JP4774494B2 - Superconducting coil - Google Patents

Superconducting coil Download PDF

Info

Publication number
JP4774494B2
JP4774494B2 JP2005007008A JP2005007008A JP4774494B2 JP 4774494 B2 JP4774494 B2 JP 4774494B2 JP 2005007008 A JP2005007008 A JP 2005007008A JP 2005007008 A JP2005007008 A JP 2005007008A JP 4774494 B2 JP4774494 B2 JP 4774494B2
Authority
JP
Japan
Prior art keywords
superconducting
conductor
parallel
coil
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005007008A
Other languages
Japanese (ja)
Other versions
JP2006196720A (en
Inventor
成卓 岩熊
浩之 藤本
弘貴 上條
尚生 山田
章 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Fuji Electric Co Ltd
Original Assignee
Railway Technical Research Institute
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Fuji Electric Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2005007008A priority Critical patent/JP4774494B2/en
Publication of JP2006196720A publication Critical patent/JP2006196720A/en
Application granted granted Critical
Publication of JP4774494B2 publication Critical patent/JP4774494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

この発明は、通電電流が高速で変動する電気機器、例えばエネルギー貯蔵,磁場応用,変圧器,リアクトル,限流器,モータ,発電機等に用いる超電導導体及びそれを用いた超電導コイルに関する。   The present invention relates to a superconducting conductor used for an electric device whose energization current fluctuates at a high speed, for example, energy storage, magnetic field application, transformer, reactor, current limiter, motor, generator and the like, and a superconducting coil using the same.

超電導コイルは、高磁界発生手段として種々の分野で実用されている。一方、前記変圧器やリアクトルなどのような交流機器への超電導コイルの適用は、超電導導体が交流によって損失を発生するという現象があることから、その実用化は、あまり進んでいない。   Superconducting coils are put to practical use in various fields as high magnetic field generating means. On the other hand, the application of superconducting coils to AC devices such as transformers and reactors has not made much progress in practical use since there is a phenomenon that superconducting conductors generate losses due to AC.

しかしながら、近年、超電導導体素線の細線化による交流損失の小さな超電導線が開発されて以来、変圧器などの交流機器への適用研究が進展し、その超電導コイルの構成に関しても、種々の提案が行われている。   However, in recent years, since the development of superconducting wires with low AC loss due to the thinning of superconducting conductor wires, research on application to AC devices such as transformers has progressed, and various proposals have also been made regarding the structure of the superconducting coils. Has been done.

この場合の超電導導体としては、液体ヘリウムの蒸発温度である4Kの極低温で超電導状態を維持する金属超電導体を使用した超電導線が、実用的な超電導材料として、主に使用されるが、最近では、酸化物超電導体を適用した超電導コイルの開発も進められている。この酸化物超電導体は、高温超電導体とも呼ばれており、この高温超電導体を使用した場合には、金属超電導体を使用した場合に比べて運転コストが低い利点がある。   As a superconducting conductor in this case, a superconducting wire using a metal superconductor that maintains a superconducting state at an extremely low temperature of 4K, which is the evaporation temperature of liquid helium, is mainly used as a practical superconducting material. Therefore, development of superconducting coils using oxide superconductors is also underway. This oxide superconductor is also called a high-temperature superconductor. When this high-temperature superconductor is used, there is an advantage that the operation cost is lower than when a metal superconductor is used.

ところで、通電電流が高速で変動する、例えば変圧器のような交流機器において、複数の導体を並列に使用するときには、導体の転位が行われる。これは、複数の導体の相対位置を変えることによってそれぞれの導体を磁気的に一致させて誘起電圧の差を小さくし、これによってそれぞれの導体の電流分担を均一にするためである。   By the way, in an AC device such as a transformer where the energization current fluctuates at high speed, when a plurality of conductors are used in parallel, the conductors are transposed. This is to change the relative positions of the plurality of conductors so that the respective conductors are magnetically matched to reduce the induced voltage difference, thereby making the current sharing of each conductor uniform.

通電電流によって発生した磁束によるそれぞれの並列導体の誘起電圧の差によって、循環電流が誘起されるが、銅やアルミなどの通常の導体の場合には、インピーダンスは抵抗性成分が主であるので、循環電流は通電電流に対し位相がおよそ90°ずれたものになる。そのため、例えば30%の循環電流が発生したとしても、1本の導体に流れる電流は、通電電流の100%とこれに90°の位相差のある30%の循環電流とのベクトル和となって、その絶対値はそれぞれの二乗の和の平方根になることから、約105%となり、循環電流の割には電流値の増加は小さい。   The circulating current is induced by the difference in the induced voltage of each parallel conductor due to the magnetic flux generated by the energizing current, but in the case of a normal conductor such as copper or aluminum, the impedance is mainly a resistive component, The circulating current has a phase shifted by about 90 ° with respect to the energized current. Therefore, for example, even if 30% circulating current is generated, the current flowing through one conductor is a vector sum of 100% of the energized current and 30% circulating current having a phase difference of 90 °. The absolute value is about 105% because it is the square root of the sum of the squares, and the increase in the current value is small for the circulating current.

一方、導体として超電導線を用いた場合、超電導状態では抵抗はほぼ零であるので、循環電流をきめるインピーダンスはほとんどインダクタンスで決まる。従って循環電流は通電電流と同相になり、仮に循環電流が30%とすると、通電電流にこの循環電流が加算されて超電導線には130%の電流が流れることになる。この電流値が、後に詳述する臨界電流に達すると、交流損失が増大したり、偏流が増進する。   On the other hand, when a superconducting wire is used as the conductor, the resistance is almost zero in the superconducting state, so that the impedance that determines the circulating current is almost determined by the inductance. Therefore, the circulating current is in phase with the energizing current. If the circulating current is 30%, this circulating current is added to the energizing current, and 130% of the current flows through the superconducting wire. When this current value reaches a critical current described in detail later, AC loss increases or drift increases.

また、超電導コイルの巻線に用いられる超電導導体(または超電導線)には、臨界温度,臨界電流,臨界磁場が存在する。即ち、超電導線が超電導状態を維持するためには、温度,電流,磁場が、所定の臨界値以下である必要がある。   In addition, the superconducting conductor (or superconducting wire) used for the winding of the superconducting coil has a critical temperature, a critical current, and a critical magnetic field. That is, in order for the superconducting wire to maintain the superconducting state, the temperature, current, and magnetic field need to be not more than predetermined critical values.

循環電流によって超電導線に臨界電流以上の電流が流れた場合には、超電導状態から常電導状態、すなわち抵抗を持った通常の導体になり、ジュール発熱により超電導線は破損する可能性が生じる。   When a current exceeding the critical current flows through the superconducting wire due to the circulating current, the superconducting state changes from the superconducting state to the normal conducting state, that is, a normal conductor having resistance, and the superconducting wire may be damaged by Joule heat generation.

このように、超電導線を用いたコイルでは、循環電流を抑制することは非常に重要である。そのために、前述のように転位を行い、循環電流を抑制することが行われている。なお、酸化物超電導線の場合には、合金超電導体に比べて曲げの力に弱い性質を持っており、性能を発揮するための許容曲げ半径が存在する。従って、並列本数が多いほど、すなわち転位部が多いほど不安定箇所が多くなるので、転位作業には細心の注意を要する。   Thus, in a coil using a superconducting wire, it is very important to suppress the circulating current. For this purpose, dislocation is performed as described above to suppress the circulating current. Note that the oxide superconducting wire has a property of being weaker in bending force than an alloy superconductor, and there is an allowable bending radius for exhibiting performance. Therefore, as the number of parallel lines increases, that is, as the number of dislocations increases, the number of unstable portions increases.

循環電流を抑制しつつ不安定箇所としての転位部を少なくし、転位作業を簡単にして低コスト化を図ることを目的とした超電導コイルの構成は、例えば、特許文献1に開示されている。特許文献1に記載された発明の骨子は、下記のとおりである。即ち、「複数の超電導線を並列化し巻回してなる超電導コイルにおいて、巻線端部のみで転位を行なう構成とすること、加えてコイルの層数を、並列化している超電導線の並列本数の4倍(本数×4倍)の整数倍とすることで、転位部を少なくし、循環電流を抑制しつつ不安定部を少なくし得る。その結果、転位のための作業,時間が短縮されて安価となるだけでなく、少ない不安定部で循環電流を抑制できることから、高速の励磁,消磁を安定に行なうことが可能になるという利点も得られる。」ことにある。   A configuration of a superconducting coil aimed at reducing the cost by reducing the number of dislocations as unstable parts while suppressing the circulating current, thereby simplifying the dislocation work, is disclosed in Patent Document 1, for example. The gist of the invention described in Patent Document 1 is as follows. That is, “in a superconducting coil in which a plurality of superconducting wires are parallelized and wound, the dislocation is performed only at the end of the winding. In addition, the number of layers of the superconducting wires in parallel is the number of coils. By making it an integral multiple of 4 times (number x 4 times), the number of dislocations can be reduced, and the unstable parts can be reduced while suppressing the circulating current. In addition to being inexpensive, the circulating current can be suppressed with a small number of unstable parts, and therefore there is an advantage that high-speed excitation and demagnetization can be performed stably.

図12は、特許文献1の図1に記載された超電導コイルの転位構成の一例を示す。図12においては、例えば、コイルの半径方向に3本重ねた超電導線3aを、巻枠1aから巻枠1bの方向に巻回して形成するに当たり、超電導線3aが巻枠1a側の巻線の始まりではコイル内径方向から、例えば、図示しない(A1,A2,A3)の順に重ねて巻かれているとして、巻線端部の転位部2bにおいて、まず(A3)を次のターンに曲げ、同様に(A2,A1)と転位作業を行なうことで、巻枠1b側の巻線の終わりでは、例えば(A3,A2,A1)の順にする。上記により、特許文献1の図4に記載された従来の転位構成に比較して、転位部や巻線の曲げ数が少なくなるので、作業が著しく簡単になる。   FIG. 12 shows an example of the dislocation configuration of the superconducting coil described in FIG. In FIG. 12, for example, when the superconducting wire 3a, which is three stacked in the radial direction of the coil, is wound in the direction from the winding frame 1a to the winding frame 1b, the superconducting wire 3a is wound around the winding frame 1a. At the beginning, assuming that the coil is wound in the order of, for example, (A1, A2, A3) (not shown) from the coil inner diameter direction, first, (A3) is bent to the next turn at the dislocation portion 2b at the winding end. (A2, A1) and (A2, A1) are carried out, for example, the order of (A3, A2, A1) at the end of the winding on the winding frame 1b side. As described above, since the number of bends of the dislocation portion and the winding is reduced as compared with the conventional dislocation configuration described in FIG. 4 of Patent Document 1, the operation is remarkably simplified.

