth surface, and it is preferable that the film forming surface 11 has a surface roughness of 10 nm or less.
The surface roughness is the arithmetic average roughness Ra in the “amplitude average parameter in the height direction” of the surface roughness parameters specified in JIS B-0601-2001.

中間層2は、超電導導体層3において例えば高い2軸配向性を実現するための層である。このような中間層2は、例えば、熱膨張率や格子定数等の物理的な特性値が基材1と超電導導体層3を構成する超電導体との中間的な値を示す。
また、中間層2は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、非晶質のGdZr7−δ(δは酸素不定比量)やAl或いはY等を含むベッド層と、結晶質のMgO等を含みIBAD(Ion Beam Assisted Deposition)法により成形された強制配向層と、LaMnO3+δ(δは酸素不定比量)を含むLMO層と、を順に積層した構成となっていてもよい。また、LMO層の上にCeO2等を含むキャップ層をさらに設けてもよい。
上記各層の厚さは、LMO層を30nm、強制配向層のMgO層を40nm、ベッド層のY層を7nm、Al層を80nmとする。
The intermediate layer 2 is a layer for realizing, for example, high biaxial orientation in the superconducting conductor layer 3. Such an intermediate layer 2 has a physical property value such as a coefficient of thermal expansion or a lattice constant that is intermediate between that of the base material 1 and that of the superconductor forming the superconducting conductor layer 3.
The intermediate layer 2 may have a single-layer structure or a multi-layer structure. In the case of a multilayer structure, the number and type of layers are not limited, but a bed layer containing amorphous Gd 2 Zr 2 O 7-δ (δ is an oxygen nonstoichiometric amount), Al 2 O 3 or Y 2 O 3 and the like. And a forced orientation layer containing crystalline MgO or the like and formed by the IBAD (Ion Beam Assisted Deposition) method, and an LMO layer containing LaMnO 3+δ (δ is an oxygen non-stoichiometric amount). May be. A cap layer containing CeO 2 or the like may be further provided on the LMO layer.
The thickness of each layer is 30 nm for the LMO layer, 40 nm for the MgO layer as the forced orientation layer, 7 nm for the Y 2 O 3 layer as the bed layer, and 80 nm for the Al 2 O 3 layer.

この中間層2の表面には、超電導導体層3が積層している。超電導導体層3は、高温酸化物超電導体、特に銅酸化物超電導体を含んでいることが好ましい。銅酸化物超電導体としては、高温超電導体としてのREBaCu7−δ(以下、RE系超電導体と称す)が好ましい。なお、RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素である。また、δは、酸素不定比量であって、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
超電導導体層3の厚さは1μm程度である。
The superconducting conductor layer 3 is laminated on the surface of the intermediate layer 2. The superconducting conductor layer 3 preferably contains a high temperature oxide superconductor, particularly a copper oxide superconductor. As the copper oxide superconductor, REBa 2 Cu 3 O 7-δ (hereinafter referred to as RE superconductor) as a high temperature superconductor is preferable. RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu. Further, δ is an oxygen non-stoichiometric amount, for example, 0 or more and 1 or less, and it is more preferable that it is closer to 0 from the viewpoint of high superconducting transition temperature. Note that the oxygen nonstoichiometric amount may take a negative value, that is, a negative value, when the high-pressure oxygen annealing or the like is performed using a device such as an autoclave.
The superconducting conductor layer 3 has a thickness of about 1 μm.

上記超電導導体層3の表面(中間層2とは逆側の面)及び基材1の主面11とは逆側の面には、それぞれ内部保護層4,4aが積層されている。内部保護層4,4aは、良導体の金属層であり、Ag,Au又はCuの内の少なくとも一つを含む金属が望ましい。ここでは、内部保護層4,4aがAgである場合を例示する。
超電導導体層3側の内部保護層4は厚さ2μm程度、基材1側の内部保護層4aは厚さ1.8μm程度であり、基材1側の内部保護層4aの方が薄く形成されている。
Internal protective layers 4 and 4a are laminated on the surface of the superconducting conductor layer 3 (the surface opposite to the intermediate layer 2) and the surface of the base material 1 opposite to the main surface 11, respectively. The inner protective layers 4 and 4a are metal layers having good conductors, and preferably a metal containing at least one of Ag, Au or Cu. Here, the case where the inner protective layers 4 and 4a are Ag is exemplified.
The internal protective layer 4 on the superconducting conductor layer 3 side has a thickness of about 2 μm, the internal protective layer 4a on the base material 1 side has a thickness of about 1.8 μm, and the internal protective layer 4a on the base material 1 side is formed thinner. There is.

外部保護層5は、内部保護層4、基材1、中間層2、超電導導体層3、内部保護層4aからなる積層体の図1における上下の面及び左右の面をRE系超電導線材100の全長に渡って被覆するように形成されている。
この外部保護層5は、上下左右それぞれの厚さが20μm程度で形成される。
この外部保護層5はAgからなる銀安定化層である。また、この安定化層は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されない。
また、この外部保護層5は、銅から形成した銅安定化層としても良いし、銀安定化層の上に銅安定化層を順に積層した構成となっていてもよい。
The outer protective layer 5 has the upper and lower surfaces and the left and right surfaces in FIG. 1 of the laminated body including the inner protective layer 4, the base material 1, the intermediate layer 2, the superconducting conductor layer 3, and the inner protective layer 4a of the RE superconducting wire 100. It is formed so as to cover the entire length.
The outer protective layer 5 is formed to have a thickness of about 20 μm on each side.
The outer protective layer 5 is a silver stabilizing layer made of Ag. The stabilizing layer may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, the number and type of layers are not limited.
The external protective layer 5 may be a copper stabilizing layer formed of copper, or may have a structure in which a copper stabilizing layer is sequentially laminated on a silver stabilizing layer.

[RE系超電導線材の接続構造の概要]
図2はRE系超電導線材の接続構造10の平面図である。
RE系超電導線材の接続構造10(以下、単に「接続構造10」という)は、二本のRE系超電導線材100の保護層から露出した超電導導体層3同士の接続部としての焼結接続部6と、焼結接続部6が埋め込まれた溝部211を有する溝付き枠材20と、片方のRE系超電導線材100の余長部分が巻き付けられた無誘導巻き取り枠材30とを備えている。
[Outline of connection structure of RE superconducting wire]
FIG. 2 is a plan view of the connection structure 10 of the RE-based superconducting wire.
The RE-based superconducting wire connecting structure 10 (hereinafter, simply referred to as “connecting structure 10”) is a sintered connecting part 6 as a connecting part between the superconducting conductor layers 3 exposed from the protective layer of the two RE-based superconducting wires 100. And a grooved frame member 20 having a groove portion 211 in which the sintered connection portion 6 is embedded, and a non-inductive winding frame member 30 around which an extra length portion of one RE-based superconducting wire 100 is wound.

[焼結接続部]
図3は焼結接続部6の周辺の平面図である。
接続対象となる二本のRE系超電導線材100は、前述したように、各々が個別に用途(例えば、超電導コイル等)が定められており、その用途に使用されている部分から焼結接続部6を形成するために余長をもって引き出された部分の先端部同士が焼結接続されている。各RE系超電導線材100の余長部分は、焼結接続部6の焼結作業時の高温の影響を避けるために十分な長さと複数回の焼結作業(接続不良が生じた場合には先端の焼結部分を切除して再度焼結作業を行う)を考慮した長さが確保される。
この焼結接続部6は、RE系超電導線材100の各々の接続端部において保護層が一定の長さで除去され、露出状態とされた基材1及び超電導導体層3に対して、各々の先端部の位置を揃えた状態で、超電導導体層3の露出面同士を向かい合わせに貼り合わせた状態で焼結接続を行うことにより形成されている。
また、焼結接続部6において、二本のRE系超電導線材100は、当該RE系超電導線材の長手方向における焼結接続部6側に向かう方向が同じ向きになるように接続されている。
[Sintered connection]
FIG. 3 is a plan view of the periphery of the sintered connection portion 6.
As described above, the two RE-based superconducting wire rods 100 to be connected have their respective uses (for example, superconducting coils) individually determined, and the sintered connection part is used from the part used for the uses. In order to form 6, the tips of the portions that are pulled out with an extra length are sintered and connected. The extra length portion of each RE-based superconducting wire 100 has a length sufficient for avoiding the influence of the high temperature during the sintering operation of the sintering connection portion 6 and a plurality of sintering operations (in the case of a connection failure, the tip end). The length is secured in consideration of cutting off the sintered part of and performing the sintering work again.
In the sintered connection portion 6, the protective layer is removed at a fixed length at each connection end portion of the RE-based superconducting wire 100, and the base material 1 and the superconducting conductor layer 3 that are exposed are separated from each other. It is formed by performing sintering connection in a state where the positions of the tip portions are aligned and the exposed surfaces of the superconducting conductor layer 3 are bonded face to face.
Further, in the sintered connection portion 6, the two RE-based superconducting wires 100 are connected so that the directions toward the sintered connection portion 6 side in the longitudinal direction of the RE-based superconducting wire material are the same.

上記RE系超電導線材100の焼結接続には、MOD法(Metal Organic Deposition法/有機金属堆積法)が採用されている。
二本の超電導導体層3の露出面の間にMOD液を充填し、露出面同士を貼り合わせた状態を維持しながら、二本のRE系超電導線材100の接続端部とその周辺部分のみに対して、N+Oガスの雰囲気内で、400℃以上500℃以下の温度範囲で仮焼成を行い、さらに、相互間を加圧しながらAr+Oガスの雰囲気内で、760℃以上800℃以下の温度範囲で本焼成を行った後に、350℃以上500℃以下の温度範囲の酸素の雰囲気下で酸素アニールを行う。
なお、上述のMOD液は、例えば、RE(Y(イットリウム)、Gd(ガドリニウム)、Sm(サマリウム)及びHo(ホルミウム)等の希土類元素)とBaとCuとが約1:2:3の割合で含まれているアセチルアセトナート系MOD溶液が使用される。
これにより、二本のRE系超電導線材100の超電導導体層3同士が超電導状態で接続され、焼結接続部6が形成される。
The MOD method (Metal Organic Deposition method/organic metal deposition method) is adopted for the sintering connection of the RE superconducting wire 100.
The MOD liquid is filled between the exposed surfaces of the two superconducting conductor layers 3 and only the connecting ends of the two RE-based superconducting wires 100 and their peripheral portions are maintained while maintaining a state in which the exposed surfaces are bonded to each other. On the other hand, calcination is performed in a temperature range of 400°C to 500°C in an N 2 +O 2 gas atmosphere, and 760°C to 800°C in an Ar+O 2 gas atmosphere while pressurizing each other. After the main firing is performed in the temperature range of 1, the oxygen annealing is performed in the oxygen atmosphere in the temperature range of 350° C. or higher and 500° C. or lower.
In the above MOD liquid, for example, RE (Y (yttrium), Gd (gadolinium), Sm (samarium) and Ho (holmium) and other rare earth elements), Ba and Cu in a ratio of about 1:2:3. The acetylacetonate-based MOD solution contained in 1) is used.
Thereby, the superconducting conductor layers 3 of the two RE-based superconducting wires 100 are connected in a superconducting state, and the sintered connection portion 6 is formed.

