JP4016547B2 - Oxide superconductor, strand for oxide superconductor, and method for producing them - Google Patents

Oxide superconductor, strand for oxide superconductor, and method for producing them Download PDF

Info

Publication number
JP4016547B2
JP4016547B2 JP29922899A JP29922899A JP4016547B2 JP 4016547 B2 JP4016547 B2 JP 4016547B2 JP 29922899 A JP29922899 A JP 29922899A JP 29922899 A JP29922899 A JP 29922899A JP 4016547 B2 JP4016547 B2 JP 4016547B2
Authority
JP
Japan
Prior art keywords
coating
organic
organic material
cured
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29922899A
Other languages
Japanese (ja)
Other versions
JP2001118438A (en
Inventor
岳海 室賀
高明 笹岡
英行 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP29922899A priority Critical patent/JP4016547B2/en
Publication of JP2001118438A publication Critical patent/JP2001118438A/en
Application granted granted Critical
Publication of JP4016547B2 publication Critical patent/JP4016547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【産業上の技術分野】
本発明は、無機絶縁物質の皮膜が形成された酸化物超電導導体、該導体用素線及びそれらの製造方法に関するものである。
【0002】
【従来の技術】
酸化物超電導導体として、酸化物超電導体を銀や銀合金で被覆した所謂銀シース多芯酸化物超電導導体が知られている。この場合、芯を構成する酸化物超電導体は、Bi−2223、Bi−2212、Tl−1223、Tl−2223、Y−123、Nd−123等の酸化物超電導体の前駆体粉末を出発原料として銀又は銀合金の金属材と複合させ、場合によって減面加工を行い、最後に超電導化熱処理を施して形成される。このような複合化構造は、例えば酸化物超電導体を複数の素線に分割し、それらの集合体を更に銀又は銀合金で被覆して断面円形、即ち丸線の酸化物超電導導体とする方法が多用されている。また、このような丸線に圧延加工を施して断面が矩形のテープ状導体とすることも行われている。
【0003】
このような酸化物超電導導体において、各超電導素線の酸化物超電導体同士は被覆した銀又は銀合金で遮断されている。しかしながら、銀又は銀合金の高い電気伝導度は、超電導素線の長手方向に低い電気抵抗を与えるばかりでなく、素線間に横方向の低い電気抵抗をも与える。従って、このような導体を交流電流の伝導のために使用した場合、導体内部で電流が異なる超電導素線のいくつかの区間を通して互いに反対方向に流れるような流れの渦を伴う渦電流を生じることがあり、非常に大きな電気エネルギーの損失をもたらす。
【0004】
このような渦電流の発生を抑えるには、素線間に各素線を電気的に遮断できる絶縁層を設ければよい。そのような酸化物超電導導体を製造する方法として、各超電導前駆材である素線の銀外皮の上に、銀又は銀合金より電気抵抗が大きい絶縁層、例えばBaZrO3 、SrZrO3 、Al2 3 、MgO等の無機絶縁物質を被覆することが知られている。
【0005】
【発明が解決しようとする課題】
前記の無機絶縁物質を被覆する方法としては、BaZrO3 等の粉末を溶剤、例えばエタノール等に混合して塗布し、乾燥させる。しかしながら、この方法では、乾燥後、溶剤が完全に揮発するため、残ったBaZrO3 等の無機絶縁物質の粉末は、素線の外周に接触しているだけで、直ぐに剥離してしまう。その結果、部分的に絶縁膜がある部分とない部分が存在すると同時に、その厚さが不均一になってしまうため、導体自身の寸法も不均一になってしまう。
【0006】
又、溶剤に混合した無機絶縁物質の粉末を酸化物超電導前駆材の素線に塗布した後、ダイス等を利用して厚さを均一にしようとしても、溶剤が揮発するとBaZrO3 等の無機絶縁物質の粉末は部分的に剥離してしまうので、当然、厚さが均一にはならない。
【0007】
更に、無機絶縁物質と溶剤の懸濁液を塗布した酸化物超電導前駆材の素線は、前記と同様な理由から、超電導化熱処理前に伸線加工や撚線加工等の機械加工を施すことができない。
【0008】