なお、前記の「コイルの層数を、並列化している超電導線の並列本数の4倍(本数×4倍)の整数倍とする」構成例については、ここでは説明を省略する(詳細は、特許文献1参照)。   Note that the description of the configuration example “the number of coil layers is an integral multiple of four times the number of parallel superconducting wires in parallel (number × 4 times)” is omitted here. Patent Document 1).

上記特許文献1に記載のような転位構成を採用することにより、導体を構成している超電導線のインダクタンスの均一化および電流分担の均一化を図ることができる。これにより、超電導線の並列本数を増加させることで電流容量を増大でき、かつ、並列本数増加による付加的な損失をなくすことができる。   By adopting the dislocation structure as described in Patent Document 1, the inductance of the superconducting wire constituting the conductor can be made uniform and the current sharing can be made uniform. Thereby, current capacity can be increased by increasing the number of superconducting wires in parallel, and additional loss due to the increase in the number of parallel wires can be eliminated.

次に、前記酸化物超電導材料(高温超電導線材)の従来技術について述べる。高温超電導線材の量産性の高い好ましい製造方法として、例えば、フレキシブルなテープ基板上に、酸化物超電導材料を膜状に形成する方法が考えられ、レーザアブレーション法、CVD法等の気相法を用いた製造方法の開発が進められている。上記のような、テープ基板上に酸化物超電導膜が形成された構造を有する高温超電導線材は、最外層に超電導膜が露出し、露出した側の表面は何ら安定化処理が施されていない。そのため、このような高温超電導線材に比較的大きな電流を流した場合に、局所的な熱発生のため、超電導膜が局所的に超電導状態から常電導状態へ転移し、電流輸送が不安定になるという問題があった。   Next, the prior art of the oxide superconducting material (high temperature superconducting wire) will be described. As a preferable manufacturing method with high mass productivity of high-temperature superconducting wire, for example, a method of forming an oxide superconducting material in a film shape on a flexible tape substrate can be considered, and a gas phase method such as a laser ablation method or a CVD method is used. Development of a manufacturing method that has been underway is underway. In the high-temperature superconducting wire having the structure in which the oxide superconducting film is formed on the tape substrate as described above, the superconducting film is exposed in the outermost layer, and the exposed surface is not subjected to any stabilization treatment. Therefore, when a relatively large current is passed through such a high-temperature superconducting wire, local heat generation causes the superconducting film to locally transition from the superconducting state to the normal conducting state, and current transport becomes unstable. There was a problem.

前記問題点を解決し、高い臨界電流値を有し、安定した電流輸送を行なうことができる、ならびに、長期間の保存によってもその安定性が低下しない酸化物超電導導体およびその製造方法を提供することを目的として、特許文献2には、下記のような構成を備えたテープ状の超電導線が開示されている。   An oxide superconducting conductor that solves the above problems, has a high critical current value, can perform stable current transport, and does not deteriorate its stability even after long-term storage, and a method for producing the same. For this purpose, Patent Document 2 discloses a tape-shaped superconducting wire having the following configuration.

即ち、「フレキシブルなテープ基板とテープ基板上に形成された中間層と、中間層上に形成された酸化物超電導膜と、酸化物超電導膜上に形成された、厚さが0.5μm以上の金または銀からなる膜(常電導の金属層)とを備える超電導線」である。特許文献2に記載された実施例の一例としては、「基板としてのハステロイテープの上に、中間層としてイットリア安定化ジルコニア層もしくは酸化マグネシウム層が設けられ、この上にY−Ba−Cu−O系酸化物超電導膜が形成され、さらにこの上に金または銀からなるコーティング膜が形成される。」
さらに、常電導の金属層を備えることにより、交流損失による発生熱を有効に放散して、熱的安定性を向上することを目的として、特許文献3には、下記のような構成を備えたテープ状の超電導線の製造方法が開示されている。
That is, “a flexible tape substrate, an intermediate layer formed on the tape substrate, an oxide superconducting film formed on the intermediate layer, and a thickness of 0.5 μm or more formed on the oxide superconducting film. A superconducting wire comprising a film (normally conducting metal layer) made of gold or silver. As an example of the embodiment described in Patent Document 2, an “yttria-stabilized zirconia layer or magnesium oxide layer is provided as an intermediate layer on a Hastelloy tape as a substrate, and a Y—Ba—Cu—O layer is provided thereon. A system oxide superconducting film is formed, and a coating film made of gold or silver is formed thereon. "
Furthermore, Patent Document 3 has the following configuration for the purpose of effectively dissipating generated heat due to AC loss and improving thermal stability by providing a normal conductive metal layer. A method for manufacturing a tape-shaped superconducting wire is disclosed.

即ち、同公報の記載によれば、「基板面上に高温超電導薄膜を被着したテープ状材の前記高温超電導薄膜を、1本乃至間隔をおいて平行に配置した複数本の長波長レーザ光により長手方向に照射して照射部分を非超電導化(常電導化)すると共に、前記複数本の長波長レーザ光のビーム径およびその間隔を選定して、前記非超電導部分間に位置する長波長レーザ光の非照射にもとづく超電導部分の幅を制御するようにしたことを特徴とする高温超電導線材の製造方法」である。   That is, according to the description of the publication, “a plurality of long-wavelength laser beams in which the high-temperature superconducting thin film of a tape-like material having a high-temperature superconducting thin film deposited on a substrate surface is arranged in parallel with one or more intervals. Irradiates in the longitudinal direction to make the irradiated portion non-superconducting (normal conducting), and selects the beam diameters and intervals of the plurality of long-wavelength laser beams so as to be positioned between the non-superconducting portions. A method for producing a high-temperature superconducting wire, characterized in that the width of a superconducting portion based on non-irradiation of laser light is controlled.

しかしながら、上記特許文献2および3に記載されたような量産性が高いテープ状の超電導線材を交流機器に用いた場合、超電導線材に発生する交流損失は、偏平なテープの形状異方性により、テープの偏平な面に垂直に作用する垂直磁界中の交流損失が支配的となり、交流損失が増大する問題がある。また、転位構成に関しても難があり、これ等の問題を解消するため、本願発明の一部の発明者等は、国際出願(PCT/JP2004/009965)により、以下のような超電導線材および同線材を用いた超電導コイルを開示している。   However, when a tape-like superconducting wire having high mass productivity as described in Patent Documents 2 and 3 is used in an AC device, the AC loss generated in the superconducting wire is due to the shape anisotropy of the flat tape. There is a problem that alternating current loss in a vertical magnetic field acting perpendicularly to the flat surface of the tape becomes dominant and the alternating current loss increases. Further, in order to solve these problems with dislocation structures, some inventors of the present invention have made the following superconducting wire and wire material according to an international application (PCT / JP2004 / 009965). Discloses a superconducting coil.

即ち、前記国際出願は、「交流損失の抑制が可能な超電導線材を提供し、さらにこの超電導線材を用いた超電導コイルは、転位なしの簡便な構成により線材に対する垂直磁界による鎖交磁束がキャンセル可能な構成で、かつ、垂直磁界による線材内循環電流を抑制して電流分流を均一化でき、これにより低損失の超電導コイルを提供すること」を目的とし、「基板面上に超電導薄膜を形成してテープ状にしてなる超電導線材において、少なくとも超電導層としての超電導薄膜部に、スリットを加工し、断面が矩形状の複数の超電導薄膜部に電気的に分離して並列化した並列導体、即ち、複数の要素導体を並列化した並列導体としてなるものとし、また、前記超電導線材を巻回してなる超電導コイルとしては、超電導コイルの構造もしくは配置上、超電導コイルによって生ずる磁場分布によって前記並列導体の各導体要素間に作用する垂直鎖交磁束が、互いに打ち消すように作用する部分を、少なくとも一部に有してなる、転位なしの簡便なコイル構成」を開示する。   That is, the international application states that “a superconducting wire capable of suppressing AC loss is provided, and a superconducting coil using this superconducting wire can cancel the interlinkage magnetic flux due to a perpendicular magnetic field with respect to the wire with a simple configuration without dislocation. The purpose of this is to provide a superconducting coil with a low loss and to make the current shunt uniform by suppressing the circulating current in the wire due to the vertical magnetic field. In the superconducting wire made into a tape shape, at least a superconducting thin film portion as a superconducting layer is processed into a slit, and a parallel conductor obtained by electrically separating and paralleling a plurality of superconducting thin film portions having a rectangular cross section, that is, A superconducting coil formed by winding a plurality of element conductors in parallel and winding the superconducting wire is a structure or arrangement of a superconducting coil. A simple coil configuration without dislocations, at least part of which the vertical flux linkages acting between the conductor elements of the parallel conductors cancel each other due to the magnetic field distribution generated by the superconducting coil Is disclosed.

なお、前記国際出願に開示した超電導導体は、例えば、基板としてのハステロイテープの上に、電気絶縁層の機能を有する中間層を設け、この上に超電導層としてY−Ba−Cu−O系酸化物超電導膜を形成し、さらにこの上に、常電導の金属層として、例えば金または銀からなるコーティング膜を形成したものを用いる。また、前記中間層としては、ガドリニウムジルコニウム酸化物(Gd2Zr2O7)層上に酸化セリウム(CeO2)層を形成した2層構造を用いる。上記超電導導体を、超電導導体の長手方向にスリット加工し、スリット加工して形成された溝の中および導体の周囲全体にわたって、エポキシ樹脂,エナメルなどの可とう性をもつ電気絶縁性材料を充填して並列導体を構成する。(詳細は、前記国際出願参照)。 The superconducting conductor disclosed in the international application is, for example, an intermediate layer having a function of an electrical insulating layer is provided on a Hastelloy tape as a substrate, and a Y-Ba-Cu-O-based oxide is formed thereon as a superconducting layer. A material superconducting film is formed, and a normal conducting metal layer is formed thereon with a coating film made of, for example, gold or silver. The intermediate layer has a two-layer structure in which a cerium oxide (CeO 2 ) layer is formed on a gadolinium zirconium oxide (Gd 2 Zr 2 O 7 ) layer. The above superconducting conductor is slitted in the longitudinal direction of the superconducting conductor, and a flexible electrically insulating material such as epoxy resin or enamel is filled in the groove formed by slitting and the entire periphery of the conductor. Configure parallel conductors. (See the international application for details).