[溝付き枠材]
図4は溝付き枠材20の斜視図である。
図2〜図4に示すように、溝付き枠材20は、円柱状の円柱形状部21と、円柱形状部21の下部(中心線方向の一端部側)の外周に形成されたフランジ部22とを備えている。
RE系超電導線材100は、極低温下での使用が想定されているので、この溝付き枠材20は、枠の材質はGFRP(Glass Fiber Reinforced Plastics)や銅,アルミなど低温において割れ等が発生し難い材質により一体的に形成されている。
[Grooved frame material]
FIG. 4 is a perspective view of the frame member 20 with grooves.
As shown in FIGS. 2 to 4, the grooved frame member 20 includes a columnar columnar portion 21 and a flange portion 22 formed on the outer periphery of the lower portion (one end side in the centerline direction) of the columnar portion 21. It has and.
Since the RE-based superconducting wire 100 is assumed to be used at extremely low temperatures, the grooved frame member 20 has a frame material such as GFRP (Glass Fiber Reinforced Plastics), copper, aluminum, etc., which cracks at low temperatures. It is integrally formed of a material that is difficult to do.

円柱形状部21は、その上面において、外周面から内部に向かって中心から幾分ずれた位置に真っ直ぐな溝部211が形成されており、外周面から溝部211に進入する入り口には角が丸く成形された円弧部212が形成されている。また、その中心部には、円柱形状部21を上下に貫通して、溝付き枠材20を外部に固定するための取付穴25が形成されている。
そして、溝付き枠材20の円柱形状部21に形成された溝部211には、二本のRE系超電導線材100の焼結接続部6が全長に渡って挿入されており、溝部211と焼結接続部6の間には充填剤23が充填され、焼結接続部6は溝部211に埋め込まれた状態となっている。
なお、充填剤23としては、半田等の低融点金属や樹脂(例えば、エポキシ樹脂)、パラフィン等が使用されている。
A straight groove portion 211 is formed on the upper surface of the cylindrical portion 21 at a position slightly deviated from the center from the outer peripheral surface toward the inside, and the entrance entering the groove portion 211 from the outer peripheral surface has a rounded corner. A curved arc portion 212 is formed. In addition, a mounting hole 25 is formed in the center of the column-shaped portion 21 so as to vertically penetrate therethrough to fix the grooved frame member 20 to the outside.
Then, the sintered connection portions 6 of the two RE-based superconducting wires 100 are inserted over the entire length in the groove portion 211 formed in the columnar portion 21 of the grooved frame member 20, and the sintered portion and the groove portion 211 are sintered together. A filler 23 is filled between the connecting portions 6, and the sintered connecting portion 6 is embedded in the groove 211.
As the filler 23, a low melting point metal such as solder, resin (for example, epoxy resin), paraffin, or the like is used.

また、二本のRE系超電導線材100の焼結接続部6以外の余長部分は、円弧部212に沿って湾曲し、なお且つ、フランジ部22の上面において円柱形状部21の外周に巻回されている。なお、円柱形状部21や円弧部212の外径は、RE系超電導線材100の許容される最小曲げ直径を下回らないように設定されている。例えば、RE系超電導線材100の許容される最小曲げ直径が11[mm]であれば、円柱形状部21や円弧部212の外径(半径)は5.5[mm]以上の値に設定されている。
巻回された状態の二本のRE系超電導線材100の外周面側には帯状の絶縁材24が配置され、二本のRE系超電導線材100と共に巻回されている。この帯状の絶縁材24としては、ポリイミドテープやフッ素樹脂テープ、もしくはステンレスなどの高抵抗金属テープが使用されている。
これにより、二本のRE系超電導線材100同士は互いに密着しているが、複数回巻き付けられた二本のRE系超電導線材100は、一周ごとに絶縁が図られ、誘導電流の発生が抑制される構造となっている。
In addition, the extra length portion of the two RE-based superconducting wires 100 other than the sintered connection portion 6 is curved along the arc portion 212, and is wound around the outer periphery of the cylindrical portion 21 on the upper surface of the flange portion 22. Has been done. The outer diameters of the cylindrical portion 21 and the arc portion 212 are set so as not to fall below the minimum bend diameter of the RE-based superconducting wire 100. For example, if the RE-based superconducting wire 100 has an allowable minimum bending diameter of 11 [mm], the outer diameter (radius) of the cylindrical portion 21 and the arc portion 212 is set to a value of 5.5 [mm] or more. ..
A strip-shaped insulating material 24 is arranged on the outer peripheral surface side of the two RE-based superconducting wires 100 in a wound state, and is wound together with the two RE-based superconducting wires 100. As the strip-shaped insulating material 24, a polyimide tape, a fluororesin tape, or a high resistance metal tape such as stainless steel is used.
As a result, the two RE-based superconducting wire rods 100 are in close contact with each other, but the two RE-based superconducting wire rods 100 that are wound a plurality of times are insulated every turn, and the generation of induced current is suppressed. It has a structure that

また、二本のRE系超電導線材100には、焼結接続部6以外の部分において、互いの超電導導体層3同士を低抵抗で導通可能に接続するバイパス接続部7が形成されている。このバイパス接続部7は、各RE系超電導線材100の外部保護層5の表面同士を半田等の良導体からなるロウ材で溶接することにより形成されている。 Further, in the two RE-based superconducting wires 100, a bypass connecting portion 7 that connects the superconducting conductor layers 3 to each other so as to be conductive with low resistance is formed in a portion other than the sintered connecting portion 6. The bypass connection portion 7 is formed by welding the surfaces of the outer protective layer 5 of each RE-based superconducting wire 100 with a brazing material made of a good conductor such as solder.

上記接続構造10のように、一方のRE系超電導線材100から他方のRE系超電導線材100に対して焼結接続部6を介して導通接続される構造の場合、何らかの原因により、焼結接続部6における超電導導体層3が超電導状態から常電導状態に転移すると、高抵抗となり過電流による発熱する。そして、焼結接続部6は、超電導導体層3の周囲に金属の保護層4,5が存在しないので、電流及び熱の逃げ場がなく、ホットスポット化して焼損するおそれがある。
このため、焼結接続部6以外の部分にバイパス接続部7を設けることで、当該バイパス接続部7を介して電流を流し、焼結接続部6でのホットスポット化の抑制を図っている。
In the case of a structure in which one RE-based superconducting wire 100 is conductively connected to the other RE-based superconducting wire 100 via the sintered connecting portion 6 like the above-described connecting structure 10, the sintered connecting portion is caused by some cause. When the superconducting conductor layer 3 in 6 transitions from the superconducting state to the normal conducting state, the resistance becomes high and heat is generated due to overcurrent. Since the metal protective layers 4 and 5 do not exist around the superconducting conductor layer 3 in the sintered connection portion 6, there is no escape place for current and heat, and there is a risk of burning into a hot spot.
Therefore, by providing the bypass connection portion 7 in a portion other than the sintered connection portion 6, a current is caused to flow through the bypass connection portion 7 to suppress hot spot formation in the sintered connection portion 6.

上記目的により形成されるバイパス接続部7は、十分に低抵抗且つ高電流容量であることが望まれる。一方、RE系超電導線材100の基材1の材料に前述したNi合金等を使用している場合には、比較的、高抵抗となるので、バイパス接続部7において、一方のRE系超電導線材100の超電導導体層3と他方のRE系超電導線材100の超電導導体層3との間に基材1が存在しないように、外部保護層5の表面であって基材1に対する超電導導体層3側の面を互いにバイパス接続することが望ましい。 The bypass connection portion 7 formed for the above purpose is desired to have sufficiently low resistance and high current capacity. On the other hand, when the above-mentioned Ni alloy or the like is used as the material of the base material 1 of the RE-based superconducting wire 100, the resistance is relatively high, so that one RE-based superconducting wire 100 in the bypass connection portion 7 is used. So that the base material 1 does not exist between the superconducting conductor layer 3 and the superconducting conductor layer 3 of the other RE-based superconducting wire 100. It is desirable to bypass the faces together.

なお、図2では、バイパス接続部7が溝付き枠材20に巻回されたRE系超電導線材100の巻線部内に形成されている場合を例示したが、二本のRE系超電導線材100における溝付き枠材20に巻回されていない部分にバイパス接続部7を形成しても良い。その場合、バイパス接続部7を除く、二本のRE系超電導線材100における溝付き枠材20に巻回されていない部分は、相互間を絶縁することが望ましい。相互間の絶縁は、例えば、前述した絶縁材24を介挿することが望ましい。 2 illustrates the case where the bypass connection portion 7 is formed in the winding portion of the RE-based superconducting wire 100 wound around the grooved frame member 20, but in the two RE-based superconducting wire 100. The bypass connection portion 7 may be formed in a portion that is not wound around the grooved frame member 20. In that case, it is desirable that the portions of the two RE-based superconducting wires 100 that are not wound around the grooved frame member 20 except the bypass connection portion 7 be insulated from each other. For insulation between the two, it is desirable to interpose the above-mentioned insulating material 24, for example.

また、溝付き枠材20に巻回された二本のRE系超電導線材100の余長部分は、巻回状態を維持するために、エポキシ等の硬化性樹脂等で固定しても良い。或いは、巻回された二本のRE系超電導線材100の外周に嵌合するC字状の枠で固定しても良い。 The extra length portions of the two RE-based superconducting wires 100 wound around the frame member 20 with grooves may be fixed with a curable resin such as epoxy so as to maintain the wound state. Alternatively, it may be fixed by a C-shaped frame fitted to the outer circumference of the two wound RE-based superconducting wires 100.

[無誘導巻き取り枠材]
無誘導巻き取り枠材30は、溝付き枠材20において巻回された二本のRE系超電導線材100の余長部分の長さが異なる場合や内側に巻かれた一方のRE系超電導線材100がその径差により余長部分を溝付き枠材20に巻ききれない場合に、一方のRE系超電導線材100のみ余った余長部分をさらに巻き付けるための枠材である。
[Inductive winding frame material]
The non-inductive winding frame material 30 includes two RE-based superconducting wires 100 wound in the grooved frame material 20 when the extra lengths of the RE-based superconducting wires 100 are different from each other or one RE-based superconducting wire 100 wound inside. Is a frame material for further winding the surplus portion of only one RE-based superconducting wire 100 when the surplus portion cannot be wound around the grooved frame member 20 due to the diameter difference.