本発明の目的は、超電導化熱処理前に機械加工を施しても電気エネルギーの損失の少ない酸化物超電導導体を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、前記目的は、酸化物超電導体又はその前駆体を金属材で被覆してなる素線の外周に有機物質の塗膜を形成して熱処理し、前記有機物質の塗膜中の有機物質を化学反応させて硬化させた皮膜を形成し、その皮膜の外周に無機絶縁物質の粉末を樹脂エナメル塗料等と混合してなるコーティング材を均一な厚さに塗布した後、そのコーティング材の塗膜が形成された素線を熱処理して前記塗膜中の有機物質を化学反応させて硬化させ、しかる後、その硬化した有機物質を含むコーティング材の層を有する素線の複数を金属材のパイプに挿入して集合体とし、その集合体を熱処理して前記皮膜及びコーティング材層中の有機物質を分解除去させる方法によって達成することができる。
【0010】
この場合、酸化物超電導体又はその前駆体としては、前記したBi−2223、Bi−2212等のBi系、Tl−1223、Tl−2223等のTl系、Y−123、Nd−123等の123系等を用いることができる。
【0011】
また、金属材としては、前記した銀又は銀合金以外の金属でも使用可能である。また、無機絶縁物質の粉末としては、前記したBaZrO3 、SrZrO3 、Al2 3 、MgOは勿論のこと、TiO2 等の粉末を用いることができる。
【0012】
一方、コーティング材の成分である樹脂エナメル塗料等としては、例えばポリエステル系樹脂、ポリエステルイミド系樹脂、ポリアミドイミド系樹脂等の適当な熱処理によって重合等の化学反応を起こして硬化し、更に適当な熱処理によって分解して消失するような有機物質を主体とした塗料を用いることができる。
【0013】
無機絶縁物質の粉末と有機物質の塗料等との混合物であるコーティング材は、酸化物超電導体又はその前駆体を金属材、例えば銀、銀合金等で被覆した酸化物超電導材又はその前駆材である素線に被覆された後、適当な熱処理を施すことにより重合等の化学反応が行われて硬化する。しかして、伸線、撚合せ等の機械加工が施された後、適当な熱処理が施されることによって有機物質が分解して消失する。この分解、消失のための熱処理は、多くの場合、素線に対する超電導化熱処理を利用することができるが、それ以外の熱処理であってもよい。
【0014】
本発明の場合、コーティング材の塗膜中の有機物質を化学反応させて硬化させることにより、耐磨耗性、可撓性、耐剥離性、機械的強度等の特性をもった層が形成される。その結果、このコーティング材の層を有する素線は伸線加工、撚合せ加工等の機械加工を容易に施すことが可能となり、超電導化熱処理等の熱処理後は有機物質が分解して無くなり、目的の無機絶縁物質のみが均一な厚さで残ることになるが、コーティング材の層は無機絶縁物質の粉末を含まない樹脂エナメル塗料のような有機物質の塗料の塗膜を介して施すことが好ましい。そうすることによりコーティング材の塗膜の塗布性を向上させることができる。勿論、耐磨耗性、耐剥離性などの特性は無機絶縁物質の粉末が混合されていない方が良好なため、コーティング材層の上に無機物質粉末を含まない前記と同様な有機物質の塗膜を形成しても差し支えない。これらの有機物質だけの塗膜やコーティング材の層は一層でも複数層でもよく、それらは含まれる有機物質が異なる皮膜の組合せであってもよい。
【0015】
勿論、無機絶縁物質を含まない有機物質だけの皮膜を構成する有機物質は、コーティング材の層における有機物質と同様、適当な熱処理によって化学反応を起こして硬化し、超電導化熱処理等の熱処理により分解して消失するものが使用される。
【0016】
なお、素線における酸化物超電導体又はその前駆体と銀等の金属材との組合せは、ディプコート法、ドクターブレード法、パウダーインチューブ法、ジェリーロール法、溶射法、スクリーン印刷法、蒸着法、CVD法、スパッタリング法、レーザーアブレーション法等の何れでも差し支えなく、前記方法中の表面コーティング法では露出した酸化物超電導体又はその前駆体の表面を基体金属材と同様な金属材で覆い、最終的に外周が金属材で覆われていればよい。
【0017】
【発明の実施の形態】
次に、本発明の実施の形態を図面を参照しながら説明する。
【0018】
[実施例1]
コーティング材の一方の材料として、ポリエステル系エナメル塗料(日立化成社の商品名WH−4068)、ポリエステルイミド系エナメル塗料(大日精化社の商品名EH−402)、ポリアミドイミド系エナメル塗料(日立化成社の商品名HI−406)の3種類と、コーティング材のもう一方の材料である無機絶縁物質の粉末としてTiO2 粉末(平均0.2μmメッシュ)を選び、このTiO2 粉末をポリエステルイミド系エナメル塗料に重量比1:1の割合で混合してコーティング材とした。
【0019】
一方、酸化物超電導前駆材である素線としては、Bi1.8 Pb0.34Sr1.9 Ca2.2 Cu3.1 y の組成(以下、Bi−2223という)をもつ酸化物超電導前駆体の粉末を外径15mm、内径13.5mm、長さ500mmの銀パイプ内に充填し、外径1mmまで伸線加工したものを用意した。
【0020】
図2に示すように、用意した素線1の外周に前記ポリエステル系エナメル塗料を3μmの厚さに塗布した後、250℃で20分熱処理して前記エナメル塗料の塗膜を重合反応させて硬化させた。次に、そのポリエステル系エナメル皮膜2の上に、前記コーティング材を10μmの厚さに塗付した後、250℃で30分熱処理して前記コーティング材の塗膜中のポリエステルイミドを重合反応させて硬化させた。最後に、そのコーティング材の層3の上に前記ポリアミドイミド系エナメル塗料を3μmの厚さに塗付した後、250℃で20分熱処理してこの塗膜を重合反応させてポリアミドイミド系エナメル皮膜4を形成し、2層のエナメル皮膜2、4と1層のコーティング材の層3を有する素線11を得た。なお、各塗膜形成時、塗布直後にダイスを通して均一な塗膜厚さを得た。