次に、変圧器の短絡事故等の過電流対策について述べる。変圧器が短絡事故を起こすとコイルに大きな短絡電流が流れて過大な電磁力が働く。超電導変圧器の場合には、常電導変圧器に比較して電流密度が高く、言い換えれば同じ電流容量であれば超電導変圧器の方が導体断面積が小さい。従って、同じ電磁力が導体に作用した場合、超電導変圧器の方がより大きな応力が導体に作用することになる。酸化物超電導変圧器の場合には、導体が酸化物であるので機械的強度が比較的低く、この過電流時の電磁力に耐えられない可能性がある。   Next, countermeasures against overcurrent such as transformer short-circuit accidents are described. When a transformer causes a short-circuit accident, a large short-circuit current flows through the coil and an excessive electromagnetic force works. In the case of a superconducting transformer, the current density is higher than that of a normal conducting transformer. In other words, if the current capacity is the same, the superconducting transformer has a smaller conductor cross-sectional area. Therefore, when the same electromagnetic force is applied to the conductor, the superconducting transformer applies more stress to the conductor. In the case of an oxide superconducting transformer, since the conductor is an oxide, the mechanical strength is relatively low, and it may not be able to withstand the electromagnetic force at the time of overcurrent.

この問題を解決するための手段が、特許文献4に開示されている。特許文献4の要約の記載を引用すれば、即ち、「円筒状の絶縁巻枠の外周面側に螺旋状の溝を形成し、この溝に沿ってテープ状の超電導線材を巻回してなる超電導コイルにおいて、前記超電導線材に重ねてその外周側に銅,銅合金,チタン,ステンレス鋼等の常導電体を用いた金属テープを巻き付けて樹脂の硬化処理などによりバインドし、さらに金属テープを超電導線材と電気的に並列接続する。これにより、短絡事故などの際に超電導線材に加わる半径方向の電磁力を外周側から金属テープで支持し、さらに、過電流によるジュール発熱で超電導線材が常電導化した場合には、電流の一部を金属テープに分流させて急激な温度上昇によるコイル焼損を防ぐ。」
特開平11−273935号公報(第2−4頁、図1−4) 特開平7−37444号公報(第2−7頁、図1) 特開平3−222212号公報(第1−2頁、図3) 特開2001−244108号公報
A means for solving this problem is disclosed in Patent Document 4. To cite the description in the summary of Patent Document 4, that is, “a superconductivity formed by forming a spiral groove on the outer peripheral surface side of a cylindrical insulating winding frame and winding a tape-shaped superconducting wire along the groove. In the coil, a metal tape using a normal conductor such as copper, copper alloy, titanium, and stainless steel is wrapped around the superconducting wire and bound by a resin curing process, and the metal tape is further bonded to the superconducting wire. In this way, the electromagnetic force in the radial direction applied to the superconducting wire in the event of a short-circuit accident is supported by metal tape from the outer periphery, and the superconducting wire becomes normal conducting due to Joule heating due to overcurrent. If this happens, a part of the current is diverted to the metal tape to prevent coil burnout due to sudden temperature rise. "
JP-A-11-273935 (page 2-4, FIG. 1-4) JP-A-7-37444 (page 2-7, FIG. 1) JP-A-3-222212 (page 1-2, FIG. 3) JP 2001-244108 A

ところで、前記国際出願(PCT/JP2004/009965)に開示された線材によれば、交流損失の抑制が可能な超電導線材が得られるが、曲率半径が比較的小さい部分を有する超電導コイルを形成する場合には、上記超電導線材は不向きであり、曲率半径が比較的小であっても容易に巻回可能であって、かつ製造が一層容易な超電導導体の提供が望まれる。   By the way, according to the wire disclosed in the international application (PCT / JP2004 / 009965), a superconducting wire capable of suppressing AC loss can be obtained. When a superconducting coil having a portion having a relatively small radius of curvature is formed. Therefore, it is desired to provide a superconducting conductor that is unsuitable for the superconducting wire, can be easily wound even if the radius of curvature is relatively small, and is easier to manufacture.

さらに、特許文献2および3や国際出願(PCT/JP2004/009965)に記載されたような、量産性の高いテープ状の超電導線材の臨界電流は、自己磁界、液体窒素温度(77K)下において約100Aである。超電導コイルの状態においては、磁界の発生により、臨界電流はさらに低下し、機器として使用できる電流は、上述した臨界電流100Aより大幅に低下する。   Furthermore, the critical current of a tape-like superconducting wire with high mass productivity as described in Patent Documents 2 and 3 and the international application (PCT / JP2004 / 009965) is approximately under a self-magnetic field and liquid nitrogen temperature (77K). 100A. In the state of the superconducting coil, the critical current further decreases due to the generation of the magnetic field, and the current that can be used as a device is significantly lower than the above-described critical current 100A.

一方、要求される電流容量は、機器や用途によって様々であり、例えば変圧器の低圧巻線のように大電流が必要な場合には、前記特許文献2および3や国際出願に記載された方法では対応できない可能性がある。   On the other hand, the required current capacity varies depending on the device and application. For example, when a large current is required, such as a low-voltage winding of a transformer, the methods described in Patent Documents 2 and 3 and the international application. May not be possible.

さらに、交流機器としては、例えば励磁突入時や突発的な短絡事故時等において、短時間ではあるが定格電流以上の電流を流しても耐えることができる、いわゆる過電流対策を要求される場合がある。前記特許文献2および3や国際出願に記載されたテープ状の超電導線には、前述のように、安定化層として銀や金等の金属層が形成されている。この金属層は主として超電導性能向上を目的として配設するもので、この金属層の厚さは一般的に10μm以下で、過電流対策としては不十分な場合がある。   In addition, as an AC device, for example, in the case of an inrush of excitation or a sudden short-circuit accident, a so-called overcurrent countermeasure that can withstand a current exceeding the rated current for a short time may be required. is there. As described above, in the tape-shaped superconducting wires described in Patent Documents 2 and 3 and the international application, a metal layer such as silver or gold is formed as a stabilizing layer. This metal layer is provided mainly for the purpose of improving the superconducting performance, and the thickness of this metal layer is generally 10 μm or less, which may be insufficient as a measure against overcurrent.

この発明は、上記のような問題点を解消するためになされたもので、この発明の課題は、交流損失の抑制が可能な並列化超電導導体を用いて、曲率半径が比較的小さい超電導コイルであっても容易に巻回可能であって、製造が一層容易な超電導コイルを提供し、さらに、励磁突入時や突発的な短絡事故時等における過電流による導体の焼損を防止し、安全な大容量の超電導コイルを提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to use a superconducting coil having a relatively small radius of curvature using a parallel superconductor capable of suppressing AC loss. a readily wound even, providing easier superconducting coil manufacturing, further preventing burnout of the conductor due to overcurrent in excitation magnetic inrush or during sudden short circuit or the like, safety It is to provide a superconducting coil having a large capacity.

前述の課題を解決するため、この発明の超電導コイルは、電気的絶縁材料または高抵抗材料を被覆した酸化物超電導線材を、コイル軸方向である導体幅方向に複数本並列配置した超電導導体を、複数個コイル軸方向に並列配置してなる二次並列導体をユニットとし、この二次並列導体ユニットを複数層並列にコイル径方向に積層してなる三次並列導体を、単層もしくは複数層巻回してなる超電導コイルであって、超電導コイルによって生ずる磁場分布によって前記超電導導体の各酸化物超電導線材間に作用する垂直鎖交磁束が、前記超電導コイルの構造もしくは配置に起因して互いに打ち消し合うように作用する部分を、少なくとも一部に有してなるコイル構成を備えたものとする(請求項1)。上記において、酸化物超電導線材としては、公知のBi系酸化物超電導線材(Bi2223、Bi2212)、Hg系酸化物超電導線材、Tl系酸化物超電導線材等を使用することができる。その他、酸化物ではないが、公知のMgB2超電導線材を用いることもできる。また、前記電気的絶縁材料としては、例えば、PVF(ポリビニルフォルマール)が好ましい。さらに、高抵抗材料としては、超電導線材表面を酸化することによって得られる酸化層や超電導線材表面へのCrメッキ層が適用できる。なお、酸化物超電導線材を、導体幅方向に複数本並列配置した線材同士は、お互いに接着して固定することができるが、後述するように、例えば、樹脂により一体化することもできる。 To solve the problems described above, the superconducting coil of the invention, electrically insulating material or a high-resistance material oxide superconducting wire coated with, superconducting conductors plurality of parallel disposed in the conductor width direction is a coil axis direction A plurality of secondary parallel conductors arranged in parallel in the coil axis direction as a unit, and a tertiary parallel conductor formed by laminating the secondary parallel conductor units in a plurality of layers in parallel in the coil radial direction. A superconducting coil that is wound, and the vertical interlinkage magnetic flux acting between the oxide superconducting wires of the superconducting conductor cancels each other due to the structure or arrangement of the superconducting coil due to the magnetic field distribution generated by the superconducting coil. It is assumed that a coil configuration having at least a portion that acts in this manner is provided (claim 1). In the above, as the oxide superconducting wire, known Bi-based oxide superconducting wires (Bi2223, Bi2212), Hg-based oxide superconducting wires, Tl-based oxide superconducting wires, and the like can be used. Other, but not oxide, it may also be a known MgB 2 superconducting wire. Moreover, as said electrically insulating material, PVF (polyvinyl formal) is preferable, for example. Furthermore, as the high resistance material, an oxide layer obtained by oxidizing the surface of the superconducting wire or a Cr plating layer on the surface of the superconducting wire can be applied. Note that a plurality of oxide superconducting wires arranged in parallel in the conductor width direction can be bonded and fixed to each other, but can also be integrated with a resin, for example, as will be described later.