図2に示すように、無誘導巻き取り枠材30は、円柱状の円柱形状部31と、円柱形状部31の下部(中心線方向の一端部側)の外周に形成されたフランジ部32とを備えている。また、その中心部には、円柱形状部31を上下に貫通して、無誘導巻き取り枠材30を外部に固定するための取付穴35が形成されている。
極低温下での使用を想定して、この無誘導巻き取り枠材30も、GFRPや銅、アルミ等により一体的に形成されている。
As shown in FIG. 2, the non-induction winding frame member 30 includes a columnar cylindrical portion 31 and a flange portion 32 formed on the outer periphery of the lower portion (one end side in the centerline direction) of the cylindrical portion 31. Equipped with. In addition, a mounting hole 35 is formed in the center of the columnar portion 31 so as to vertically penetrate therethrough and fix the non-inductive winding frame member 30 to the outside.
This non-inductive winding frame member 30 is also integrally formed of GFRP, copper, aluminum or the like, assuming use at extremely low temperatures.

円柱形状部31は、その外周の一部が切り欠かれた形状であり、当該切り欠き部分には一方のRE系超電導線材100を折り返すための軸部33が形成されている。
即ち、溝付き枠材20に巻ききれない余長部分を生じたRE系超電導線材100は、当該巻ききれない余長部分の中間部分が軸部33の外周に巻かれるように折り返して、円柱形状部31の外周面に二重にRE系超電導線材100の巻き付けが行われている。
The cylindrical portion 31 has a shape in which a part of the outer circumference is cut out, and the shaft portion 33 for folding back one RE-based superconducting wire 100 is formed in the cutout portion.
That is, the RE-based superconducting wire 100 having an excess length portion that cannot be completely wound around the grooved frame member 20 is folded back so that the intermediate portion of the excess length portion that cannot be wound is wound around the outer periphery of the shaft portion 33, and has a cylindrical shape. The RE superconducting wire 100 is doubly wound around the outer peripheral surface of the portion 31.

二重で巻回されたRE系超電導線材100の外周面側にも、前述した絶縁材24と同じ帯状の絶縁材34が配置され、二重のRE系超電導線材100と共に巻回されている。
これにより、二重で巻回されたRE系超電導線材100も一周ごとに絶縁が図られ、誘導電流の発生を抑制することができる。
The same band-shaped insulating material 34 as the above-described insulating material 24 is also arranged on the outer peripheral surface side of the double wound RE superconducting wire 100 and is wound together with the double RE superconducting wire 100.
As a result, the double-wound RE superconducting wire 100 is also insulated for each turn, and the generation of induced current can be suppressed.

なお、無誘導巻き取り枠材30に巻回されたRE系超電導線材100の余長部分も、巻回状態を維持するために、エポキシ等の硬化性樹脂等やC字状の枠で固定しても良い。 The extra length of the RE superconducting wire 100 wound around the non-inductive winding frame material 30 is fixed with a curable resin such as epoxy or a C-shaped frame in order to maintain the winding state. May be.

[接続構造の技術的効果]
上記RE系超電導線材の接続構造10は、溝付き枠材20の溝部211内に二本のRE系超電導線材100の焼結接続部6が埋め込まれているので、焼結接続部6の周囲が溝部211の内壁に囲まれて機械的強度が高く維持され、曲げや衝撃,その他の外力から保護し、破損の発生を効果的に低減することが可能である。
[Technical effects of connection structure]
In the connection structure 10 for the RE-based superconducting wire, since the sintered connecting parts 6 of the two RE-based superconducting wires 100 are embedded in the groove portion 211 of the grooved frame member 20, the periphery of the sintered connecting part 6 is The mechanical strength is kept high by being surrounded by the inner wall of the groove 211, and it is possible to protect from bending, impact, and other external force, and effectively reduce the occurrence of breakage.

また、溝付き枠材20は円柱形状部21を備え、焼結接続部6で接続された二本のRE系超電導線材100が円柱形状部21に巻線されているので、焼結接続部6の焼結作業のために長く引き出されたRE系超電導線材100の余長部分を巻回することにより、当該余長部分を特定方向の曲がりや折り曲げから保護することが可能となる。
また、RE系超電導線材100の余長部分を巻回により安定的に拘束することができ、焼結接続部6側への応力や荷重が加わることを抑制し、焼結接続部6の保護を図ることが可能である。
また、円柱形状部21の溝部211の入り口には円弧部212が形成されているので、溝部211を起点として巻回されるRE系超電導線材100に加わる曲げを緩和し、RE系超電導線材100の保護を図ることが可能となる。
Further, the grooved frame member 20 includes the columnar portion 21, and since the two RE-based superconducting wire rods 100 connected by the sintered joint portion 6 are wound around the columnar portion 21, the sintered joint portion 6 is formed. By winding the extra length portion of the RE-based superconducting wire 100 that has been pulled out for the sintering work of No. 3, it is possible to protect the extra length portion from bending or bending in a specific direction.
Further, the extra length portion of the RE-based superconducting wire 100 can be stably restrained by winding, the stress and the load applied to the sintered connection portion 6 side can be suppressed, and the sintered connection portion 6 can be protected. It is possible to plan.
In addition, since the circular arc portion 212 is formed at the entrance of the groove portion 211 of the cylindrical portion 21, the bending applied to the RE-based superconducting wire 100 wound around the groove portion 211 is relaxed, and the RE-based superconducting wire 100 is wound. It becomes possible to protect.

また、接続構造10において、二本のRE系超電導線材100は、焼結接続部6以外の部分でバイパス接続部7により導通可能に接続されているので、何らかの原因により、焼結接続部6における超電導導体層3が超電導状態から常電導状態に転移した場合に、バイパス接続部7に電流を逃がすことができ、焼結接続部6のホットスポット化を抑制し、焼損の発生を低減することが可能となる。
特に、バイパス接続部7を二本のRE系超電導線材100が円柱形状部21により安定的に拘束された巻線部内に設けたことにより、バイパス接続部7を応力や荷重から保護し、破損の発生を低減することが可能となる。
Further, in the connecting structure 10, the two RE-based superconducting wires 100 are connected to the bypass connecting portion 7 so as to be able to conduct in a portion other than the sintering connecting portion 6, so that the sintered connecting portion 6 may have some cause for some reason. When the superconducting conductor layer 3 transitions from the superconducting state to the normal conducting state, the current can be released to the bypass connection portion 7, the hot spot of the sintered connection portion 6 can be suppressed, and the occurrence of burnout can be reduced. It will be possible.
In particular, since the bypass connecting portion 7 is provided in the winding portion where the two RE-based superconducting wires 100 are stably restrained by the columnar portion 21, the bypass connecting portion 7 is protected from stress and load and is prevented from being damaged. It is possible to reduce the occurrence.

また、接続構造10は、無誘導巻き取り枠材30を備えるので、二本のRE系超電導線材100の内の一方のみが他方よりも長い余長部分を有する場合に、当該余長部分を巻回した状態で拘束することができ、かかる余長部分も特定方向の曲がりや折り曲げから保護することが可能となる。 Further, since the connection structure 10 includes the non-inductive winding frame member 30, when only one of the two RE-based superconducting wire rods 100 has an extra length portion longer than the other, the extra length portion is wound. It can be restrained in a rotated state, and the extra length portion can be protected from bending or bending in a specific direction.

[第二の実施形態]
前述したRE系超電導線材の接続構造10を適用した超電導コイルを用いた電流システム200について図面を参照して説明する。
[Second embodiment]
A current system 200 using a superconducting coil to which the connection structure 10 of the RE-based superconducting wire described above is applied will be described with reference to the drawings.

[超電導コイルを用いた電流システム]
図5は超電導コイルを用いた電流システム200の概略構成図である。
上記超電導コイルを用いた電流システム200(以下、「電流システム200」とする)は、直列接続された複数(n個)の超電導コイル40と、これらの超電導コイル40に電流を流して励磁ループErを形成する電源201と、直列接続された複数(n個)の超電導コイル40に対して電源201が介在しない永久電流ループPrを形成する永久電流スイッチ60とを備えている。
そして、上記永久電流ループPrを構成する永久電流スイッチ60及び複数の超電導コイル40は全てRE系超電導線材100により接続されており、これらにはRE系超電導線材100を超電導状態とする極低温に冷却するための図示しない冷凍機が併設されている。
また、上記永久電流ループを構成する永久電流スイッチ60及び複数の超電導コイル40の各部の接続部に、前述したRE系超電導線材の接続構造10が適用されている。
[Current system using superconducting coil]
FIG. 5 is a schematic configuration diagram of a current system 200 using a superconducting coil.
A current system 200 using the above superconducting coils (hereinafter referred to as “current system 200”) includes a plurality (n) of superconducting coils 40 connected in series, and a current is passed through these superconducting coils 40 to generate an excitation loop Er. And a permanent current switch 60 forming a permanent current loop Pr in which the power source 201 does not intervene for a plurality (n) of superconducting coils 40 connected in series.
The permanent current switch 60 and the plurality of superconducting coils 40 forming the permanent current loop Pr are all connected by the RE superconducting wire 100, and they are cooled to a cryogenic temperature to bring the RE superconducting wire 100 into a superconducting state. A refrigerator (not shown) is provided for this purpose.
Further, the connection structure 10 of the RE-based superconducting wire described above is applied to the connecting portions of the respective portions of the permanent current switch 60 and the plurality of superconducting coils 40 that form the above-mentioned permanent current loop.

上記電流システム200は、まず電源201により各超電導コイル40に電流を流し、励磁ループErを形成する。
そして、複数の超電導コイル40と永久電流スイッチ60を、これらが超電導状態となる温度まで冷却すると、電源201側の通電を切断する。これにより、複数の超電導コイル40と永久電流スイッチ60との間で永久電流ループPrを形成することができる。
この永久電流スイッチ60と超電導コイル40による永久電流ループPrが前述した接続構造10によって常電導抵抗を経ることなく成立し、時間的に安定性の高い永久電流システムを製作することができる。
このような超電導コイルを用いた電流システム200の各構成について以下に説明する。
In the current system 200, a power supply 201 first causes a current to flow through each superconducting coil 40 to form an excitation loop Er.
Then, when the plurality of superconducting coils 40 and the persistent current switch 60 are cooled to a temperature at which they are in the superconducting state, the power supply 201 is turned off. As a result, a permanent current loop Pr can be formed between the plurality of superconducting coils 40 and the persistent current switch 60.
The permanent current loop Pr formed by the permanent current switch 60 and the superconducting coil 40 is established by the connection structure 10 described above without passing through the normal conducting resistance, and a permanent current system having high temporal stability can be manufactured.
Each configuration of the current system 200 using such a superconducting coil will be described below.