【0021】
その後、得られた素線11を840℃で100時間熱処理し、Bi−2223前駆体をBi−2223超電導体に転化させた。この熱処理(超電導化熱処理)によって各エナメル皮膜2、4及びコーティング材層3の有機物質は全て分解して無くなり、素線1の外周にはTiO2 の層31が絶縁層として均一な厚さで、しかも斑のない状態で残り、絶縁層付のBi−2223酸化物超電導素線を得た。この時、TiO2 はBi−2223酸化物超電導体の超電導特性に悪影響が無いことを確認した。
【0022】
なお、図2中、6はBi−223酸化物超電導前駆体、7は銀被覆である。
【0023】
[比較例1]
絶縁材料として実施例1で用いたと同じTiO2 粉末を用意し、それをエタノールと混ぜて懸濁液を作製した。一方、酸化物超電導前駆材の素線として実施例1で用意したものと同じものを用意し、その素線の外周に前記懸濁液を塗布した。この時、塗膜には斑が多かった。
【0024】
次に、その塗膜付の素線を室温及び大気中で乾燥させて塗膜を乾燥させた。すると、エタノールが揮発すると同時に、半分程度のTiO2 粉末が素線から剥離してしまった。
【0025】
次に、その素線を実施例1と同様に超電導化熱処理してBi−2223酸化物超電導前駆体をBi−2223酸化物超電導体に転化させた。しかし、超電導化熱処理前に残っていたTiO2 粉末の殆どは線材表面から剥離してしまっていた。
【0026】
[実施例2]
実施例1で得られたと同じ、重合熱処理済みの2層のエナメル皮膜と1層のコーティング層を有する素線11を7本用意し、その7本を図3に示すように、外径4.7mm、内径3.2mm、長さ200mmの銀パイプ5の中に組み込んで素材とした。
【0027】
次に、その素材を外径1.5mmまで伸線加工した後、840℃で100時間超電導化熱処理を行い、各素線1におけるBi−2223酸化物超電導前駆体6をBi−2223酸化物超電導体に転化させた。
【0028】
前記超電導化熱処理によりエナメル層2、4及びコーティング材層3における有機物質は全て分解して無くなり、図1に示すように、各素線1の外周にはTiO2 の層31が絶縁層としてほぼ均一な厚さで斑のない状態で残った。
【0029】
なお、図1中、51は銀パイプ5が変化した銀被覆、61はBi−2223酸化物超電導体を示す。
【0030】
[比較例2]
比較例1で得られたTiO2 粉末が付着した素線を7本用意し、実施例2と同様に銀パイプの中に組み込んだ。その際、各素線の表面に残っていたTiO2 の粉末の半分程度が各素線から剥離してしまった。
【0031】
次に、実施例2と同様に伸線加工と超電導化熱処理を行って、各素線1におけるBi−2223酸化物超電導前駆体6をBi−2223酸化物超電導体に転化させた。各素線に付着していたTiO2 粉末は外周を銀で覆われているため剥離はしていないが、各素線に対して20〜30%程度しか残っていなかった。
【0032】
[実施例3]
実施例1で得られたと同じ、重合熱処理済みのエナメル皮膜2、4とコーティング材層3を有する素線11を2本用意し、その2本を図4に示すように、所定のピッチで撚合せ加工した後、実施例1と同様に超電導化熱処理を施した。この超電導化熱処理によって各素線11におけるエナメル皮膜2、4及びコーティング材層3の有機物質は全て分解して無くなり、各素線1の外周にはTiO2 が絶縁層として均一な厚さで斑のない状態で残った。
【0033】
[比較例3]
比較例1で得られたTiO2 粉末が付着した素線を2本用意し、それを実施例3と同様に撚合せ加工したところ、残りのTiO2 粉末の殆どが素線から剥離し、撚線の内側に部分的に若干残った程度であり、この時点で絶縁効果は殆どない状態になってしまった。
【0034】
【発明の効果】
本発明によれば、絶縁層として無機絶縁物質で被覆する際、その粉末を樹脂エナメル塗料等の有機物質の塗料と混合して塗布し、その有機物質に重合などの化学反応により所期の特性を生じさせるので、超電導化熱処理前に機械加工、例えば伸線加工や撚合せ加工等が可能となる。また、超電導化熱処理後には有機物質が分解して無くなり無機絶縁物質のみが残るが、有機物質が分解する際、酸化物超電導導体の外周を構成している銀等の金属と酸化物超電導体に影響しない程度に多少反応することにより、有機物質中の無機絶縁物質が前記銀等の金属に密に接着し、電気絶縁物として有効に作用するので、得られた導体を交流用に使用した場合に、電気エネルギーの損失を最小限に抑えることができる効果がある。
【図面の簡単な説明】
【図1】本発明に係る酸化物超電導導体の一例を示す横断面図である。
【図2】本発明に係る酸化物超電導導体の製造過程を示す素線の横断面図である。
【図3】本発明に係る酸化物超電導導体の一例の製造過程における素材の横断面図である。
【図4】本発明に係る酸化物超電導導体の別の例の製造過程を示す説明図である。
【符号の説明】
1、11 素線
2 ポリエステル系エナメルの皮膜
3 コーティング材層
4 ポリアミドイミド系エナメルの皮膜
5 銀パイプ
6 酸化物超電導前駆体
7、51 銀被覆
31 TiO2 の層
61 酸化物超電導体
[0001]
[Industrial technical field]
The present invention relates to an oxide superconducting conductor on which a film of an inorganic insulating material is formed, the conductor wire, and a method for producing them.