上記請求項1の発明により、電気的に並列化してなる複数の酸化物超電導線材が、マルチフィラメント超電導体として機能し、電流分流の均一化が図れるとともに、交流機器用コイルに適用した場合の前記垂直磁界中の交流損失が低減できる。また、上記超電導導体構成によれば、曲率半径が比較的小さい超電導コイルであっても容易に巻回可能であって、かつ製造が一層容易となる。   According to the first aspect of the invention, the plurality of oxide superconducting wires formed in parallel electrically function as a multifilament superconductor, and the current splitting can be made uniform, and when applied to a coil for an AC device AC loss in a vertical magnetic field can be reduced. Further, according to the superconducting conductor configuration, even a superconducting coil having a relatively small radius of curvature can be easily wound and can be manufactured more easily.

ところで、前述のように、前記特許文献3に開示されたテープ状の超電導線材も、超電導薄膜部が構造的に分離されているが、常電導薄膜部と超電導薄膜部とが交互に形成されているので、常電導薄膜部において渦電流損失が発生し、損失が増大する問題があるのに対して、上記本発明の超電導導体によれば、各酸化物超電導線材が電気的に分離しているので、前記特許文献3のような問題は生じない。   By the way, as described above, the superconducting thin film portion is also structurally separated in the tape-shaped superconducting wire disclosed in Patent Document 3, but the normal conducting thin film portion and the superconducting thin film portion are alternately formed. Therefore, eddy current loss occurs in the normal conducting thin film portion, and there is a problem that the loss increases. However, according to the superconducting conductor of the present invention, each oxide superconducting wire is electrically separated. Therefore, the problem as in Patent Document 3 does not occur.

なお、上記請求項1の発明において、前記酸化物超電導線材の断面形状は、製造方法にもよるが、円形、矩形、場合によっては台形状となる場合や、さらに、矩形や台形の角が面取りされる場合等、種々の変形があり得る。   In the invention of claim 1, the cross-sectional shape of the oxide superconducting wire may be round, rectangular, or trapezoidal depending on the case, or the corners of the rectangle or trapezoid may be chamfered depending on the manufacturing method. There can be various variations, such as

上記請求項1の発明の実施態様としては、下記請求項2ないしの発明が好ましい。即ち、前記請求項1に記載の超電導コイルにおいて、前記超電導導体は、金属材料または非導電性材料からなる基板面上に、前記酸化物超電導線材を並列配置したものとする(請求項2)。前記金属材料としては、例えば、CuやSUS(ステンレス鋼)が好ましく、また非導電性材料としては、GFRPが好ましい。 As an embodiment of the invention of claim 1, the inventions of claims 2 to 9 below are preferable. That is, in the superconducting coil according to claim 1, the superconducting conductor is formed by arranging the oxide superconducting wire in parallel on a substrate surface made of a metal material or a non-conductive material (claim 2). For example, Cu or SUS (stainless steel) is preferable as the metal material, and GFRP is preferable as the non-conductive material.

また、前記請求項1または2に記載の超電導コイルにおいて、前記超電導導体における酸化物超電導線材はツイストしてなるものとする(請求項3)。前記ツイストにより、交流損失の更なる低減効果が得られる。このツイストによる低減効果は、インシチュー(in-situ)法によるNb3Sn超電導線材において得られる公知の効果である。このようなツイストされた超電導線材は、フィラメント間の超電導接触により電磁気的にはモノフィラメント的(単芯線的)特性を有するが、ツイストにより、任意の印加角度を有する外部磁界に対して、交流損失を低減することができる。 Further, in the superconducting coil according to claim 1 or 2, the oxide superconducting wire in the superconducting conductor is twisted (claim 3). The twist can further reduce the AC loss. This reduction effect by the twist is a known effect obtained in the Nb 3 Sn superconducting wire by the in-situ method. Such a twisted superconducting wire has a monofilament-like (single-core wire) characteristic due to superconducting contact between filaments, but the twist causes an AC loss against an external magnetic field having an arbitrary applied angle. Can be reduced.

また、前記請求項1に記載の超電導コイルにおいて、前記超電導導体は、高抵抗材料を被覆した酸化物超電導線材を、導体幅方向に複数本並列配置し、半田付けにより一体化するか、もしくは、高抵抗材料を被覆した酸化物超電導線材を、金属材料からなる基板面上に、導体幅方向に複数本並列配置し、前記複数本の酸化物超電導線材と基板とを、半田付けにより一体化してなるものとする(請求項)。 Also, in the superconducting coil according to claim 1, the superconducting conductor is a plurality of oxide superconducting wires coated with a high resistance material arranged in parallel in the conductor width direction and integrated by soldering, or A plurality of oxide superconducting wires coated with a high resistance material are arranged in parallel in the conductor width direction on a substrate surface made of a metal material, and the plurality of oxide superconducting wires and the substrate are integrated by soldering. (Claim 4 ).

さらに、電流分担の均一化の観点から、前記請求項に記載の超電導コイルにおいて、前記二次並列導体ユニットを複数層並列にコイル径方向に積層してなる三次並列導体を巻回する際に、前記各層の二次並列導体ユニットを転位してなることを特徴とする(請求項)。 Furthermore, in the superconducting coil according to claim 1 , from the viewpoint of equalizing current sharing, when winding a tertiary parallel conductor formed by laminating the secondary parallel conductor units in a plurality of layers in parallel in the coil radial direction. The secondary parallel conductor units of the respective layers are dislocated (Claim 5 ).

詳細は後述するが、前記請求項の発明のように、二次並列導体ユニット中に、複数本の酸化物超電導線材を電気的に分離して多数配置することで、二次並列導体または三次並列導体は、マルチフィラメントとして機能する導体となり、大電流容量超電導コイルの巻線が容易になると共に、電流分流均一化及び交流損失低減が図れる。また、前記二次並列導体ユニットの各酸化物超電導線材間に作用する垂直鎖交磁束が、互いに打ち消すように作用する部分を、少なくとも一部に有するものとするコイル構成に基づき、コイル構成上、垂直磁界に基づく交流損失が抑制される。この場合、コイル軸方向の酸化物超電導線材間で転位は不要であり、前記請求項の発明のように、各層の二次並列導体ユニットを転位すればよく、並列化して電流容量増大を図る上でコイル構成を容易にすることができる Although details will be described later, before SL as in the invention of claim 1, in the secondary parallel superconductor unit, by arranging a number to electrically isolate the plurality of the oxide superconducting wire, the secondary parallel conductors or The tertiary parallel conductor becomes a conductor functioning as a multifilament, and the winding of the large current capacity superconducting coil can be facilitated, and current distribution can be made uniform and AC loss can be reduced. Further, based on the coil configuration, the vertical interlinkage magnetic flux acting between the oxide superconducting wires of the secondary parallel conductor unit has at least a portion that acts so as to cancel each other. The AC loss due to the vertical magnetic field is suppressed. In this case, dislocations are not necessary between the oxide superconducting wires in the coil axis direction, and the secondary parallel conductor units of each layer may be dislocated as in the invention of claim 5 , and the current capacity is increased by paralleling. The coil configuration can be facilitated .

また、過電流対策の観点から、下記請求項ないし9の超電導コイルの発明が好ましい。即ち、前記請求項1に記載の超電導コイルにおいて、前記超電導導体における少なくとも1本の酸化物超電導線材は、常電導導体材料からなる常電導線材に置き換えてなるものとする(請求項。さらにまた、前記請求項に記載の超電導コイルにおいて、前記二次並列導体のうち少なくとも1個の超電導導体は、常電導導体材料からなる常電導導体に置き換えてなるものとする(請求項)。 Further, in view of the overcurrent protection, are preferred invention of superconducting coil below claims 6 to 9. That is, in the superconducting coil according to claim 1, at least one oxide superconducting wire in the superconducting conductor is replaced with a normal conducting wire made of a normal conducting material (claim 6 ) . A superconducting coil according et al in addition, in claim 1 of at least one superconducting conductor of the secondary parallel conductors shall become replaced by a normal conducting conductor made of normal conducting conductor material (claim 7 ).

上記構成によれば、励磁突入時や突発的な短絡事故時などにおける過電流により超電導線材または超電導導体が抵抗状態になった場合に電流が常電導線材または常電導導体に分流することによりジュール発熱による焼損を防止できる。   According to the above configuration, when the superconducting wire or the superconducting conductor is in a resistance state due to an overcurrent at the time of inrush or sudden short circuit, the current is diverted to the normal conducting wire or the normal conducting conductor, thereby generating Joule heat. Can prevent burnout.

前述したように、二次素線を構成する素線のインダクタンスは、コイルの軸方向に配置することで均一化され、超電導素線と常電導素線とではほぼ同一となる。一方で、常電導素線は電気抵抗が存在し、超電導素線は通常の使用範囲では電気抵抗は無視できるほど小さい。従って常電導素線のインピーダンスは超電導素線より大きくなり、電流のほとんどは超電導素線を流れ、常電導素線での電流による発熱はほとんどない。この関係は、常電導素線を含む二次並列導体を用いた超電導コイルにおいても成立する。よって常電導素線を並列配置したことによる損失は無視できるほど小さい。ところが、超電導素線に臨界電流を超えるような過電流が流れると、磁束フローによる電気抵抗が発生する。超電導素線の電気抵抗と、常電導素線の電気抵抗の関係により、常電導素線にも電流が流れる。従って電流を常電導素線に流すことができるので、超電導素線に過度の電流を流すことを回避できる。結果として定格電流以上の過電流が発生しても特性劣化のない超電導コイルを提供できる。   As described above, the inductance of the strands constituting the secondary strands is made uniform by arranging them in the axial direction of the coil, and the superconducting strands and the normal conducting strands are substantially the same. On the other hand, the normal conducting wire has an electric resistance, and the superconducting wire has a small negligible electric resistance in the normal use range. Accordingly, the impedance of the normal conducting wire becomes larger than that of the superconducting wire, and most of the current flows through the superconducting wire, and there is almost no heat generation due to the current in the normal conducting wire. This relationship is also established in a superconducting coil using a secondary parallel conductor including a normal conducting wire. Therefore, the loss due to the parallel arrangement of normal conducting wires is so small that it can be ignored. However, when an overcurrent exceeding the critical current flows through the superconducting wire, an electric resistance due to a magnetic flux flow is generated. Due to the relationship between the electrical resistance of the superconducting wire and the electrical resistance of the normal conducting wire, a current also flows through the normal conducting wire. Therefore, since an electric current can be sent through a normal conducting element wire, it can avoid flowing an excessive electric current through a superconducting element wire. As a result, it is possible to provide a superconducting coil that does not deteriorate characteristics even when an overcurrent exceeding the rated current occurs.