[超電導コイル]
図6は電流システム200の永久電流ループPr側の構成を示す概略構造図である。
各超電導コイル40はRE系超電導線材100を巻回したソレノイドコイルであり、巻き線であるRE系超電導線材100の一端部がコイル内周側から引き出され、RE系超電導線材100の他端部はコイル外周側から引き出されている。
そして、図示のように、複数の超電導コイル40(第一コイル401〜第nコイル40nとする)は、同心であって内側から半径方向外側に向かって順番に配置されている。即ち、外側となる超電導コイル40ほど径が大きくなり、内側の超電導コイル40を内周側に収容している。
[Superconducting coil]
FIG. 6 is a schematic structural diagram showing the configuration of the current system 200 on the permanent current loop Pr side.
Each superconducting coil 40 is a solenoid coil in which the RE-based superconducting wire 100 is wound. One end of the RE-based superconducting wire 100, which is a winding, is pulled out from the inner circumference of the coil, and the other end of the RE-based superconducting wire 100 is It is pulled out from the outer circumference of the coil.
Then, as shown in the figure, the plurality of superconducting coils 40 (first coil 401 to nth coil 40n) are concentric and are sequentially arranged from the inner side toward the outer side in the radial direction. That is, the outer superconducting coil 40 has a larger diameter, and the inner superconducting coil 40 is accommodated on the inner peripheral side.

ここで、最も内側の第一コイル401とその外側に配置された第二コイル402とを例にして、超電導コイル40の構造をより詳細に説明する。図7は第一コイル401と第二コイル402の斜視図である。
図示のように、第一コイル401は、円筒状のコイル巻枠411と、内側から複数の層をなしてコイル巻枠411に巻回されるRE系超電導線材100と、図示しない冷凍機に接続され、巻回されたRE系超電導線材100の冷却を行う金属スリーブ421とを備えている。
また、第二コイル402は、金属スリーブ421の外周に配置された円筒状のコイル巻枠412と、内側から複数の層をなしてコイル巻枠411に巻回されるRE系超電導線材100と、巻回されたRE系超電導線材100の冷却を行う図示しない金属スリーブとを備えている。
Here, the structure of the superconducting coil 40 will be described in more detail by taking the innermost first coil 401 and the second coil 402 arranged outside thereof as an example. FIG. 7 is a perspective view of the first coil 401 and the second coil 402.
As shown in the drawing, the first coil 401 is connected to a cylindrical coil winding frame 411, an RE-based superconducting wire 100 that is wound around the coil winding frame 411 in a plurality of layers from the inside, and a refrigerator (not shown). And a metal sleeve 421 for cooling the wound RE-based superconducting wire 100.
The second coil 402 includes a cylindrical coil winding frame 412 arranged on the outer circumference of the metal sleeve 421, an RE-based superconducting wire 100 wound on the coil winding frame 411 in a plurality of layers from the inside, It is provided with a metal sleeve (not shown) that cools the wound RE superconducting wire 100.

上記コイル巻枠411,412は、枠の材質はGFRPや銅,アルミなど低温において割れ等が発生し難い材質により一体的に形成されている。ただし、良導体を巻枠として使用する場合は渦電流対策として巻枠の軸方向に切れ目を入れておくことが望ましい。
上記各コイル401及び402の金属スリーブは、伝熱性の高い無酸素銅から形成されている。そして、金属スリーブは、コイル巻枠411,412及び巻回されたRE系超電導線材100と接触する構造であり、これらとの接触面にはグリースが塗布され、伝熱性を高めてコイル巻枠411,412及び巻回されたRE系超電導線材100の冷却効率が高められている。また、金属スリーブにおけるRE系超電導線材100との接触面には絶縁のためのポリイミドフィルムが貼着されている。
The coil winding frames 411 and 412 are integrally formed of a material such as GFRP, copper, or aluminum that is unlikely to be cracked at low temperatures. However, when using a good conductor as the bobbin, it is desirable to make a cut in the axial direction of the bobbin as a measure against eddy current.
The metal sleeves of the coils 401 and 402 are made of oxygen-free copper having high heat conductivity. The metal sleeve has a structure in contact with the coil winding frames 411, 412 and the wound RE-based superconducting wire 100, and the contact surface with these is coated with grease to enhance the heat transfer property and improve the coil winding 411. , 412 and the wound RE-based superconducting wire 100 are improved in cooling efficiency. In addition, a polyimide film for insulation is attached to the contact surface of the metal sleeve with the RE-based superconducting wire 100.

第一コイル401のRE系超電導線材100の一端部はコイルの内周側から引き出され(図7では図示略)、電源201側と永久電流スイッチ60側とに分岐している。また、当該RE系超電導線材100の他端部はコイルの外周側から図7における上方(図6では下方)に引き出されている。
第二コイル402のRE系超電導線材100の一端部はコイルの内周側から図7における上方(図6では下方)に引き出されており、当該RE系超電導線材100の他端部はコイルの外周側から図7における上方(図6では下方)に引き出されている(図示略)。
そして、第一コイル401の外周に引き出されたRE系超電導線材100の他端部と第二コイル402の内周に引き出されたRE系超電導線材100の一端部とが、前述したRE系超電導線材の接続構造10を適用した接続器110(後述する)により接続されている。
なお、図7における符号112は、第一コイル401のRE系超電導線材100の他端部と第二コイル402のRE系超電導線材100の一端部とをそれぞれ個別に導く柱状ガイド(後述)である。
One end of the RE-based superconducting wire 100 of the first coil 401 is drawn out from the inner circumference side of the coil (not shown in FIG. 7) and is branched to the power supply 201 side and the persistent current switch 60 side. The other end of the RE-based superconducting wire 100 is pulled out from the outer peripheral side of the coil to the upper side in FIG. 7 (the lower side in FIG. 6).
One end of the RE-based superconducting wire 100 of the second coil 402 is pulled out from the inner circumference side of the coil to the upper side in FIG. 7 (downward in FIG. 6), and the other end of the RE-based superconducting wire 100 is the outer circumference of the coil. It is pulled out from the side upward (downward in FIG. 6) in FIG. 7 (not shown).
The other end of the RE-based superconducting wire 100 drawn to the outer circumference of the first coil 401 and the one end of the RE-based superconducting wire 100 drawn to the inner circumference of the second coil 402 are the above-described RE-based superconducting wire. They are connected by a connector 110 (which will be described later) to which the connection structure 10 is applied.
Reference numeral 112 in FIG. 7 is a columnar guide (described later) that individually guides the other end of the RE-based superconducting wire 100 of the first coil 401 and the one end of the RE-based superconducting wire 100 of the second coil 402. ..

なお、第二コイル402よりも外側の他の超電導コイル40も、第二コイル402と同様に、RE系超電導線材100が巻回されたコイル巻枠と金属スリーブとを備え、巻回されたRE系超電導線材100の一端部と他端部がいずれも図7における上方(図6では下方)に引き出されており、隣り合う超電導コイル40同士で巻回されたRE系超電導線材100の一端部と他端部とが接続器110(後述する)により接続されている。
また、最も外側に配置された第nコイル40nは、RE系超電導線材100の一端部はコイルの内周側から図7における上方(図6では下方)に引き出されており、当該RE系超電導線材100の他端部はコイルの外周側から引き出され、電源201側と永久電流スイッチ60側とに分岐している。
そして、第二コイル402〜第nコイル40nについても、隣り合うコイル同士でRE系超電導線材100の一端部と他端部とが接続器110により接続されている。
Similar to the second coil 402, the other superconducting coil 40 outside the second coil 402 also includes a coil winding frame around which the RE-based superconducting wire 100 is wound and a metal sleeve, and is wound RE. Both the one end and the other end of the RE superconducting wire 100 are drawn upward (downward in FIG. 6) in FIG. 7, and the one end of the RE superconducting wire 100 wound between adjacent superconducting coils 40 and The other end is connected by a connector 110 (described later).
Further, in the n-th coil 40n arranged on the outermost side, one end portion of the RE-based superconducting wire 100 is pulled out from the inner peripheral side of the coil to the upper side in FIG. The other end of 100 is drawn out from the outer peripheral side of the coil and is branched to the power supply 201 side and the permanent current switch 60 side.
Also, with respect to the second coil 402 to the nth coil 40n, one end and the other end of the RE-based superconducting wire 100 are connected by the connector 110 between adjacent coils.

[接続器]
図8は接続器110の斜視図である。
この接続器110は、二つの超電導コイル40から引き出されたRE系超電導線材100の焼結接続部6を保持する接続構造10と、当該接続構造10の各構成を支持する冷却板111と、冷却板111と一体的に形成され、当該冷却板111から延出された二本の柱状ガイド112とを備えている。
[Connector]
FIG. 8 is a perspective view of the connector 110.
The connector 110 includes a connection structure 10 that holds the sintered connection part 6 of the RE-based superconducting wire 100 drawn out from the two superconducting coils 40, a cooling plate 111 that supports each component of the connection structure 10, and a cooling plate 111. It is provided with two columnar guides 112 formed integrally with the plate 111 and extended from the cooling plate 111.

冷却板111及び柱状ガイド112は伝熱性の高い無酸素銅から形成されており、図示しない冷凍機に接続され、RE系超電導線材100の冷却を行う。
冷却板111は、円形の平板であり、その上面には、接続構造10が取り付けられている。なお、冷却板111の形状は円形に限らず任意の形状とすることができる。
接続構造10の溝付き枠材20及び無誘導巻き取り枠材30は、冷却板111との接触面にグリースが塗布され、これらの枠材20,30に巻回されたRE系超電導線材100の冷却効率が高められている。
また、溝付き枠材20及び無誘導巻き取り枠材30は、それぞれの取付穴25,35を通じて図示しないボルトによって冷却板111に締結固定されている。ボルトを緩めることでそれぞれの枠材20,30はボルトを中心に回転させることができ、巻回するRE系超電導線材100の余長部分の長さに応じて巻き取り量を調節することができる。
The cooling plate 111 and the columnar guide 112 are made of oxygen-free copper having high heat conductivity, and are connected to a refrigerator (not shown) to cool the RE-based superconducting wire 100.
The cooling plate 111 is a circular flat plate, and the connection structure 10 is attached to the upper surface thereof. The shape of the cooling plate 111 is not limited to the circular shape, and may be any shape.
The grooved frame member 20 and the non-inductive winding frame member 30 of the connection structure 10 are coated with grease on the contact surfaces with the cooling plate 111, and the RE-based superconducting wire 100 wound around these frame members 20 and 30. Cooling efficiency is improved.
Further, the grooved frame member 20 and the non-induction winding frame member 30 are fastened and fixed to the cooling plate 111 through mounting holes 25 and 35 by bolts (not shown). By loosening the bolts, the respective frame members 20 and 30 can be rotated around the bolts, and the winding amount can be adjusted according to the length of the extra length portion of the RE-based superconducting wire 100 to be wound. ..