[0002]
[Prior art]
As the oxide superconductor, a so-called silver sheath multi-core oxide superconductor in which the oxide superconductor is coated with silver or a silver alloy is known. In this case, the oxide superconductor constituting the core is a precursor powder of an oxide superconductor such as Bi-2223, Bi-2212, Tl-1223, Tl-2223, Y-123, and Nd-123. It is formed by combining with a metal material of silver or a silver alloy, optionally performing a surface reduction process, and finally performing a superconducting heat treatment. Such a composite structure is, for example, a method in which an oxide superconductor is divided into a plurality of strands, and the aggregate is further covered with silver or a silver alloy to form an oxide superconductor having a circular cross section, that is, a round wire. Is frequently used. In addition, a rolling process is performed on such a round wire to form a tape-shaped conductor having a rectangular cross section.
[0003]
In such an oxide superconducting conductor, the oxide superconductors of each superconducting wire are cut off by the coated silver or silver alloy. However, the high electrical conductivity of silver or silver alloy not only provides a low electrical resistance in the longitudinal direction of the superconducting strands, but also provides a low lateral electrical resistance between the strands. Therefore, when such a conductor is used for the conduction of alternating current, it will produce eddy currents with flow vortices that flow in opposite directions through several sections of superconducting wires with different currents inside the conductor. There is a huge loss of electrical energy.
[0004]
In order to suppress the generation of such eddy currents, an insulating layer capable of electrically interrupting each strand may be provided between the strands. As a method of manufacturing such an oxide superconducting conductor, an insulating layer having a higher electrical resistance than silver or a silver alloy, for example, BaZrO 3 , SrZrO 3 , Al 2 O, is formed on the silver sheath of the strand that is each superconducting precursor. 3. It is known to coat an inorganic insulating material such as MgO.
[0005]
[Problems to be solved by the invention]
As a method for coating the inorganic insulating material, powder such as BaZrO 3 is mixed with a solvent such as ethanol, applied and dried. However, in this method, since the solvent is completely volatilized after drying, the remaining powder of the inorganic insulating material such as BaZrO 3 is peeled off immediately after being in contact with the outer periphery of the strand. As a result, there are a portion where the insulating film is partially present and a portion where the insulating film is not present.
[0006]
Also, after applying powder of inorganic insulating material mixed with solvent to the strands of oxide superconducting precursor, even if an attempt is made to make the thickness uniform using a die or the like, if the solvent volatilizes, inorganic insulation such as BaZrO 3 Of course, the thickness of the material powder is not uniform because the powder of the material is partially peeled off.
[0007]
Furthermore, the oxide superconducting precursor wire coated with a suspension of an inorganic insulating material and a solvent is subjected to mechanical processing such as wire drawing or stranded wire processing before superconducting heat treatment for the same reason as described above. I can't.
[0008]
An object of the present invention is to provide an oxide superconducting conductor with little loss of electric energy even if it is machined before superconducting heat treatment.
[0009]
[Means for Solving the Problems]
According to the present invention, the object is to form a coating film of an organic substance on the outer periphery of a strand formed by coating an oxide superconductor or a precursor thereof with a metal material, and heat-treat the coating film of the organic substance. After coating a uniform thickness of a coating material formed by mixing an inorganic insulating material powder with a resin enamel paint, etc. on the outer periphery of the coating, a coating obtained by chemically reacting with an organic substance is cured. Heat treatment is performed on the wire on which the coating film of the material is formed, and the organic substance in the coating film is chemically reacted to be cured, and then, a plurality of the strands having a layer of the coating material containing the cured organic substance are formed. This can be achieved by inserting the metal material into a pipe to form an aggregate, and heat-treating the aggregate to decompose and remove organic substances in the film and the coating material layer.
[0010]
In this case, the oxide superconductor or a precursor thereof includes Bi-based materials such as Bi-2223 and Bi-2212 described above, Tl-based materials such as Tl-1223 and Tl-2223, and 123 such as Y-123 and Nd-123. A system or the like can be used.
[0011]
Further, as the metal material, metals other than the above-described silver or silver alloy can be used. Further, as the powder of the inorganic insulating substance, powders such as TiO 2 as well as BaZrO 3 , SrZrO 3 , Al 2 O 3 and MgO described above can be used.