なお、超電導線材または超電導導体を、常電導線材または常電導導体に置き換える位置は、一ヶ所に限らない。置き換える数とその位置は、超電導コイルの設計仕様による。さらに、例えば、三次並列導体におけるコイル軸方向の最上部または最下部の全てとすることもできる。また、置き換える位置を、コイル層方向の1つの層全てとすることもできるが、過電流時の電磁力支持の観点から、常電導素線に電流分流の機能と電磁力支持機能を兼用させることが好ましい。この観点から、下記請求項の発明が好ましい。 The position where the superconducting wire or the superconducting conductor is replaced with the normal conducting wire or the normal conducting conductor is not limited to one. The number and position of replacement depend on the design specifications of the superconducting coil. Furthermore, for example, all of the uppermost part or the lowermost part of the tertiary parallel conductor in the coil axis direction can be used. Also, the replacement position can be all one layer in the coil layer direction, but from the viewpoint of supporting electromagnetic force at the time of overcurrent, make the normal conducting wire have both the function of current shunting and the function of supporting electromagnetic force. Is preferred. From this viewpoint, the invention of claim 8 below is preferable.

即ち、前記請求項に記載の超電導コイルにおいて、前記三次並列導体における複数層の二次並列導体のうち、最外層の二次並列導体は常電導導体からなる二次並列導体に置き換え、この常電導導体からなる最外層は転位しない構成としたことを特徴とする(請求項)。この場合、複数本の常電導導体は、超電導線材と同様に絶縁被覆される。 That is, in the superconducting coil according to claim 5 , among the plurality of secondary parallel conductors in the tertiary parallel conductor, the secondary parallel conductor in the outermost layer is replaced with a secondary parallel conductor made of a normal conductive conductor. The outermost layer made of a conductive conductor is configured not to dislocation (claim 8 ). In this case, the plurality of normal conducting conductors are insulated and coated in the same manner as the superconducting wire.

常電導線材または常電導導体の材料としては、銅,銅合金,チタン,ステンレス鋼等の常導電材料を用いることができるが、コイルの仕様にもよるが、電磁力支持を重視する場合には、電気伝導率が比較的小さくても、機械的強度が高い材料を用いるのが望ましい。場合によっては、電気伝導率が大きい材料と機械的強度が高い材料とを、組み合わせることもできる。   As the material for the normal conducting wire or the normal conducting conductor, a normal conductive material such as copper, copper alloy, titanium, stainless steel, etc. can be used. However, depending on the coil specifications, when supporting electromagnetic force is important. It is desirable to use a material having high mechanical strength even if the electrical conductivity is relatively small. In some cases, a material having a high electrical conductivity and a material having a high mechanical strength can be combined.

また、過電流時の電磁力支持を重視する観点からは、下記請求項の発明が好ましい。即ち、請求項に記載の超電導コイルにおいて、前記三次並列導体における複数層の二次並列導体のうち、最外層の二次並列導体は、常電導材料もしくは高強度の絶縁材料からなる電磁力支持部材に置き換えてなるものとする(請求項)。 Further, from the viewpoint of emphasizing the electromagnetic force support at the time of overcurrent, the invention of claim 9 below is preferable. That is, in the superconducting coil according to claim 5 , out of the plurality of secondary parallel conductors in the tertiary parallel conductor, the outermost secondary parallel conductor is an electromagnetic force support made of a normal conductive material or a high-strength insulating material. It shall be replaced with a member (claim 9 ).

この発明によれば、交流損失の抑制が可能な並列化超電導導体を用いて、曲率半径が比較的小さい超電導コイルであっても容易に巻回可能であって、製造が一層容易な超電導コイルを提供し、さらに、励磁突入時や突発的な短絡事故時等における過電流による導体の焼損を防止し、安全な大容量の超電導コイルが提供できる。 According to the present invention, using a parallel superconducting conductor capable inhibition of AC loss, a possible wound easily even at relatively small superconducting coil radius of curvature, manufacturing is easier superconducting coil was provided, further, to prevent the burnout of the conductor due to overcurrent in excitation magnetic inrush or during sudden short circuit or the like, it can be provided a secure large superconducting coils.

図1ないし図11に基づき、本発明の実施の形態について以下に述べる。   An embodiment of the present invention will be described below with reference to FIGS.

図1は、本発明の実施形態を示す超電導導体の模式的断面図であり、(a)図は、酸化物超電導線材として丸線材を用いた場合、(b)および(c)は、矩形断面の線材を用いた場合であって、それぞれアスペクト比が異なるケースを示す。図1において、それぞれ20a,20b,20cで示す酸化物超電導線材は、電気的絶縁材料または高抵抗材料により被覆されて、導体幅方向に複数本並列配置されており、電気的には実質的に並列化した超電導導体として構成されている。   FIG. 1 is a schematic cross-sectional view of a superconducting conductor showing an embodiment of the present invention. FIG. 1 (a) shows a case where a round wire is used as the oxide superconducting wire, and (b) and (c) show a rectangular cross-section. In the case of using the wire rods shown in FIG. In FIG. 1, the oxide superconducting wires indicated by 20a, 20b and 20c, respectively, are covered with an electrically insulating material or a high resistance material and arranged in parallel in the conductor width direction. It is configured as a parallel superconducting conductor.

酸化物超電導線材としては、前述のような公知の線材が適用できるが、例えば、Bi系酸化物超電導線材(Bi2223、Bi2212)を使用する。電気的絶縁材料としては、例えば、PVF(ポリビニルフォルマール)、高抵抗材料としては、Crメッキ層とする。導体幅方向に複数本並列配置した線材同士は、お互いに接着して固定するか、もしくは、後述する実施態様のように樹脂により一体化し、超電導コイルに適用する場合には、上記並列化した超電導導体を、コイル中心軸を中心として巻回する。なお、超電導コイルの構成については後述する。   As the oxide superconducting wire, known wires as described above can be applied. For example, Bi-based oxide superconducting wires (Bi2223, Bi2212) are used. For example, PVF (polyvinyl formal) is used as the electrically insulating material, and a Cr plating layer is used as the high resistance material. A plurality of wires arranged in parallel in the conductor width direction are bonded and fixed to each other, or integrated with resin as in the embodiment described later, and applied to a superconducting coil, the above-described parallel superconducting The conductor is wound around the coil central axis. The configuration of the superconducting coil will be described later.

次に、図1とは異なる超電導導体の実施形態について、図2ないし図6に基づいて述べる。図2は、金属材料または非導電性材料からなる基板31面上に、電気的絶縁材料により被覆された酸化物超電導線材20a,20b,20cを並列配置した実施形態を示す。図3は、前記基板31面上に、高抵抗材料により被覆された酸化物超電導線材21a,21b,21cを並列配置した実施形態を示す。   Next, an embodiment of a superconducting conductor different from that shown in FIG. 1 will be described with reference to FIGS. FIG. 2 shows an embodiment in which oxide superconducting wires 20a, 20b, and 20c covered with an electrically insulating material are arranged in parallel on the surface of a substrate 31 made of a metal material or a non-conductive material. FIG. 3 shows an embodiment in which oxide superconducting wires 21a, 21b, and 21c coated with a high resistance material are arranged in parallel on the surface of the substrate 31. FIG.

図4および図5は、それぞれ、図1および図2に示す超電導導体の外周を、例えばエポキシ樹脂により、絶縁被覆して一体化した実施形態を示す。この実施形態によれば、電気絶縁に対する信頼性が向上するとともに、一体化により超電導導体の扱いが容易となる。   FIGS. 4 and 5 show embodiments in which the outer periphery of the superconducting conductor shown in FIGS. 1 and 2 is integrated by insulating coating with, for example, an epoxy resin. According to this embodiment, reliability with respect to electrical insulation is improved, and handling of the superconducting conductor is facilitated by integration.

図6は、酸化物超電導線材20a,20b,20cと基板31との間を、例えばエポキシ樹脂により接合して一体化するか、もしくは、前記請求項5に関わり、高抵抗材料を被覆した酸化物超電導線材(21a,21b,21c)を、金属材料からなる基板31面上に、導体幅方向に複数本並列配置し、前記複数本の酸化物超電導線材と基板とを、半田付けにより一体化した実施形態を示す。なお、前記請求項5に関わる超電導導体の構成としては、上記の基板31を省略して、高抵抗材料を被覆した酸化物超電導線材(21a,21b,21c)を、導体幅方向に複数本並列配置し、半田付けにより一体化してなるものとしてもよい。   FIG. 6 shows the oxide superconducting wires 20a, 20b, 20c and the substrate 31 joined together by, for example, an epoxy resin, or an oxide coated with a high-resistance material according to claim 5 A plurality of superconducting wires (21a, 21b, 21c) are arranged in parallel in the conductor width direction on the surface of the substrate 31 made of a metal material, and the plurality of oxide superconducting wires and the substrate are integrated by soldering. An embodiment is shown. The superconducting conductor according to claim 5 is configured such that the substrate 31 is omitted and a plurality of oxide superconducting wires (21a, 21b, 21c) coated with a high resistance material are arranged in parallel in the conductor width direction. It is good also as what is arrange | positioned and integrated by soldering.

次に、超電導コイルの実施形態について、図7から図11に基づいて述べる。   Next, an embodiment of the superconducting coil will be described with reference to FIGS.

図7は、請求項の発明に関わる実施形態に至る前の参考形態を示す。図7に示す超電導コイルは、複数本の超電導導体40をコイル軸方向に並列配置してなる二次並列導体50を、単層もしくは複数層巻回してなる超電導コイルであり、超電導コイルの軸方向の対称性に基づき、超電導コイルによって生ずる磁場分布によって前記二次並列導体50の各超電導線材間に作用する垂直鎖交磁束が、互いに打ち消すように作用する(詳細は、前記国際出願PCT/JP2004/009965参照)。 FIG. 7 shows a reference form before reaching the embodiment relating to the invention of claim 1 . The superconducting coil shown in FIG. 7 is a superconducting coil in which a secondary parallel conductor 50 formed by arranging a plurality of superconducting conductors 40 in parallel in the coil axial direction is wound in a single layer or a plurality of layers, and the axial direction of the superconducting coil. Based on the symmetry of the above, the magnetic flux distribution generated by the superconducting coil acts so that the vertical flux linkages acting between the superconducting wires of the secondary parallel conductor 50 cancel each other (for details, refer to the international application PCT / JP2004 / 009965).