二つの超電導コイル40から引き出されたRE系超電導線材100の余長部分は、個別に各柱状ガイド112に螺旋状に巻き付けられて、冷却板111上の接続構造10において焼結接続部6により焼結接続されている。
なお、各RE系超電導線材100の余長が調節されて各部に巻き付けられた後には、当該RE系超電導線材100及び各枠材20,30は剥離しないようにエポキシ樹脂等で固めることが望ましい。
The extra length portion of the RE-based superconducting wire 100 drawn out from the two superconducting coils 40 is individually spirally wound around each columnar guide 112, and burned by the sintering connection portion 6 in the connection structure 10 on the cooling plate 111. Connected and connected.
After the extra length of each RE-based superconducting wire 100 is adjusted and wound around each part, it is desirable to solidify the RE-based superconducting wire 100 and each of the frame members 20 and 30 with an epoxy resin or the like so as not to separate.

各柱状ガイド112と各RE系超電導線材100との間にもグリースを塗布して、冷却効率を高めても良い。
また、冷却板111及び柱状ガイド112の表面において、RE系超電導線材100と接触する部分には、RE系超電導線材100と絶縁を図るためのポリイミドフィルムが貼着されている。
Grease may be applied between each columnar guide 112 and each RE-based superconducting wire 100 to enhance cooling efficiency.
Further, on the surface of the cooling plate 111 and the columnar guide 112, a polyimide film for insulating the RE-based superconducting wire 100 is attached to a portion in contact with the RE-based superconducting wire 100.

これら柱状ガイド112は、より長く延出することにより、各超電導コイル40からの磁場の影響を低減することが可能である。磁場の影響が大きくなると、RE系超電導線材100に流すことが可能な電流値が低減し、また磁場の影響によってRE系超電導線材100が巻回位置から剥離を生じ得るが、柱状ガイド112をより長く延出することで、これらを抑制することが可能となる。 By extending these columnar guides 112 longer, it is possible to reduce the influence of the magnetic field from each superconducting coil 40. When the influence of the magnetic field increases, the current value that can be passed through the RE-based superconducting wire 100 decreases, and the RE-based superconducting wire 100 may be separated from the winding position due to the influence of the magnetic field. By extending it for a long time, these can be suppressed.

上記接続器110により、各超電導コイル40のRE系超電導線材100同士を超電導接続が可能な焼結接続により接続することができる。
また、焼結接続部6は溝付き枠材20により機械的強度が確保された状態で安定的に接続状態を維持し、故障や破損を低減することができる。
さらに、各超電導コイル40のRE系超電導線材100の余長部分は各枠材20,30により巻回状態で保持され、捻れや曲がり等から保護され、安定的に接続状態を維持し、故障や破損を低減することができる。
By the connector 110, the RE-based superconducting wire rods 100 of the respective superconducting coils 40 can be connected to each other by sintering connection which enables superconducting connection.
Further, the sintered connection portion 6 can stably maintain the connected state in the state where the mechanical strength is secured by the grooved frame member 20, and it is possible to reduce failure and damage.
Further, the extra length portion of the RE-based superconducting wire 100 of each superconducting coil 40 is held in a wound state by the respective frame members 20 and 30, and is protected from twisting, bending, etc., so that a stable connected state is maintained and a failure or failure occurs. Damage can be reduced.

[永久電流スイッチ]
図9(A)は永久電流スイッチ60の斜視図、図9(B)は永久電流スイッチ60の断面図である。
永久電流スイッチ60は、第一コイル401の内周側から引き出されたRE系超電導線材100の一端部と、第nコイル40nの外周側から引き出されたRE系超電導線材100の他端部とを接続するように設けられ、これにより形成される無端環状のRE系超電導線材100による回路に流れる永久電流ループPrの維持と解除を切り替えるためのスイッチである。
[Permanent current switch]
9A is a perspective view of the persistent current switch 60, and FIG. 9B is a sectional view of the persistent current switch 60.
The permanent current switch 60 has one end of the RE-based superconducting wire 100 drawn from the inner peripheral side of the first coil 401 and the other end of the RE-based superconducting wire 100 drawn from the outer peripheral side of the nth coil 40n. It is a switch that is provided so as to be connected and that switches between maintaining and canceling the persistent current loop Pr that flows in the circuit by the endless annular RE-based superconducting wire 100 formed by this.

この永久電流スイッチ60は、第一コイル401と第nコイル40nから個別に引き出されたRE系超電導線材100同士を焼結接続により接続して保持する接続構造10と、当該接続構造10の各構成を支持する冷却板61と、冷却板61と一体的に形成され、当該冷却板61から立設された支柱62と、支柱62の外周面上に設けられた熱抵抗部63と、支柱62と一体的に形成され、当該支柱62の上端部から延出された二本の柱状ガイド64と、支柱62の熱抵抗部63の外周に巻回されたRE系超電導線材100を加熱する加熱部65とを備えている。 The persistent current switch 60 includes a connection structure 10 for connecting and holding the RE-based superconducting wire rods 100 individually drawn out from the first coil 401 and the n-th coil 40n by sintering connection, and each structure of the connection structure 10. A cooling plate 61 for supporting the cooling plate 61, a column 62 integrally formed with the cooling plate 61, and provided upright from the cooling plate 61, a thermal resistance portion 63 provided on the outer peripheral surface of the column 62, and a column 62. Two columnar guides 64 that are integrally formed and extend from the upper end of the pillar 62, and a heating unit 65 that heats the RE-based superconducting wire 100 that is wound around the outer periphery of the thermal resistance portion 63 of the pillar 62. It has and.

冷却板61、支柱62及び柱状ガイド64は、伝熱性の高い無酸素銅から一体的に形成されており、冷却板61が図示しない冷凍機に接続され、RE系超電導線材100の冷却を行う。
冷却板61は、円形の平板であり、その上面には、接続構造10が取り付けられている。なお、この冷却板61も円形に限らず任意の形状とすることができる。
The cooling plate 61, the support column 62, and the columnar guide 64 are integrally formed of oxygen-free copper having high heat conductivity, and the cooling plate 61 is connected to a refrigerator (not shown) to cool the RE-based superconducting wire 100.
The cooling plate 61 is a circular flat plate, and the connection structure 10 is attached to the upper surface thereof. The cooling plate 61 is not limited to the circular shape and may have any shape.

接続構造10の溝付き枠材20及び無誘導巻き取り枠材30は、冷却板61との接触面にグリースが塗布され、冷却効率が高められている。
また、溝付き枠材20及び無誘導巻き取り枠材30が取付穴25,35を通じてボルトで締結固定され、RE系超電導線材100の巻き取り量が調節可能である点は前述した接続器110と同一である。
The grooved frame member 20 and the non-inductive winding frame member 30 of the connection structure 10 are coated with grease on their contact surfaces with the cooling plate 61 to enhance the cooling efficiency.
Further, the grooved frame member 20 and the non-inductive winding frame member 30 are fastened and fixed with bolts through the mounting holes 25 and 35, and the winding amount of the RE-based superconducting wire 100 can be adjusted. It is the same.

第一コイル401及び第nコイル40nから引き出されたそれぞれのRE系超電導線材100の余長部分は、個別に各柱状ガイド64に螺旋状に巻き付けられ、さらに、RE系超電導線材100は二本並んだ状態で支柱62の外周に設けられた熱抵抗部63の外周に螺旋状に巻き付けられて、冷却板61上の接続構造10において焼結接続部6により焼結接続されている。
各柱状ガイド64と各RE系超電導線材100との間にもグリースを塗布して、冷却効率が高めても良い。
また、冷却板61及び柱状ガイド64の表面において、RE系超電導線材100と接触する部分には、RE系超電導線材100と絶縁を図るためのポリイミドフィルムが貼着されている。
また、各部に巻き付けられたRE系超電導線材100は、各枠材20,30共にエポキシ樹脂により固定される。
The extra length portion of each RE-based superconducting wire 100 drawn out from the first coil 401 and the nth coil 40n is individually spirally wound around each columnar guide 64, and two RE-based superconducting wires 100 are lined up. In this state, it is spirally wound around the outer circumference of the heat resistance portion 63 provided on the outer circumference of the support column 62, and is sintered and connected by the sintering connection portion 6 in the connection structure 10 on the cooling plate 61.
Grease may be applied between each columnar guide 64 and each RE-based superconducting wire 100 to enhance the cooling efficiency.
Further, on the surface of the cooling plate 61 and the columnar guide 64, a polyimide film for insulating the RE-based superconducting wire 100 is attached to a portion in contact with the RE-based superconducting wire 100.
Further, the RE-based superconducting wire 100 wound around each part is fixed by an epoxy resin together with each of the frame members 20 and 30.

熱抵抗部63は、SUS316等の高熱抵抗金属やFRP等の高熱抵抗材料により形成されている。そして、熱抵抗部63の周囲を囲繞するように加熱部65が設けられており、各RE系超電導線材100の熱抵抗部63に巻き付けられた部分は、その外周側から加熱部65のヒーターによって加熱することができるようになっている。また、熱抵抗部63により、支柱62に熱が伝わりにくくしているので、RE系超電導線材100を効果的に加熱することができる。 The thermal resistance portion 63 is formed of a high thermal resistance metal such as SUS316 or a high thermal resistance material such as FRP. The heating unit 65 is provided so as to surround the thermal resistance unit 63, and the portion of each RE-based superconducting wire 100 wound around the thermal resistance unit 63 is heated by the heater of the heating unit 65 from the outer peripheral side thereof. It can be heated. Further, since the heat resistance portion 63 makes it difficult for heat to be transmitted to the support column 62, the RE-based superconducting wire 100 can be effectively heated.