[0012]
On the other hand, as a resin enamel paint, which is a component of the coating material, for example, a polyester resin, a polyesterimide resin, a polyamideimide resin, and the like are cured by causing a chemical reaction such as polymerization by an appropriate heat treatment, and further an appropriate heat treatment. It is possible to use a paint mainly composed of an organic substance that decomposes and disappears.
[0013]
The coating material, which is a mixture of inorganic insulating powder and organic paint, is an oxide superconductor or its precursor coated with a metal material such as silver or a silver alloy. After being coated on a certain wire, a chemical reaction such as polymerization is carried out by applying an appropriate heat treatment to cure. Then, after mechanical processing such as wire drawing and twisting is performed, the organic material is decomposed and disappears by performing an appropriate heat treatment. In many cases, the heat treatment for decomposing and disappearing can use superconducting heat treatment for the strands, but may be other heat treatment.
[0014]
In the case of the present invention, a layer having characteristics such as wear resistance, flexibility, peel resistance, and mechanical strength is formed by chemically reacting and curing an organic substance in the coating film of the coating material. The As a result, the wire having the coating material layer can be easily machined such as wire drawing and twisting, and the organic substance is not decomposed after the heat treatment such as superconducting heat treatment. However, it is preferable that the coating material layer be applied through a coating film of an organic material such as a resin enamel coating that does not contain powder of the inorganic insulating material. . By doing so, the applicability | paintability of the coating film of a coating material can be improved. Of course, since it is better for the characteristics such as abrasion resistance and peel resistance when the inorganic insulating material powder is not mixed, the coating of the organic material similar to the above without containing the inorganic material powder on the coating material layer. A film may be formed. The coating film or coating material layer composed solely of these organic substances may be a single layer or a plurality of layers, and they may be a combination of films containing different organic substances.
[0015]
Of course, the organic material that forms a film of only an organic material that does not contain an inorganic insulating material, like the organic material in the coating material layer, is cured by a chemical reaction caused by an appropriate heat treatment, and decomposed by a heat treatment such as superconducting heat treatment The one that disappears is used.
[0016]
In addition, the combination of the oxide superconductor or the precursor thereof and a metal material such as silver in the wire is a dip coating method, a doctor blade method, a powder in tube method, a jelly roll method, a thermal spraying method, a screen printing method, a vapor deposition method, Any of CVD method, sputtering method, laser ablation method, etc. can be used. In the surface coating method in the above method, the surface of the exposed oxide superconductor or its precursor is covered with a metal material similar to the base metal material, and finally, The outer periphery may be covered with a metal material.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0018]
[Example 1]
As one of the coating materials, polyester enamel paint (trade name WH-4068 of Hitachi Chemical Co., Ltd.), polyesterimide enamel paint (trade name EH-402 of Dainichi Seika Co., Ltd.), polyamide imide enamel paint (Hitachi Chemical Co., Ltd.) TiO 2 powder (average 0.2 μm mesh) was selected as the inorganic insulating material powder, which is the other material of the company's trade name HI-406), and this TiO 2 powder was used as a polyesterimide enamel. The coating material was mixed with the paint at a weight ratio of 1: 1.
[0019]
On the other hand, as a strand which is an oxide superconducting precursor, an oxide superconducting precursor powder having a composition of Bi 1.8 Pb 0.34 Sr 1.9 Ca 2.2 Cu 3.1 O y (hereinafter referred to as Bi-2223) has an outer diameter of 15 mm, A silver pipe having an inner diameter of 13.5 mm and a length of 500 mm was filled and drawn to an outer diameter of 1 mm.
[0020]
As shown in FIG. 2, the polyester-based enamel paint is applied to the outer periphery of the prepared wire 1 to a thickness of 3 μm, and then heat-treated at 250 ° C. for 20 minutes to polymerize the enamel paint film to cure. I let you. Next, the coating material is applied to the polyester enamel film 2 to a thickness of 10 μm, and then heat-treated at 250 ° C. for 30 minutes to polymerize the polyesterimide in the coating film of the coating material. Cured. Finally, the polyamide-imide enamel paint is applied to the coating material layer 3 to a thickness of 3 μm, and then heat-treated at 250 ° C. for 20 minutes to polymerize the coating film to obtain a polyamide-imide enamel film. 4 was obtained, and an element wire 11 having two layers of enamel films 2, 4 and one layer 3 of a coating material was obtained. When each coating film was formed, a uniform coating thickness was obtained through a die immediately after coating.
[0021]
Then, the obtained strand 11 was heat-processed at 840 degreeC for 100 hours, and the Bi-2223 precursor was converted into the Bi-2223 superconductor. By this heat treatment (superconducting heat treatment), all the organic substances in the enamel coatings 2 and 4 and the coating material layer 3 are decomposed and disappeared, and the TiO 2 layer 31 has a uniform thickness as an insulating layer on the outer periphery of the strand 1. And it remained in the state without a spot, and obtained Bi-2223 oxide superconducting element wire with an insulating layer. At this time, it was confirmed that TiO 2 had no adverse effect on the superconducting properties of the Bi-2223 oxide superconductor.