なお、図7においては、超電導導体40には、説明の便宜上、各超電導導体40に1〜4の番号を付して示す。図7の実施形態の超電導コイルの場合には、二次並列導体50を転位する必要はない。従って、全ての二次並列導体50内部の前記超電導導体の番号を、軸方向に(1,2,3,4)、(1,2,3,4)、…………(1,2,3,4)の列とし、この列を層方向に繰り返す配列となるように巻回する。   In FIG. 7, the superconducting conductors 40 are denoted by numbers 1 to 4 for the convenience of explanation. In the case of the superconducting coil of the embodiment of FIG. 7, it is not necessary to transpose the secondary parallel conductor 50. Therefore, the numbers of the superconducting conductors in all the secondary parallel conductors 50 are set to (1, 2, 3, 4), (1, 2, 3, 4),. 3) and 4), and this row is wound so as to be an array that repeats in the layer direction.

次に、図8について述べる。図8は、本発明の実施の形態の一例を示す超電導コイルの模式的断面図である。図8(a)は基板31面上に、電気的に分離して並列化してなる複数の酸化物超電導線材20bを有する超電導導体40を示す。この超電導導体40としては、前記図1ないし図6に示すような超電導導体が適用できる。 Next, FIG. 8 will be described. FIG. 8 is a schematic cross-sectional view of a superconducting coil showing an example of an embodiment of the present invention . FIG. 8A shows a superconducting conductor 40 having a plurality of oxide superconducting wires 20b which are electrically separated and arranged in parallel on the surface of the substrate 31. FIG. As the superconducting conductor 40, a superconducting conductor as shown in FIGS. 1 to 6 can be applied.

図8(b)は図8(a)に示す超電導導体40を、コイル軸方向に4本並列配置したものであり、これが二次並列導体50となる。なお、図8(b)において、4本の超電導導体40は、それぞれ電気的に絶縁されている。   FIG. 8B shows a configuration in which four superconducting conductors 40 shown in FIG. 8A are arranged in parallel in the coil axis direction, and this becomes the secondary parallel conductor 50. In FIG. 8B, the four superconducting conductors 40 are electrically insulated from each other.

図8(b)の場合において、並列配置された各々の超電導導体40のインダクタンスは同一であるので、二次並列導体50における超電導導体40は転位をする必要がない。結果として、二次並列導体50は、超電導導体40の並列本数倍の電流容量を持った導体と等価となる。   In the case of FIG. 8B, since the inductances of the superconducting conductors 40 arranged in parallel are the same, the superconducting conductors 40 in the secondary parallel conductor 50 do not need to be displaced. As a result, the secondary parallel conductor 50 is equivalent to a conductor having a current capacity that is several times that of the superconducting conductor 40 in parallel.

次に、図8(c)について述べる。図8(c)は二次並列導体50を3層並列に積層して導体化した三次並列導体60である。なお、図8(c)において、各二次並列導体50の間は電気的に絶縁されている。積層した二次並列導体50同士のインダクタンスは、コイル径方向の位置に起因して異なるので、転位を施す必要がある。この転位構成としては、前述の特許文献1に記載のような転位構成、即ち、コイルの軸方向端部で転位させる構成を採用することにより、導体を構成している超電導線のインダクタンスの均一化および電流分担の均一化を図り、コイルとしての電流密度の低下防止を図ることができる。詳細は後述する。   Next, FIG. 8C will be described. FIG. 8C shows a tertiary parallel conductor 60 in which secondary parallel conductors 50 are laminated in parallel to form a conductor. In FIG. 8C, the secondary parallel conductors 50 are electrically insulated. Since the inductances of the stacked secondary parallel conductors 50 are different due to the position in the coil radial direction, it is necessary to perform dislocation. As this dislocation structure, by adopting the dislocation structure as described in the above-mentioned Patent Document 1, that is, the structure in which the dislocation is performed at the end of the coil in the axial direction, the inductance of the superconducting wire constituting the conductor is made uniform. Further, the current sharing can be made uniform, and the current density as a coil can be prevented from lowering. Details will be described later.

次に、図8(d)について述べる。図8(d)は前記三次並列導体60を、コイル半径方向に複数層巻回し、かつコイル軸方向に複数ターン巻回してなるコイル構成の模式的断面を示す。なお、図8(d)において、層数は省略して破線で示す。また、部番54はコイルフランジ、55は巻枠を示す。なお、巻枠は、図示のように円筒状でなくともよく、レーストラック状や、角に丸みを備えた矩形等の種々の形状があり得る。   Next, FIG. 8D will be described. FIG. 8D shows a schematic cross section of a coil configuration in which the tertiary parallel conductor 60 is wound in a plurality of layers in the coil radial direction and wound in a plurality of turns in the coil axial direction. In FIG. 8D, the number of layers is omitted and indicated by a broken line. Further, reference numeral 54 denotes a coil flange, and 55 denotes a winding frame. Note that the winding frame does not have to be cylindrical as illustrated, and may have various shapes such as a racetrack shape or a rectangle with rounded corners.

上記図8の実施形態のように超電導コイルを構成することにより、コイルの電流容量は、超電導導体40の4並列×3重ね分、すなわち12倍の電流容量を確保することが可能になる。大電流容量化を図る場合に、導体素線として、電流容量の大きな超電導素線を用いる場合と比較して、本発明のように、小電流容量の単位並列導体を用いて図8のような構成とする方が、製作が容易であり、かつ安価となる。   By configuring the superconducting coil as in the embodiment of FIG. 8 described above, the current capacity of the coil can be ensured by 4 parallels × 3 superpositions of the superconducting conductors 40, that is, 12 times the current capacity. When a large current capacity is to be achieved, as shown in FIG. 8, a unit parallel conductor with a small current capacity is used as in the present invention as compared with the case where a superconducting element wire having a large current capacity is used as the conductor wire. The configuration is easier to manufacture and less expensive.

また、電気的に分離された二次並列導体50、およびこれを構成する超電導導体40、さらには電気的に分離された酸化物超電導線材20bに作用する垂直鎖交磁界は、前記国際出願で開示されているように、超電導コイルの軸方向の対称性に基づき、超電導線材全体としては、互いに打ち消すように作用するので、垂直磁界に基づく交流損失は抑制される。さらに、分割した酸化物超電導線材20bが独立したフィラメントとして振舞うことができ、さらに交流損失低減が可能になる。   Further, the vertical interlinkage magnetic field acting on the electrically isolated secondary parallel conductor 50, the superconducting conductor 40 constituting the electrically isolated secondary parallel conductor 50, and the electrically isolated oxide superconducting wire 20b is disclosed in the international application. As described above, based on the symmetry of the superconducting coil in the axial direction, the superconducting wires as a whole act so as to cancel each other, so that AC loss based on the vertical magnetic field is suppressed. Further, the divided oxide superconducting wire 20b can behave as an independent filament, and AC loss can be further reduced.

なお、前記図8の場合には、二次並列導体を転位させることが望ましく、これについては、次の図9で述べる。図9は、転位構成の説明を行うために簡略化した超電導コイルの実施形態を示す。図9の実施形態は、コイル軸方向に超電導導体40を4個並列配置した二次並列導体を、半径方向に3層積層し、かつ最外層に常電導導体70を配置して構成した三次並列導体60aを導体ユニットとして巻回してなる超電導コイルを示す。   In the case of FIG. 8, it is desirable to displace the secondary parallel conductor, which will be described in the next FIG. FIG. 9 shows an embodiment of a superconducting coil simplified to explain the dislocation configuration. The embodiment of FIG. 9 is a tertiary parallel configuration in which four secondary conductive conductors 40 arranged in parallel in the coil axis direction are stacked in three layers in the radial direction and the normal conductive conductor 70 is arranged in the outermost layer. A superconducting coil formed by winding a conductor 60a as a conductor unit is shown.

転位を行う場合、前述のように、「コイルの層数を、並列化している超電導線の並列本数の4倍(本数×4倍)の整数倍とする」構成が好ましいので、図9においては、3本(二次並列導体)×4倍で、12層とした実施形態を示し、図9の下方に、1層、2層……12層として各層を示す。また、超電導導体40には、転位の説明の便宜上、各超電導導体40に1〜12の番号を付して示す。   In the case of performing dislocation, as described above, a configuration in which “the number of coil layers is an integer multiple of four times the number of parallel superconducting wires (number × 4 times)” is preferable. An embodiment in which three layers (secondary parallel conductors) × 4 times and 12 layers are shown, and each layer is shown as one layer, two layers,..., 12 layers below FIG. In addition, for the convenience of explanation of dislocation, the superconducting conductors 40 are denoted by numbers 1 to 12 for the respective superconducting conductors 40.

図9のように三次並列導体60aを重ねて配置すると、図8と同様に、二次並列導体間でインダクタンスが変わるので、少なくとも超電導導体40は、層間で転位を施す必要がある。転位をすることで、二次並列導体間のインダクタンスは均等になる。   When the third parallel conductors 60a are arranged so as to overlap each other as shown in FIG. 9, the inductance changes between the secondary parallel conductors as in FIG. 8, so that at least the superconducting conductor 40 needs to be dislocated between the layers. By performing the dislocation, the inductance between the secondary parallel conductors becomes equal.

常電導導体は転位しなくとも、常電導導体の材料や温度、積層枚数及び動作周波数等にもよるが、通常、常電導導体に流れる電流は抵抗により制限され、発熱が問題とならない場合が多いので、図9においては、常電導導体70の二次並列導体に相当する導体間は、転位しない構成を示している。なお、必要に応じて転位する場合には、三次並列導体間で必要な転位を行う。   Even if the normal conductor does not dislocation, it depends on the material, temperature, number of layers, operating frequency, etc. of the normal conductor, but usually the current flowing in the normal conductor is limited by the resistance, and heat generation is often not a problem. Therefore, in FIG. 9, the structure which does not displace between the conductors corresponded to the secondary parallel conductor of the normal conducting conductor 70 is shown. When dislocations are performed as necessary, necessary dislocations are performed between the tertiary parallel conductors.