永久電流スイッチ60は、冷却板61を冷凍機により冷却することで、永久電流スイッチ60全体及びRE系超電導線材100を冷却することができ、RE系超電導線材100を超電導状態とすることができる。
そして、この超電導状態により、全ての超電導コイル40のRE系超電導線材100が無端環状に接続され、永久電流ループPrを形成することができる。
また、永久電流ループPrを解除するためには、加熱部65のヒーターによってRE系超電導線材100の温度を高め、超電導状態から常電導状態に切り替える。これにより、各RE系超電導線材100の熱抵抗部63に巻き付けられた部分に大きな常電導抵抗が生じ、永久電流ループPrが解除される。
このようにして、永久電流スイッチ60は、第一コイル401の内周側から引き出されたRE系超電導線材100の一端部と、第nコイル40nの外周側から引き出されたRE系超電導線材100の他端部との接続状態と切断状態との切り替えを行う。
The permanent current switch 60 can cool the entire permanent current switch 60 and the RE-based superconducting wire 100 by cooling the cooling plate 61 with a refrigerator, and bring the RE-based superconducting wire 100 into a superconducting state.
Then, in this superconducting state, the RE-based superconducting wire rods 100 of all the superconducting coils 40 are connected in an endless loop, and the permanent current loop Pr can be formed.
Further, in order to cancel the persistent current loop Pr, the temperature of the RE-based superconducting wire 100 is raised by the heater of the heating unit 65, and the superconducting state is switched to the normal conducting state. As a result, a large normal conducting resistance is generated in the portion of each RE-based superconducting wire 100 wound around the thermal resistance portion 63, and the permanent current loop Pr is released.
In this way, the permanent current switch 60 includes one end of the RE-based superconducting wire 100 drawn from the inner circumference side of the first coil 401 and one of the RE-based superconducting wire 100 drawn from the outer circumference side of the nth coil 40n. The connection state with the other end and the disconnection state are switched.

上記原理により永久電流ループPrの電流を切断するので、RE系超電導線材100における熱抵抗部63に巻回された余長部分による常電導抵抗を十分に確保する必要がある。このため、RE系超電導線材100における熱抵抗部63に巻回された余長部分の線材長及びターン数は十分に増やす必要があるが、これにより、永久電流スイッチ60が大きなインダクタンスを持ってしまうという弊害も生じ得る。
従って、図9(A)に示すように、互いに逆方向に電流が流れる二本のRE系超電導線材100が並んだ状態で周ごとに隙間を空けて螺旋状態に巻くことにより、無誘導巻き状態となる。これにより、永久電流スイッチ60のインダクタンスを低減している。
Since the current in the permanent current loop Pr is cut off according to the above principle, it is necessary to sufficiently secure the normal conduction resistance due to the extra length portion wound around the thermal resistance portion 63 in the RE-based superconducting wire 100. For this reason, it is necessary to sufficiently increase the wire length and the number of turns of the extra length portion wound around the thermal resistance portion 63 in the RE superconducting wire 100, which causes the permanent current switch 60 to have a large inductance. There may also be adverse effects.
Therefore, as shown in FIG. 9(A), when two RE-based superconducting wires 100 in which currents flow in opposite directions are lined up and wound in a spiral state with a gap for each circumference, a non-induction winding state is obtained. Becomes This reduces the inductance of the persistent current switch 60.

また、永久電流スイッチ60は、二つの超電導コイル40から引き出された二本のRE系超電導線材100を加熱部65が設けられた熱抵抗部63に巻回し、その先端部を接続構造10により接続する構成なので、二つの超電導コイル40から引き出された二本のRE系超電導線材100を一つの接続構造10で接続することが可能であり、永久電流スイッチ60の構成を簡易にし、部品点数などの低減を実現している。 In addition, the permanent current switch 60 has two RE-based superconducting wires 100 drawn out from the two superconducting coils 40 wound around a thermal resistance portion 63 provided with a heating portion 65, and its tip end is connected by the connection structure 10. With this configuration, it is possible to connect the two RE-based superconducting wires 100 drawn out from the two superconducting coils 40 with one connection structure 10, simplifying the configuration of the persistent current switch 60, and reducing the number of parts, etc. Has achieved a reduction.

[第三の実施形態]
前述したRE系超電導線材の接続構造10とは一部構成が異なる他の実施形態としてのRE系超電導線材の接続構造10A(以下、「接続構造10A」とする)を適用した超電導コイルユニット300について図面を参照して説明する。
[Third embodiment]
Regarding superconducting coil unit 300 to which RE-based superconducting wire connecting structure 10A (hereinafter referred to as "connecting structure 10A") is applied as another embodiment, which is partially different in configuration from RE-based superconducting wire connecting structure 10 described above. A description will be given with reference to the drawings.

[超電導コイルユニットの概略構成]
図10(A)は超電導コイルユニット300の斜視図、図10(B)はコイルの中心線を通る断面を示す断面図、図11(A)は超電導コイルユニット300の平面図、図11(B)は部分拡大図である。
超電導コイルユニット300は、コイル半径方向に巻回されたRE系超電導線材100がコイル軸方向に積層された、いわゆるパンケーキコイル301が二つ直列に接続されてなるダブルパンケーキコイル302を二組備え、さらに、これら二組のダブルパンケーキコイル302を格納保持する保持枠310と、二組のダブルパンケーキコイル302から個別に引き出されたRE系超電導線材100の余長部分の先端部を焼結接続する接続構造10Aと、接続構造10Aを支持する支持板320とを備えている。
なお、以下の説明において、前述した接続構造10と同一の構成については同符号を付して重複する説明は省略する。
[Schematic configuration of superconducting coil unit]
10(A) is a perspective view of the superconducting coil unit 300, FIG. 10(B) is a sectional view showing a cross section passing through the center line of the coil, FIG. 11(A) is a plan view of the superconducting coil unit 300, and FIG. ) Is a partially enlarged view.
The superconducting coil unit 300 has two sets of double pancake coils 302 in which two RE pan-shaped superconducting wires 100 wound in the coil radial direction are laminated in the coil axial direction, so-called pancake coils 301 are connected in series. Further, a holding frame 310 for storing and holding these two sets of double pancake coils 302, and a tip portion of a surplus portion of the RE-based superconducting wire 100 individually drawn from the two sets of double pancake coils 302 are baked. The connecting structure 10A for connecting and connecting and the support plate 320 which supports the connecting structure 10A are provided.
In the following description, the same components as those of the connection structure 10 described above will be denoted by the same reference numerals and redundant description will be omitted.

[ダブルパンケーキコイル]
ダブルパンケーキコイル302を構成する二つのパンケーキコイル301は、一つのコイル巻枠303にその中心線方向に二つ並んだ状態で配置されている。また、これら二つのパンケーキコイル301を形成するRE系超電導線材100は最内周部でつながっており、二つのパンケーキコイル301は一本のRE系超電導線材100から形成されている。
そして、接続される二組のダブルパンケーキコイル302は片方が超電導層が内側となるように巻線され、もう片方が超電導層が外側となるように巻線されている。
[Double pancake coil]
The two pancake coils 301 forming the double pancake coil 302 are arranged in a single coil winding frame 303 so as to be aligned in the direction of the center line thereof. Further, the RE-based superconducting wire 100 forming these two pancake coils 301 is connected at the innermost peripheral portion, and the two pancake coils 301 are formed from one RE-based superconducting wire 100.
The two sets of double pancake coils 302 to be connected are wound so that one side has the superconducting layer inside and the other has the superconducting layer outside.

[保持枠]
保持枠310は、一つのダブルパンケーキコイル302をその外周及びコイル中心線方向の両側から囲繞する二つのケース311が同心で並んで連接して構成されている。
また、保持枠310は、各ダブルパンケーキコイル302を形成するRE系超電導線材100の両端部を外部に引き出すスリット状の開口部312が形成されている。
なお、開口部312の縁部は、周面形状に形成され、引き出されるRE系超電導線材100が許容される最小曲げ半径以下で曲げられないように保護している。
[Holding frame]
The holding frame 310 is configured by concentrically connecting two cases 311 that surround one double pancake coil 302 from the outer periphery and both sides in the coil center line direction.
In addition, the holding frame 310 is provided with slit-shaped openings 312 that lead out both ends of the RE-based superconducting wire 100 that forms each double pancake coil 302 to the outside.
The edge portion of the opening portion 312 is formed in a peripheral surface shape, and protects the RE-based superconducting wire 100 to be drawn out so as not to be bent at an allowable minimum bending radius or less.

開口部312を通じて、二つのダブルパンケーキコイル302からそれぞれ引き出された二本のRE系超電導線材100の一端部は、いずれも、平行な状態を維持しつつ、保持枠310の外周面を周回して反対側に回り込み、保持枠310に一体的に取り付けられた支持板320の片面に支持された接続構造10Aにおいて接続されている。
これら保持枠310及び支持板320は、例えば、枠の材質はGFRP(Glass Fiber Reinforced Plastics)や銅,アルミなど低温において割れ等が発生し難い材質により一体的に形成されている。
なお、二つのダブルパンケーキコイル302からそれぞれ引き出された二本のRE系超電導線材100の他端部は、開口部312から引き出され、超電導コイルの用途に応じて、他の構成と接続される。
One end of each of the two RE-based superconducting wires 100 drawn out from each of the two double pancake coils 302 through the opening 312 wraps around the outer peripheral surface of the holding frame 310 while maintaining a parallel state. And the connection structure 10A supported on one surface of the support plate 320 integrally attached to the holding frame 310.
The holding frame 310 and the support plate 320 are integrally formed of, for example, a material such as GFRP (Glass Fiber Reinforced Plastics), copper, or aluminum that is unlikely to crack at low temperatures.
The other ends of the two RE-based superconducting wire rods 100, which are respectively pulled out from the two double pancake coils 302, are led out from the opening 312 and are connected to other configurations depending on the application of the superconducting coil. ..

[支持板]
支持板320は、コイル中心線方向に対して垂直となる平板であって、二つのダブルパンケーキコイル302からそれぞれ引き出された二本のRE系超電導線材100の他端部が平行且つエッジワイズ方向に曲がりを生じないように、保持枠310に対して、コイル中心線方向について、当該支持板320の片面(接続構造10Aの支持面)の位置が、支持板320に近い方のRE系超電導線材100の当該支持板320側の側端部の位置と一致するように配置されている。
[Support plate]
The support plate 320 is a flat plate that is perpendicular to the coil center line direction, and the other ends of the two RE-based superconducting wires 100 that are respectively drawn out from the two double pancake coils 302 are parallel and edgewise. With respect to the holding frame 310, one side of the supporting plate 320 (the supporting surface of the connection structure 10A) is closer to the supporting plate 320 with respect to the holding frame 310 so that the RE-based superconducting wire is not bent. It is arranged so as to match the position of the side end portion of 100 on the side of the support plate 320.

[RE系超電導線材の接続構造]
接続構造10Aは、二つのダブルパンケーキコイル302からそれぞれ引き出された二本のRE系超電導線材100の一端部において保護層から露出した超電導導体層3同士を別のRE系超電導線材100Aにより接続する焼結接続部6Aと、焼結接続部6Aが埋め込まれた溝部211Aを有する溝付き枠材20Aと、片方のRE系超電導線材100の余長部分が巻き付けられた無誘導巻き取り枠材30とを備えている。
[Connection structure of RE superconducting wire]
The connection structure 10A connects the superconducting conductor layers 3 exposed from the protective layer at one end of the two RE-based superconducting wires 100 that are respectively drawn out from the two double pancake coils 302 by another RE-based superconducting wire 100A. A sinter connection part 6A, a grooved frame member 20A having a groove part 211A in which the sinter connection part 6A is embedded, and a non-inductive winding frame member 30 around which an extra length portion of one RE-based superconducting wire 100 is wound. Equipped with.