[0022]
In FIG. 2, 6 is a Bi-223 oxide superconducting precursor, and 7 is a silver coating.
[0023]
[Comparative Example 1]
The same TiO 2 powder as used in Example 1 was prepared as an insulating material, and it was mixed with ethanol to prepare a suspension. On the other hand, the same wire as that prepared in Example 1 was prepared as the strand of the oxide superconducting precursor, and the suspension was applied to the outer periphery of the strand. At this time, the coating film had many spots.
[0024]
Next, the coated wire was dried at room temperature and in the air to dry the coated film. Then, at the same time as ethanol volatilized, about half of the TiO 2 powder was peeled off from the strand.
[0025]
Next, the strand was subjected to a superconducting heat treatment in the same manner as in Example 1 to convert the Bi-2223 oxide superconducting precursor into a Bi-2223 oxide superconductor. However, most of the TiO 2 powder remaining before the superconducting heat treatment was peeled off from the surface of the wire.
[0026]
[Example 2]
Seven strands 11 having the same two layers of enamel film subjected to polymerization heat treatment and one coating layer as those obtained in Example 1 were prepared. As shown in FIG. The material was assembled in a silver pipe 5 having a diameter of 7 mm, an inner diameter of 3.2 mm, and a length of 200 mm.
[0027]
Next, after drawing the material to an outer diameter of 1.5 mm, a superconducting heat treatment is performed at 840 ° C. for 100 hours, and the Bi-2223 oxide superconducting precursor 6 in each strand 1 is converted into Bi-2223 oxide superconducting. Converted into a body.
[0028]
The superconducting organic materials in the enamel layers 2 and 4 and the coating material layer 3 by heat treatment is eliminated decompose all, as shown in FIG. 1, layer 31 of TiO 2 on the outer periphery of each wire 1 is substantially as an insulating layer It remained uniform and free from spots.
[0029]
In FIG. 1, 51 indicates a silver coating in which the silver pipe 5 is changed, and 61 indicates a Bi-2223 oxide superconductor.
[0030]
[Comparative Example 2]
Seven strands to which the TiO 2 powder obtained in Comparative Example 1 was attached were prepared and assembled into a silver pipe in the same manner as in Example 2. At that time, about half of the TiO 2 powder remaining on the surface of each strand was peeled off from each strand.
[0031]
Next, wire drawing and superconducting heat treatment were performed in the same manner as in Example 2 to convert the Bi-2223 oxide superconducting precursor 6 in each strand 1 into a Bi-2223 oxide superconductor. The TiO 2 powder adhering to each strand was not peeled off because the outer periphery was covered with silver, but only about 20-30% remained for each strand.
[0032]
[Example 3]
Two strands 11 having the same heat-treated enamel films 2 and 4 and a coating material layer 3 as those obtained in Example 1 were prepared, and the two were twisted at a predetermined pitch as shown in FIG. After the processing, superconducting heat treatment was performed in the same manner as in Example 1. By this superconducting heat treatment, all the organic substances of the enamel coatings 2 and 4 and the coating material layer 3 in each strand 11 are decomposed and disappeared, and TiO 2 has a uniform thickness as an insulating layer around each strand 1. Remains in the absence of.
[0033]
[Comparative Example 3]
Two strands to which the TiO 2 powder obtained in Comparative Example 1 was adhered were prepared and twisted in the same manner as in Example 3. As a result, most of the remaining TiO 2 powder was peeled off from the strand, It was only partially left inside the wire, and at this point, there was almost no insulation effect.
[0034]
【The invention's effect】
According to the present invention, when an insulating layer is coated with an inorganic insulating material, the powder is mixed with an organic material paint such as a resin enamel paint, and applied to the organic material by a chemical reaction such as polymerization. Therefore, machining such as wire drawing and twisting can be performed before the superconducting heat treatment. Moreover, after the superconducting heat treatment, the organic substance decomposes and disappears, leaving only the inorganic insulating substance. However, when the organic substance decomposes, the oxide superconductor and the metal such as silver constituting the outer periphery of the oxide superconductor are separated. When the resulting conductor is used for alternating current because it reacts somewhat to the extent that it does not affect, so that the inorganic insulating material in the organic material adheres closely to the metal such as silver and acts effectively as an electrical insulator. In addition, there is an effect that the loss of electric energy can be minimized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an oxide superconducting conductor according to the present invention.
FIG. 2 is a cross-sectional view of a wire showing a manufacturing process of an oxide superconducting conductor according to the present invention.
FIG. 3 is a cross-sectional view of a material in the manufacturing process of an example of an oxide superconducting conductor according to the present invention.
FIG. 4 is an explanatory view showing a manufacturing process of another example of the oxide superconducting conductor according to the present invention.