図9において、図の左上の方から、太線の矢印に沿って電流が流入し、図の右上の方から流出するが、その間は、三次並列導体60aの図の上下の層間において、太線で示すように、各超電導導体40が、順次転位する。例えば、コイル中心軸14に最も近い三次並列導体60aの3層の内、番号1〜4で示すコイル中心軸に最も近い二次並列導体は、図の左上方に示す位置Aから導入され、図示B,C,D,E,F………Wを経て、図の右上に示す位置Xに導出するものとし、上記のように転位させることで、二次並列導体間のインダクタンスは均等になる。   In FIG. 9, current flows in from the upper left side of the figure along the thick arrow and flows out from the upper right side of the figure, and in the meantime, it is indicated by a thick line between the upper and lower layers of the tertiary parallel conductor 60 a in the figure. Thus, each superconducting conductor 40 dislocations sequentially. For example, among the three layers of the tertiary parallel conductor 60a closest to the coil central axis 14, the secondary parallel conductor closest to the coil central axis indicated by numbers 1 to 4 is introduced from the position A shown in the upper left of the figure, and is illustrated. Through B, C, D, E, F,..., W, it is derived to a position X shown in the upper right of the figure, and by shifting as described above, the inductance between the secondary parallel conductors becomes equal.

次に、図10について述べる。図10は、図8とは異なる実施形態を示し、過電流対策として、図8に示す二次並列導体50における複数本の超電導導体40の内、1本の超電導導体40を、常電導導体材料からなる常電導導体70に置き換えてなる実施形態を示す。図10において、二次並列導体は50aで示し、三次並列導体は60aで示す。その他の部材は、図8と同様である。   Next, FIG. 10 will be described. FIG. 10 shows an embodiment different from that in FIG. 8, and as a countermeasure against overcurrent, one superconducting conductor 40 is used as a normal conducting conductor material among the plurality of superconducting conductors 40 in the secondary parallel conductor 50 shown in FIG. An embodiment in which a normal conductive conductor 70 is used is shown. In FIG. 10, the secondary parallel conductor is indicated by 50a, and the tertiary parallel conductor is indicated by 60a. Other members are the same as in FIG.

図10(a)は、図8(a)と同様の超電導導体40である。これを図10(b)のように超電導コイルの軸方向に並べて配置する際に、全てを超電導導体40とはせずに、常電導導体70を含んで二次並列導体50aを構成する。配設された導体同士のインダクタンスは前述のように同一である。   FIG. 10A shows a superconducting conductor 40 similar to that shown in FIG. When these are arranged side by side in the axial direction of the superconducting coil as shown in FIG. 10B, the secondary parallel conductor 50 a is configured including the normal conducting conductor 70, not all of the superconducting conductor 40. As described above, the inductances of the disposed conductors are the same.

常電導導体70には電気抵抗が常に存在するのに対し、超電導導体40は通常の状態では電気抵抗が無視できるほど小さい。従って電流は超電導導体40に流れ、常電導導体70におけるジュール発熱は無く、常電導導体を配置したことによる損失は増えない。なお、常電導導体70は、テープ状導体でも、撚り線からなる導体でもよい。   The normal conductive conductor 70 always has an electric resistance, whereas the superconductive conductor 40 has an electric resistance that is negligibly small in a normal state. Therefore, current flows through the superconducting conductor 40, there is no Joule heat generation in the normal conducting conductor 70, and loss due to the arrangement of the normal conducting conductor does not increase. The normal conductive conductor 70 may be a tape-shaped conductor or a conductor made of a stranded wire.

また、図10(c)は、二次並列導体50aを3層重ねて導体化した三次並列導体60aである。この三次並列導体60aを図8と同様に一層あたり4ターン巻回してコイルを形成したのが図10(d)である。層数は省略してある。   FIG. 10C shows a tertiary parallel conductor 60a in which three layers of secondary parallel conductors 50a are stacked to form a conductor. FIG. 10D shows a coil formed by winding the tertiary parallel conductor 60a four turns per layer as in FIG. The number of layers is omitted.

通常時には、電流は、超電導導体40を流れるが、変圧器の励磁突入時のように過電流が流れる場合には、超電導導体40に臨界電流以上の電流が流れる。臨界電流を超えると超電導導体40に電気抵抗が発生する。この場合の超電導導体40の電気抵抗と、常電導導体70の電気抵抗の関係で、各導体に流れる電流が決定する。   At normal times, the current flows through the superconducting conductor 40. However, when an overcurrent flows as in the case of the inrush of the transformer, a current exceeding the critical current flows in the superconducting conductor 40. When the critical current is exceeded, an electrical resistance is generated in the superconducting conductor 40. In this case, the current flowing through each conductor is determined by the relationship between the electrical resistance of the superconducting conductor 40 and the electrical resistance of the normal conducting conductor 70.

ところで、初期の臨界電流の所定の倍率(線材によって異なる倍率)まで過電流が流れても、通電後の臨界電流は低下しないが、これを越えた過電流が流れると通電後の臨界電流が低下する、いわゆる臨界電流の劣化が生ずることが知られている。   By the way, the critical current after energization does not decrease even if an overcurrent flows up to a predetermined magnification of the initial critical current (a magnification that varies depending on the wire), but if an overcurrent that exceeds this is exceeded, the critical current after energization decreases. It is known that so-called critical current deterioration occurs.

本発明では、超電導導体40の電気抵抗と、常電導導体70の電気抵抗を適切に設定することで、過電流時の電流を常電導導体70に分担できるので、超電導導体40に流れる電流を低減でき、結果として超電導導体40の前記臨界電流の劣化を抑止できる。   In the present invention, by appropriately setting the electric resistance of the superconducting conductor 40 and the electric resistance of the normal conducting conductor 70, the current at the time of overcurrent can be shared with the normal conducting conductor 70, so the current flowing through the superconducting conductor 40 is reduced. As a result, deterioration of the critical current of the superconducting conductor 40 can be suppressed.

次に、図11について述べる。図11は、三次並列導体における複数層の二次並列導体の内、最外層の二次並列導体を、常電導材料もしくは高強度の絶縁材料からなる電磁力支持部材71に置き換えてなる実施形態を示す。   Next, FIG. 11 will be described. FIG. 11 shows an embodiment in which the outermost secondary parallel conductor of the multiple parallel secondary conductors in the tertiary parallel conductor is replaced with an electromagnetic force support member 71 made of a normal conducting material or a high-strength insulating material. Show.

図11(a)および(b)は、図10(a)および(b)と同一であるので説明は省略する。図11(c)は、二次並列導体50aを3層重ねて導体化したものに、常電導材料からなる電磁力支持部材71をさらに重ねた三次並列導体60aを示す。図11(d)は図11(c)の三次並列導体を用いて複数ターン巻回してコイルを形成したものである。なお、電磁力支持部材71は、図9と同様に、コイル軸方向に4分割してもよい。   Since FIGS. 11A and 11B are the same as FIGS. 10A and 10B, description thereof is omitted. FIG. 11 (c) shows a tertiary parallel conductor 60a in which three layers of secondary parallel conductors 50a are made into a conductor to further overlap an electromagnetic force support member 71 made of a normal conducting material. FIG. 11 (d) shows a coil formed by winding a plurality of turns using the tertiary parallel conductor of FIG. 11 (c). Note that the electromagnetic force support member 71 may be divided into four in the coil axis direction, as in FIG.

常電導導体70の効果は、前述した図10と同様であるので省略する。図11のような超電導コイルでは、大きな電磁力に耐えることのできる超電導コイルを提供できる。なお、この機械的支持材71の材質としては、ステンレスなどの高強度の金属材料を用いることができる。また、安定化機能は常電導導体70に委ね、電磁力支持部材71には電磁力支持機能のみを委ねる場合には、機械的支持材71の材質は、ガラステープなどの高強度の絶縁材料とすることもできる。   The effect of the normal conductive conductor 70 is the same as that of FIG. The superconducting coil as shown in FIG. 11 can provide a superconducting coil that can withstand a large electromagnetic force. In addition, as a material of this mechanical support material 71, high strength metal materials, such as stainless steel, can be used. Further, when the stabilization function is left to the normal conductor 70 and the electromagnetic force support member 71 is left only to the electromagnetic force support function, the mechanical support material 71 is made of a high-strength insulating material such as glass tape. You can also

以上、本発明の各種の超電導コイルの実施形態について、ソレノイドコイルを対象にして述べたが、ソレノイドコイル以外に、パンケーキコイルや、主に超電導回転機に使用される鞍形コイル等の超電導コイルにも、本発明は適用できる。   As described above, the embodiments of various superconducting coils of the present invention have been described with respect to the solenoid coil. However, in addition to the solenoid coil, a superconducting coil such as a pancake coil or a saddle coil mainly used for a superconducting rotating machine. In addition, the present invention can be applied.

本発明の実施形態を示す超電導導体の模式的断面図。The typical sectional view of the superconducting conductor which shows the embodiment of the present invention. 図1とは異なる実施形態を示す超電導導体の模式的断面図。FIG. 2 is a schematic cross-sectional view of a superconducting conductor showing an embodiment different from FIG. 1. 図2とは異なる実施形態を示す超電導導体の模式的断面図。FIG. 3 is a schematic cross-sectional view of a superconducting conductor showing an embodiment different from FIG. 2. 図1とはさらに異なる実施形態を示す超電導導体の模式的断面図。FIG. 2 is a schematic cross-sectional view of a superconducting conductor showing an embodiment further different from FIG. 1. 図4とは異なる実施形態を示す超電導導体の模式的断面図。FIG. 5 is a schematic cross-sectional view of a superconducting conductor showing an embodiment different from FIG. 4. 図4とはさらに異なる実施形態を示す超電導導体の模式的断面図。FIG. 5 is a schematic cross-sectional view of a superconducting conductor showing an embodiment further different from FIG. 4. 本発明の実施形態に至る前の参考形態を示す超電導コイルの模式的断面図。The typical sectional view of the superconducting coil which shows the reference form before reaching the embodiment of the present invention. 本発明の実施形態を示す超電導コイルの模式的断面図。 The typical sectional view of the superconducting coil which shows the embodiment of the present invention . 図8とは異なる実施形態において転位構成を説明する図。FIG. 9 is a diagram illustrating a dislocation configuration in an embodiment different from FIG. 8. 図8とは異なる実施形態を示す超電導コイルの模式的断面図。Schematic sectional view of the superconducting coil showing the different embodiments and FIG. 図10とは異なる実施形態を示す超電導コイルの模式的断面図。FIG. 11 is a schematic cross-sectional view of a superconducting coil showing an embodiment different from FIG. 10. 特許文献1に開示された超電導コイルの転位構成の一例を示す図。The figure which shows an example of the dislocation structure of the superconducting coil disclosed by patent document 1. FIG.