[焼結接続部]
図12は焼結接続部6Aの斜視図である。
二本のRE系超電導線材100は、それぞれのダブルパンケーキコイル302において、基材1に対して超電導導体層3が半径方向外側となる向きと内側となる向きとで個別に巻回されており、保持枠310の開口部312から引き出される際に一方のRE系超電導線材100の向きが反転し、両方とも超電導導体層3が半径方向外側となる向きとなる。そして、接続構造10側まで引き出された二本のRE系超電導線材100の余長部分は、いずれも基材1について同一面側に超電導導体層3が配置されている。そして、各RE系超電導線材100の保護層を除去して露出した状態の超電導導体層3を別のRE系超電導線材100Aがブリッジ接続している。
[Sintered connection]
FIG. 12 is a perspective view of the sintered connection portion 6A.
In each double pancake coil 302, the two RE-based superconducting wires 100 are individually wound in a direction in which the superconducting conductor layer 3 is radially outward and inward with respect to the base material 1. When the RE-based superconducting wire 100 is pulled out from the opening 312 of the holding frame 310, the direction of one RE-based superconducting wire 100 is reversed, and the superconducting conductor layer 3 is in the outer side in the radial direction. The superconducting conductor layer 3 is arranged on the same surface side of the base material 1 in each of the extra length portions of the two RE-based superconducting wires 100 that have been pulled out to the connection structure 10 side. Then, another RE-based superconducting wire 100A is bridge-connected to the superconducting conductor layer 3 which is exposed by removing the protective layer of each RE-based superconducting wire 100.

別のRE系超電導線材100Aは、二本のRE系超電導線材100と構造が同一であり、これら二本のRE系超電導線材100に直交する方向に延在し、二本のRE系超電導線材100の超電導導体層3に懸架された状態で接続されている。
別のRE系超電導線材100Aは、その両端部において保護層が除去されて超電導導体層3が露出し、両端部で露出したそれぞれの超電導導体層3が二本のRE系超電導線材100の超電導導体層3に対向する向きで、個別にMOD法により焼結接続されている。
Another RE-based superconducting wire 100A has the same structure as the two RE-based superconducting wires 100, extends in a direction orthogonal to these two RE-based superconducting wires 100, and has two RE-based superconducting wires 100. Are connected to the superconducting conductor layer 3 in a suspended state.
In another RE-based superconducting wire 100A, the protective layer is removed at both ends thereof to expose the superconducting conductor layer 3, and each of the superconducting conductor layers 3 exposed at both ends is a superconducting conductor of two RE-based superconducting wires 100. The layers are individually sintered and connected by the MOD method so as to face the layer 3.

[溝付き枠材]
図13(A)はRE系超電導線材100が巻回された状態の溝付き枠材20Aの斜視図、図13(B)はRE系超電導線材100が巻回されていない状態の溝付き枠材20Aの斜視図である。
これらの図に示すように、溝付き枠材20Aは、円柱状の円柱形状部21Aと、円柱形状部21Aの外周面の中心線方向中央部にフランジ部22Aとを備えている。
そして、この溝付き枠材20Aも、枠の材質はGFRPや銅,アルミなど低温において割れ等が発生し難い材質により一体的に形成されている。
[Grooved frame material]
FIG. 13(A) is a perspective view of the grooved frame member 20A in which the RE-based superconducting wire 100 is wound, and FIG. 13(B) is a grooved frame member in which the RE-based superconducting wire 100 is not wound. It is a perspective view of 20A.
As shown in these figures, the grooved frame member 20A includes a columnar columnar portion 21A and a flange portion 22A at the center of the outer peripheral surface of the columnar portion 21A in the centerline direction.
The grooved frame member 20A is also integrally formed of a frame material such as GFRP, copper, or aluminum, which is unlikely to crack at low temperatures.

円柱形状部21Aはその中心線方向が、ダブルパンケーキコイル302のコイル中心線方向と平行となる向きで支持板320の片面上において支持されている。なお、円柱形状部21Aは、その中心を貫通形成された取付穴25Aに通されるボルトで締結固定され、回転調節可能である点は前述した溝付き枠材20と同じである。 The columnar portion 21A is supported on one surface of the support plate 320 such that the centerline direction thereof is parallel to the coil centerline direction of the double pancake coil 302. The columnar portion 21A is the same as the grooved frame member 20 described above in that the columnar portion 21A is fastened and fixed by a bolt that is passed through a mounting hole 25A formed through the center of the columnar portion 21A and the rotation thereof can be adjusted.

円柱形状部21Aは、その片面から裏面まで貫通した真っ直ぐなスリット状の溝部211Aが形成されており、前述した焼結接続部6Aは溝部211A内に挿入されると共に、その隙間に充填剤23が充填され、焼結接続部6Aは溝部211Aに埋め込まれた状態となっている。 The cylindrical portion 21A is formed with a straight slit-shaped groove portion 211A penetrating from one surface to the back surface thereof, and the above-mentioned sintered connection portion 6A is inserted into the groove portion 211A and the filler 23 is filled in the gap. The sintered connection portion 6A is filled and is embedded in the groove portion 211A.

そして、焼結接続部6Aで接続された二本のRE系超電導線材100は、それぞれフランジ部22Aの両側において、円柱形状部21Aの外周面上に巻回されている。なお、溝部211Aの入り口には、円弧部212Aが形成され、各RE系超電導線材100は、許容される曲げ径よりも小さい曲げが生じないようになっている。 The two RE-based superconducting wires 100 connected by the sintered connection portion 6A are wound around the outer peripheral surface of the columnar portion 21A on both sides of the flange portion 22A. An arc portion 212A is formed at the entrance of the groove portion 211A so that each RE-based superconducting wire 100 does not bend smaller than the allowable bending diameter.

巻回された状態の二本のRE系超電導線材100の外周面側には絶縁材24が配置され、二本のRE系超電導線材100と共に巻回されている。これにより、複数回巻き付けられた二本のRE系超電導線材100は、一周ごとに絶縁が図られ、誘導電流の発生が抑制される構造となっている。 An insulating material 24 is arranged on the outer peripheral surface side of the two RE-based superconducting wires 100 in a wound state and is wound together with the two RE-based superconducting wires 100. As a result, the two RE-based superconducting wires 100 wound a plurality of times have a structure in which insulation is achieved for each turn and generation of induced current is suppressed.

また、二本のRE系超電導線材100には、焼結接続部6A以外の部分において、互いの超電導導体層3同士を低抵抗で導通可能に接続するバイパス接続部7Aが形成されている。このバイパス接続部7Aは、隙間を空けて並んだ二本のRE系超電導線材100の全幅に等しい幅(溝付き枠材20Aの幅と等しい幅)であって長さが短いRE系超電導線材100Bが二本のRE系超電導線材100の外周面に跨がって表面同士を半田等の良導体からなるロウ材で溶接することにより接続されている。
なお、RE系超電導線材100Bは、RE系超電導線材100と同一の層構造である。
そして、二本のRE系超電導線材100は、いずれも、超電導導体層3が基材1に対して外側を向いた状態で溝付き枠材20Aに巻回されており、RE系超電導線材100Bは基材1に対して超電導導体層3がRE系超電導線材100側となるように接続されている。これにより、二本のRE系超電導線材100の超電導導体層3とRE系超電導線材100Bの超電導導体層3との間に基材1が介在しない状態となり、焼結接続部6Aに常電導状態の転移が発生したときに、一方のRE系超電導線材100からRE系超電導線材100Bを通じて他方のRE系超電導線材100にバイパス電流が流れ、焼結接続部6Aの焼損を防ぐことができる。
Further, in the two RE-based superconducting wires 100, a bypass connecting portion 7A for connecting the superconducting conductor layers 3 to each other so as to be conductive with low resistance is formed in a portion other than the sintered connecting portion 6A. The bypass connecting portion 7A has a width equal to the entire width of the two RE superconducting wires 100 arranged with a gap (width equal to the width of the grooved frame member 20A) and a short RE superconducting wire 100B. Are connected over the outer peripheral surfaces of the two RE-based superconducting wires 100 by welding the surfaces with a brazing material made of a good conductor such as solder.
The RE-based superconducting wire 100B has the same layer structure as the RE-based superconducting wire 100.
Each of the two RE superconducting wire rods 100 is wound around the grooved frame member 20A with the superconducting conductor layer 3 facing outward with respect to the base material 1, and the RE superconducting wire rod 100B is The superconducting conductor layer 3 is connected to the base material 1 on the RE-based superconducting wire 100 side. As a result, the base material 1 is not present between the two superconducting conductor layers 3 of the RE-based superconducting wire 100 and the superconducting conductor layer 3 of the RE-based superconducting wire 100B, and the sintered connection portion 6A is in the normal conducting state. When the transition occurs, a bypass current flows from one RE-based superconducting wire 100 through the RE-based superconducting wire 100B to the other RE-based superconducting wire 100, so that burning-out of the sintered connection portion 6A can be prevented.

なお、溝付き枠材20Aに巻回された二本のRE系超電導線材100の余長部分は、巻回状態を維持するために、エポキシ等の硬化性樹脂等で固定しても良い。或いは、巻回された二本のRE系超電導線材100の外周に嵌合するC字状の枠で固定しても良い。
また、溝付き枠材20AもRE系超電導線材100の巻き取り後は、エポキシ樹脂により支持板320に固定しても良い。
The extra length portions of the two RE-based superconducting wires 100 wound around the grooved frame member 20A may be fixed with a curable resin such as epoxy in order to maintain the wound state. Alternatively, it may be fixed by a C-shaped frame fitted to the outer circumference of the two wound RE-based superconducting wires 100.
The grooved frame member 20A may be fixed to the support plate 320 with an epoxy resin after the RE-based superconducting wire 100 is wound.