[Explanation of symbols]
1, 11 Wire 2 Polyester-based enamel coating 3 Coating material layer 4 Polyamideimide-based enamel coating 5 Silver pipe 6 Oxide superconducting precursor 7, 51 Silver coating 31 TiO 2 layer 61 Oxide superconductor

Claims (11)

酸化物超電導体を金属材で被覆してなる酸化物超電導素線の複数が金属材の中に密に引き揃えられ、無機絶縁物質の層を介して分割された酸化物超電導導体において、前記無機絶縁物質の層が前記酸化物超電導素線の外周に均一な厚さで斑のない状態に施されたものであって、無機絶縁物質の粉末を有機物質と混合してなるコーティング材の塗膜を熱処理して該コーティング材の塗膜中の有機物質を化学反応させて硬化させた後、再度熱処理して前記コーティング材の層の有機物質を分解除去させたものであることを特徴とする酸化物超電導導体。In the oxide superconducting conductor in which a plurality of oxide superconducting wires formed by coating an oxide superconductor with a metal material are closely arranged in the metal material and divided through an inorganic insulating material layer , the inorganic superconductor A coating film of a coating material, in which an insulating material layer is applied to the outer periphery of the oxide superconducting wire in a uniform thickness and without any spots, and a powder of an inorganic insulating material is mixed with an organic material The organic material in the coating film of the coating material is cured by chemical reaction and cured, and then the heat treatment is performed again to decompose and remove the organic material in the coating material layer. Superconducting conductor. 酸化物超電導体又はその前駆体を金属材で被覆してなる素線の外周に有機物質の塗膜を形成して熱処理し、前記有機物質の塗膜中の有機物質を化学反応させて硬化させた皮膜を形成し、その皮膜の外周に無機絶縁物質を有機物質の塗料と混合してなるコーティング材の塗膜を均一な厚さに形成した後、コーティング材が塗布された素線を熱処理して前記コーティング材の塗膜中の有機物質を化学反応させて硬化させ、しかる後、有機物質が硬化したコーティング材の層を有する素線の複数を金属材のパイプ中に挿入して集合体とし、その集合体を熱処理して各素線の前記皮膜及びコーティング材層の前記有機物質を分解除去することを特徴とする酸化物超電導導体の製造方法An organic material coating film is formed on the outer periphery of the strand formed by coating the oxide superconductor or its precursor with a metal material, and heat-treated, and the organic material in the organic material coating film is chemically reacted to be cured. After forming a uniform coating film with a uniform thickness on the outer periphery of the coating by mixing an inorganic insulating material with an organic paint, the wire coated with the coating material is heat treated. Then, the organic material in the coating film of the coating material is chemically reacted to be cured, and then a plurality of strands having a coating material layer in which the organic material is cured are inserted into a metal pipe to form an aggregate. The method for producing an oxide superconducting conductor , characterized in that the aggregate is heat-treated to decompose and remove the organic substance in the coating and coating material layer of each strand . 複数の素線を金属材のパイプに挿入する前に、有機物質が硬化したコーティング材の層の外周に有機物質の塗膜を形成して熱処理し、その有機物質の塗膜中の有機物質を化学反応させて硬化させることを特徴とする請求項に記載の酸化物超電導導体の製造方法 Before inserting a plurality of strands into a metal pipe, an organic material coating is formed on the outer periphery of the coating layer on which the organic material has been cured and heat-treated, and the organic material in the organic coating is removed. The method for producing an oxide superconductor according to claim 2 , wherein the oxide superconductor is cured by chemical reaction . 有機物質の塗料が樹脂エナメル塗料であることを特徴とする請求項2又は3に記載の酸化物超電導導体の製造方法 4. The method for producing an oxide superconducting conductor according to claim 2, wherein the organic material coating is a resin enamel coating . 有機物質を分解除去する熱処理が、超電導化熱処理であることを特徴とする請求項2〜5の何れか1に記載の酸化物超電導導体の製造方法 The method for producing an oxide superconducting conductor according to any one of claims 2 to 5 , wherein the heat treatment for decomposing and removing the organic substance is a superconducting heat treatment . 酸化物超電導体又はその前駆体が金属材で被覆され、その金属材の外周に硬化した有機物質の皮膜を介してコーティング材の層が均一な厚さに形成されたものであって、前記コーティング材の層が無機絶縁物質の粉末を有機物質と混合してなるコーティング材の塗膜を形成した後、熱処理して前記コーティング材の塗膜内の有機物質を化学反応させて硬化させたものであることを特徴とする酸化物超電導導体用素線。 An oxide superconductor or a precursor thereof is coated with a metal material, and a coating material layer is formed with a uniform thickness on the outer periphery of the metal material via a cured organic material film , the coating The material layer is formed by mixing a powder of an inorganic insulating material with an organic material to form a coating film of a coating material, and then heat-treating and curing the organic material in the coating material of the coating material by chemical reaction. An elemental wire for an oxide superconducting conductor. 前記コーティング材の層の外周に、硬化した有機物質の皮膜を有する請求項6に記載の酸化物超電導導体用素線 The strand for oxide superconducting conductors of Claim 6 which has the film | membrane of the hardened organic substance on the outer periphery of the layer of the said coating material . 硬化した有機物質が樹脂エナメルであることを特徴とする請求項6又は7に記載の酸化物超電導導体用素線 The strand for oxide superconducting conductor according to claim 6 or 7, wherein the cured organic substance is a resin enamel . 