1〜12 各超電導導体の表示番号
14 コイル中心軸
20a〜20c,21a〜21c 酸化物超電導線材
31 基板
36 電気絶縁性材料
40 超電導導体
50、50a 二次並列導体
54 コイルフランジ
55 巻枠
60、60a 三次並列導体
70 常電導導体
71 電磁力支持部材
1-12 Number of each superconducting conductor 14 Coil central axis 20a-20c, 21a-21c Oxide superconducting wire 31 Substrate 36 Electrical insulating material 40 Superconducting conductor 50, 50a Secondary parallel conductor 54 Coil flange 55 Reel 60, 60a Tertiary parallel conductor 70 Normal conducting conductor 71 Electromagnetic force support member

Claims (9)

電気的絶縁材料または高抵抗材料を被覆した酸化物超電導線材を、コイル軸方向である導体幅方向に複数本並列配置した超電導導体を、複数個コイル軸方向に並列配置してなる二次並列導体をユニットとし、この二次並列導体ユニットを複数層並列にコイル径方向に積層してなる三次並列導体を、単層もしくは複数層巻回してなる超電導コイルであって、超電導コイルによって生ずる磁場分布によって前記超電導導体の各酸化物超電導線材間に作用する垂直鎖交磁束が、前記超電導コイルの構造もしくは配置に起因して互いに打ち消し合うように作用する部分を、少なくとも一部に有してなるコイル構成を備えたことを特徴とする超電導コイルAn electrically insulating material or high-resistance material oxide superconducting wire coated with the superconducting conductors plurality of parallel disposed in the conductor width direction is a coil axis direction, the secondary formed by parallel arrangement a plurality coil axis direction A superconducting coil in which a parallel conductor is a unit, and a secondary parallel conductor unit is laminated in parallel in a plurality of layers in the radial direction of the coil, and is wound by a single layer or a plurality of layers, and a magnetic field generated by the superconducting coil At least a part has a part in which vertical flux linkages acting between the oxide superconducting wires of the superconducting conductor cancel each other due to the structure or arrangement of the superconducting coil due to the distribution. A superconducting coil comprising a coil configuration . 請求項1に記載の超電導コイルにおいて、前記超電導導体は、金属材料または非導電性材料からなる基板面上に、前記酸化物超電導線材を並列配置したことを特徴とする超電導コイルA superconducting coil according to claim 1, wherein the superconducting conductor on the substrate surface made of a metallic material or non-conductive material, the superconducting coil, wherein the oxide superconducting wire arranged in parallel. 請求項1または2に記載の超電導コイルにおいて、前記超電導導体における酸化物超電導線材はツイストしてなることを特徴とする超電導コイルA superconducting coil according to claim 1 or 2, the superconducting coil, characterized by comprising twisted oxide superconducting wire in the superconducting conductor. 請求項1に記載の超電導コイルにおいて、前記超電導導体は、高抵抗材料を被覆した酸化物超電導線材を、導体幅方向に複数本並列配置し、半田付けにより一体化するか、もしくは、高抵抗材料を被覆した酸化物超電導線材を、金属材料からなる基板面上に、導体幅方向に複数本並列配置し、前記複数本の酸化物超電導線材と基板とを、半田付けにより一体化してなることを特徴とする超電導コイル2. The superconducting coil according to claim 1, wherein the superconducting conductor includes a plurality of oxide superconducting wires coated with a high resistance material arranged in parallel in the conductor width direction and integrated by soldering, or a high resistance material. A plurality of oxide superconducting wires coated with metal are arranged in parallel in the conductor width direction on a substrate surface made of a metal material, and the plurality of oxide superconducting wires and the substrate are integrated by soldering. Features superconducting coil . 請求項に記載の超電導コイルにおいて、前記二次並列導体ユニットを複数層並列にコイル径方向に積層してなる三次並列導体を巻回する際に、前記各層の二次並列導体ユニットを転位してなることを特徴とする超電導コイル。 2. The superconducting coil according to claim 1 , wherein when the third parallel conductor formed by laminating the secondary parallel conductor units in a plurality of layers in parallel in the coil radial direction is wound, the secondary parallel conductor units of the respective layers are dislocated. A superconducting coil characterized by comprising 請求項1に記載の超電導コイルにおいて、前記超電導導体における少なくとも1本の酸化物超電導線材は、常電導導体材料からなる常電導線材に置き換えてなることを特徴とする超電導コイルA superconducting coil according to claim 1, wherein at least one of the oxide superconducting wire in a superconducting conductor, a superconducting coil, characterized by comprising replacing the normal conducting wire formed of normal conducting conductor material. 請求項に記載の超電導コイルにおいて、前記二次並列導体のうち少なくとも1個の超電導導体は、常電導導体材料からなる常電導導体に置き換えてなることを特徴とする超電導コイル。 The superconducting coil according to claim 1 , wherein at least one of the secondary parallel conductors is replaced with a normal conductive conductor made of a normal conductive material. 請求項に記載の超電導コイルにおいて、前記三次並列導体における複数層の二次並列導体のうち、最外層の二次並列導体は常電導導体からなる二次並列導体に置き換え、この常電導導体からなる最外層は転位しない構成としたことを特徴とする超電導コイル。 6. The superconducting coil according to claim 5 , wherein, among the plurality of secondary parallel conductors in the tertiary parallel conductor, the secondary parallel conductor in the outermost layer is replaced with a secondary parallel conductor made of a normal conductive conductor. A superconducting coil characterized in that the outermost layer is configured not to dislocation. 請求項に記載の超電導コイルにおいて、前記三次並列導体における複数層の二次並列導体のうち、最外層の二次並列導体は、常電導材料もしくは高強度の絶縁材料からなる電磁力支持部材に置き換えてなることを特徴とする超電導コイル。 6. The superconducting coil according to claim 5 , wherein the outermost secondary parallel conductor among the multiple secondary parallel conductors in the tertiary parallel conductor is an electromagnetic force supporting member made of a normal conductive material or a high-strength insulating material. A superconducting coil characterized by being replaced.
JP2005007008A 2005-01-14 2005-01-14 Superconducting coil Active JP4774494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007008A JP4774494B2 (en) 2005-01-14 2005-01-14 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005007008A JP4774494B2 (en) 2005-01-14 2005-01-14 Superconducting coil

Publications (2)

Publication Number Publication Date
JP2006196720A JP2006196720A (en) 2006-07-27
JP4774494B2 true JP4774494B2 (en) 2011-09-14

Family

ID=36802544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007008A Active JP4774494B2 (en) 2005-01-14 2005-01-14 Superconducting coil

Country Status (1)

Country Link
JP (1) JP4774494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191561A1 (en) * 2007-02-09 2008-08-14 Folts Douglas C Parallel connected hts utility device and method of using same
JP2010187433A (en) * 2009-02-10 2010-08-26 Railway Technical Res Inst Smoothing reactor apparatus for electric railway vehicle with fuel cell
JP5753462B2 (en) * 2011-09-01 2015-07-22 国立大学法人京都大学 Superconducting rotating machine operating method and superconducting rotating machine system
CN112485534A (en) * 2020-11-10 2021-03-12 中国科学院合肥物质科学研究院 Device and method for measuring alternating current loss of superconducting conductor under different magnetic field angles
WO2023027149A1 (en) * 2021-08-26 2023-03-02 株式会社フジクラ Superconducting wire material and superconducting coil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597551B2 (en) * 1986-07-03 1997-04-09 株式会社東芝 Superconducting stranded wire
JPS6394506A (en) * 1986-10-08 1988-04-25 三菱電機株式会社 Superconductive cable
JPH0610935B2 (en) * 1988-01-18 1994-02-09 工業技術院長 Superconductor
JP3354171B2 (en) * 1992-05-25 2002-12-09 株式会社東芝 Composite superconductor and superconducting coil
JPH06325630A (en) * 1993-05-17 1994-11-25 Hitachi Ltd Oxide superconducting wire material and superconducting device
JP3426671B2 (en) * 1993-11-29 2003-07-14 株式会社東芝 Superconducting conductor
JP3033669B2 (en) * 1993-12-28 2000-04-17 古河電気工業株式会社 Superconducting cable and superconducting coil
JPH09237529A (en) * 1996-02-27 1997-09-09 Furukawa Electric Co Ltd:The High temperature superconductive cable conductor and manufacture thereof
JPH10172824A (en) * 1996-10-09 1998-06-26 Fuji Electric Co Ltd Superconducting coil for induction electric equipment
GB9805644D0 (en) * 1998-03-18 1998-05-13 Metal Manufactures Ltd Superconducting tapes
JP2001093721A (en) * 1999-09-24 2001-04-06 Toshiba Corp High-temperature superconducting magnet
JP4016547B2 (en) * 1999-10-21 2007-12-05 日立電線株式会社 Oxide superconductor, strand for oxide superconductor, and method for producing them
JP2004281503A (en) * 2003-03-13 2004-10-07 Edmund Soji Otabe Superconducting coil

Also Published As

Publication number Publication date
JP2006196720A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4558517B2 (en) Superconducting coil
JP4657921B2 (en) Superconducting wire and superconducting coil using the same
JP5123604B2 (en) Superconducting coil
US20070052506A1 (en) Superconducting wire transposition method and superconducting transformer using the same
EP2131407A1 (en) Superconducting wire with low AC losses
JP4774494B2 (en) Superconducting coil
WO2015011491A1 (en) Conductor for superconducting magnets
US20210319938A1 (en) Bent toroidal field coils
JP3892605B2 (en) Superconducting coil device for current limiting element
JP6738720B2 (en) Superconducting wire connection structure
JP2016039289A (en) High-temperature superconducting coil and high-temperature superconducting magnet device
JP2012195413A (en) Superconducting coil
JP6991775B2 (en) Superconductor for non-insulated superconducting coil and superconducting coil using it
JP2003115405A (en) Superconductive coil
JP5262607B2 (en) Superconducting coil
JP2010040962A (en) Superconducting coil
US11587701B2 (en) Series-connected superconducting magnet cables
JP5041414B2 (en) Superconducting wire and superconducting conductor
JPH06260335A (en) High temperature superconducting magnet
JP4674457B2 (en) Superconducting coil
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
JP5115245B2 (en) Superconducting current lead
JPH02232903A (en) Superconducting coil device
JP2005303054A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

R150 Certificate of patent or registration of utility model

Ref document number: 4774494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250