[無誘導巻き取り枠材]
無誘導巻き取り枠材30は、前述したものと同一である。この無誘導巻き取り枠材30は、一方のダブルパンケーキコイル302から引き出されたRE系超電導線材100の余長部分の長さがもう一方のRE系超電導線材100の余長部分の長さよりも長くなった場合に、その差分を巻回し、当該RE系超電導線材100を変形等から保護する。
なお、無誘導巻き取り枠材30に巻回されたRE系超電導線材100の余長部分もエポキシ等の硬化性樹脂等で固定したり、C字状の枠で固定しても良い。
また、無誘導巻き取り枠材30もRE系超電導線材100の巻き取り後は、エポキシ樹脂により支持板320に固定しても良い。
[Inductive winding frame material]
The non-inductive winding frame member 30 is the same as that described above. In this non-inductive winding frame material 30, the length of the extra length portion of the RE-based superconducting wire 100 pulled out from one double pancake coil 302 is longer than the length of the extra length portion of the other RE-based superconducting wire material 100. When the length becomes long, the difference is wound to protect the RE-based superconducting wire 100 from deformation and the like.
The extra length of the RE superconducting wire 100 wound around the non-inductive winding frame material 30 may be fixed with a curable resin such as epoxy or the like, or may be fixed with a C-shaped frame.
Further, the non-inductive winding frame member 30 may be fixed to the support plate 320 with an epoxy resin after winding the RE-based superconducting wire 100.

[接続構造の技術的効果]
上記RE系超電導線材の接続構造10Aは、接続構造10と同一の技術的効果を備えると共に、その溝付き枠材20Aは、二本平行に引き出されたRE系超電導線材100の焼結接続部6Aを溝部211A内で機械的強度を高く維持して保護することが可能である。
また、溝付き枠材20Aは円柱形状部21Aにより二本のRE系超電導線材100がフランジ部22Aの両側で個別に巻線されているので、二本が平行に引き出されたRE系超電導線材100の余長部分を曲がりや折り曲げから保護することが可能となる。
[Technical effects of connection structure]
The connecting structure 10A of the RE-based superconducting wire has the same technical effect as the connecting structure 10, and the grooved frame member 20A has two sintered parallel connection parts 6A of the RE-based superconducting wire 100. Can be protected by maintaining high mechanical strength in the groove portion 211A.
Further, in the grooved frame member 20A, since the two RE-based superconducting wires 100 are individually wound on both sides of the flange portion 22A by the columnar portion 21A, the two RE-based superconducting wires 100 are drawn out in parallel. It is possible to protect the extra length of the part from bending and bending.

また、接続構造10Aは、超電導コイルユニット300のように、並べて保持された二つのダブルパンケーキコイル302のRE系超電導線材100を焼結接続する場合にも焼結接続部6A及びRE系超電導線材100の余長部分を効果的に保護することができる。 Further, the connection structure 10A has the sintered connection portion 6A and the RE-based superconducting wire rod even when the RE-based superconducting wire rod 100 of the two double pancake coils 302 held side by side is sintered and connected like the superconducting coil unit 300. The extra length of 100 can be effectively protected.

また、接続構造10において、二本のRE系超電導線材100は、他のRE系超電導線材100Aのブリッジ接続により焼結接続を行っているので、二本のRE系超電導線材100が互いの平面を対向状態で密接させて接続することができないような配置、例えば、二本のRE系超電導線材100はその幅方向に平行に並んで離れて配置されているような場合でも、焼結接続を行うことが可能である。 Further, in the connection structure 10, the two RE-based superconducting wire rods 100 are sintered and connected by the bridge connection of the other RE-based superconducting wire rods 100A, so that the two RE-based superconducting wire rods 100 are disposed on the respective planes. Sintering is performed even when the two RE-based superconducting wires 100 are arranged parallel to each other in the width direction and apart from each other so that they cannot be closely contacted and connected in a facing state. It is possible.

1 超電導成膜用基材
3 酸化物超電導導体層
4 内部保護層
5 外部保護層
6,6A 焼結接続部(接続部)
7,7A バイパス接続部
10,10A 接続構造
20,20A 溝付き枠材
21,21A 円柱形状部
22,22A フランジ部
23 充填剤
24 絶縁材
30 無誘導巻き取り枠材
40 超電導コイル
60 永久電流スイッチ
100,100A,100B RE系超電導線材
110 接続器
200 電流システム
211,211A 溝部
300 超電導コイルユニット
302 ダブルパンケーキコイル
1 Superconducting Film Forming Substrate 3 Oxide Superconducting Conductor Layer 4 Internal Protective Layer 5 External Protective Layer 6, 6A Sintered Connection (Connection)
7,7A Bypass connection part 10,10A Connection structure 20,20A Grooved frame material 21,21A Columnar shape part 22,22A Flange part 23 Filler 24 Insulation material 30 Non-inductive winding frame material 40 Superconducting coil 60 Persistent current switch 100 , 100A, 100B RE-based superconducting wire 110 Connector 200 Current system 211, 211A Groove 300 Superconducting coil unit 302 Double pancake coil

Claims (7)

片側の面に超電導導体層が形成されたテープ状の基材と、
前記基材を被覆する保護層とを備えるRE系の超電導線材の接続構造において、
二本の前記超電導線材の前記保護層から露出した前記超電導導体層を焼結接続した接続部と、
前記接続部が固定された溝部を有する溝付き枠材と
片方の前記超電導線材の余長部分が巻き付けられた無誘導巻き取り枠材と、
を備えていることを特徴とする超電導線材の接続構造。
A tape-shaped base material having a superconducting conductor layer formed on one surface,
In a connection structure of a RE-based superconducting wire comprising a protective layer covering the base material,
A connection portion in which the superconducting conductor layer exposed from the protective layer of the two superconducting wires is sintered and connected ,
A frame member with a groove having a groove portion to which the connecting portion is fixed ,
A non-inductive winding frame member around which the extra length of one of the superconducting wires is wound,
A superconducting wire connection structure, characterized in that
前記溝付き枠材は円柱形状部を備え、
前記接続部で接続された前記二本の前記超電導線材が前記円柱形状部に巻線されていることを特徴とする請求項1に記載の超電導線材の接続構造。
The grooved frame material includes a columnar portion,
The superconducting wire connecting structure according to claim 1, wherein the two superconducting wires connected by the connecting portion are wound around the columnar portion.
前記二本の前記超電導線材は、前記接続部以外の部分で導通可能に接続されていることを特徴とする請求項1又は2記載の超電導線材の接続構造。 3. The superconducting wire connecting structure according to claim 1, wherein the two superconducting wires are connected so as to be able to conduct at a portion other than the connecting portion. 前記二本の前記超電導線材は、前記接続部以外であって前記溝付き枠材に巻線されている部分で導通可能に接続されていることを特徴とする請求項2記載の超電導線材の接続構造。 3. The superconducting wire rod according to claim 2, wherein the two superconducting wire rods are connected so as to be able to conduct at a portion other than the connecting portion and wound around the grooved frame member. Construction. 前記二本の前記超電導線材は、前記接続部以外の部分で、前記二本の前記超電導線材以外の超電導線材により接続されていることを特徴とする請求項3又は4記載の超電導線材の接続構造。 The connection structure of the superconducting wire according to claim 3 or 4, wherein the two superconducting wires are connected by a superconducting wire other than the two superconducting wires in a portion other than the connecting portion. .. 前記溝部に樹脂又は低融点金属を有することを特徴とする請求項1から5のいずれか一項に記載の超電導線材の接続構造。 The superconducting wire connection structure according to any one of claims 1 to 5, wherein the groove portion has a resin or a low melting point metal. 前記二本の前記超電導線材は、
前記超電導線材の長手方向における前記接続部側に向かう方向が同じ向きになるように接続されていることを特徴とする請求項1から6のいずれか一項に記載の超電導線材の接続構造。
The two superconducting wires,
The superconducting wire connecting structure according to any one of claims 1 to 6, wherein the superconducting wire is connected so that the longitudinal directions of the superconducting wires toward the connecting portion are the same.
JP2016243543A 2016-12-15 2016-12-15 Superconducting wire connection structure Active JP6738720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243543A JP6738720B2 (en) 2016-12-15 2016-12-15 Superconducting wire connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243543A JP6738720B2 (en) 2016-12-15 2016-12-15 Superconducting wire connection structure

Publications (2)

Publication Number Publication Date
JP2018098420A JP2018098420A (en) 2018-06-21
JP6738720B2 true JP6738720B2 (en) 2020-08-12

Family

ID=62634734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243543A Active JP6738720B2 (en) 2016-12-15 2016-12-15 Superconducting wire connection structure

Country Status (1)

Country Link
JP (1) JP6738720B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270908B2 (en) 2019-05-14 2023-05-11 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP7236076B2 (en) * 2019-05-28 2023-03-09 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP7430344B2 (en) * 2020-12-22 2024-02-13 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting coil device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253006A (en) * 1990-03-01 1991-11-12 Mitsubishi Electric Corp Manufacture of compound superconductive coil
JP3018534B2 (en) * 1991-03-20 2000-03-13 住友電気工業株式会社 High temperature superconducting coil
JP4177700B2 (en) * 2003-04-16 2008-11-05 住友重機械工業株式会社 Superconducting coil and superconducting magnet device
US7566684B1 (en) * 2006-08-24 2009-07-28 The United States Of America As Represented By The Secretary Of The Air Force Machinery windings of yttrium barium copper oxide and related coated conductor
JP2011187524A (en) * 2010-03-05 2011-09-22 Hitachi Ltd High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet
GB2504144B (en) * 2012-07-20 2014-07-16 Siemens Plc Superconducting joints
CN104733151B (en) * 2013-12-20 2019-03-15 通用电气公司 For storing the device and method of superconductor line and using the superconducting magnet system of the device

Also Published As

Publication number Publication date
JP2018098420A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5823116B2 (en) Superconducting coil
JP5259487B2 (en) Superconducting coil
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP4743150B2 (en) Superconducting coil and superconducting conductor used therefor
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
JP6725001B2 (en) Superconducting wire and superconducting coil
JP5921940B2 (en) Superconducting coil conductive cooling plate and superconducting coil device
JP6998667B2 (en) Connection structure
JP6738720B2 (en) Superconducting wire connection structure
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP2015162367A (en) Terminal structure of superconducting cable and manufacturing method therefor
JP5022279B2 (en) Oxide superconducting current lead
JP5531664B2 (en) Superconducting current lead
JP2012256744A (en) Superconductive coil
JP4719090B2 (en) High temperature superconducting coil and high temperature superconducting magnet using the same
JP4774494B2 (en) Superconducting coil
JP4838199B2 (en) Oxide superconducting current lead
JP2016039289A (en) High-temperature superconducting coil and high-temperature superconducting magnet device
JP7040730B2 (en) Permanent current switch
JP2017204333A (en) Superconductive tape wire, superconductive current lead using superconductive tape, permanent current switch, and superconductive coil
JP2013219196A (en) Superconducting coil device and manufacturing method of the same
JP2017117523A (en) Connection structure of superconducting wire rod and method for connecting superconducting wire rod
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP4634954B2 (en) Superconducting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6738720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350