酸化物超電導体又はその前駆体を金属材で被覆してなる素線の外周に有機物質の塗膜を形成して熱処理し、前記有機物質の塗膜中の有機物質を化学反応させて硬化させ、その外周に無機絶縁物質を有機物質の塗料と混合してなるコーティング材の塗膜を均一な厚さに形成した後、そのコーティング材の塗膜を有する素線を熱処理して前記コーティング材の塗膜中の有機物質を化学反応させて硬化させることを特徴とする酸化物超電導導体用素線の製造方法。 An organic material coating film is formed on the outer periphery of the strand formed by coating the oxide superconductor or its precursor with a metal material, and heat-treated, and the organic material in the organic material coating film is chemically reacted to be cured. Then, after forming a coating film of a coating material formed by mixing an inorganic insulating material with an organic material paint on the outer periphery to a uniform thickness, the wire having the coating material coating film is heat-treated to heat the coating material. A method for producing a strand for an oxide superconducting conductor , characterized in that an organic substance in a coating film is chemically reacted to be cured . 有機物質が硬化したコーティング層を形成した後、その外周に有機物質の塗膜を形成して熱処理し、その有機物質の塗膜中の有機物質を化学反応させて硬化させることを特徴とする請求項に記載の酸化物超電導導体用素線の製造方法。 After forming the coating layer in which the organic material is cured, an organic material coating film is formed on the outer periphery of the coating layer and heat-treated, and the organic material in the organic material coating film is chemically reacted to be cured. Item 10. A method for producing an oxide superconducting conductor wire according to Item 9 . 有機物質の塗料が樹脂エナメル塗料である請求項9又は10に記載の酸化物超電導導体用素線の製造方法。 The method for producing an oxide superconducting conductor wire according to claim 9 or 10 , wherein the organic paint is a resin enamel paint .
JP29922899A 1999-10-21 1999-10-21 Oxide superconductor, strand for oxide superconductor, and method for producing them Expired - Fee Related JP4016547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29922899A JP4016547B2 (en) 1999-10-21 1999-10-21 Oxide superconductor, strand for oxide superconductor, and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29922899A JP4016547B2 (en) 1999-10-21 1999-10-21 Oxide superconductor, strand for oxide superconductor, and method for producing them

Publications (2)

Publication Number Publication Date
JP2001118438A JP2001118438A (en) 2001-04-27
JP4016547B2 true JP4016547B2 (en) 2007-12-05

Family

ID=17869811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29922899A Expired - Fee Related JP4016547B2 (en) 1999-10-21 1999-10-21 Oxide superconductor, strand for oxide superconductor, and method for producing them

Country Status (1)

Country Link
JP (1) JP4016547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774494B2 (en) * 2005-01-14 2011-09-14 成卓 岩熊 Superconducting coil

Also Published As

Publication number Publication date
JP2001118438A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
US20020032125A1 (en) Method of applying high temperature compatible insulation to superconductors
JPH06318409A (en) Superconductor
JP4016547B2 (en) Oxide superconductor, strand for oxide superconductor, and method for producing them
CN1200435C (en) Preparation method of ultrafine high-temp. superconducting wire material
JP2001291441A (en) Oxide superconductor and element wire for oxide superconductor and their manufacturing method
JP3759696B2 (en) Multi-core BSCCO room temperature superconductor
JP2001291440A (en) Oxide superconductor and element wire for oxide superconductor and their manufacturing method
JP2001291439A (en) Oxide superconductor and element wire for oxide superconductor as well as their manufacturing method
JP4174953B2 (en) Manufacturing method of oxide superconducting wire
JP4221846B2 (en) Manufacturing method of oxide superconducting coil
JPH1125785A (en) Oxide superconducting stranded wire, manufacture of oxide superconducting cable conductor, coated wire, stranded wire and cable conductor
JP4423708B2 (en) Oxide superconducting wire and method for producing oxide superconducting multicore wire
JP4200663B2 (en) Manufacturing method of oxide superconducting wire
JP2007510257A (en) Method for producing an electrically insulating and mechanically structured sheath on a conductor
JPH05211013A (en) Oxide superconductor and manufacture thereof
JPS63304529A (en) Formation of oxide superconductor thin film
US6828508B1 (en) Oxide high-temperature superconductor wire and method of producing the same
JP2001332415A (en) Oxide superconducting coil, conductor therefor, and their manufacturing methods
JP2861444B2 (en) Multi-core superconducting wire and its processing method
JP2001332416A (en) Oxide superconducting coil, conductor therefor, and their manufacturing methods
JP2001332417A (en) Oxide superconducting coil, conductor therefor, and their manufacturing methods
JP4016570B2 (en) Oxide superconducting wire and method for producing the same
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH10247428A (en) Oxide superconductive wire
JPH05211012A (en) Oxide superconductor and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees