JP6214196B2 - Oxide superconducting coil and superconducting equipment provided with the same - Google Patents

Oxide superconducting coil and superconducting equipment provided with the same Download PDF

Info

Publication number
JP6214196B2
JP6214196B2 JP2013091242A JP2013091242A JP6214196B2 JP 6214196 B2 JP6214196 B2 JP 6214196B2 JP 2013091242 A JP2013091242 A JP 2013091242A JP 2013091242 A JP2013091242 A JP 2013091242A JP 6214196 B2 JP6214196 B2 JP 6214196B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
coil
layer
oxide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013091242A
Other languages
Japanese (ja)
Other versions
JP2014216411A (en
Inventor
雅載 大保
雅載 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013091242A priority Critical patent/JP6214196B2/en
Publication of JP2014216411A publication Critical patent/JP2014216411A/en
Application granted granted Critical
Publication of JP6214196B2 publication Critical patent/JP6214196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、酸化物超電導コイルおよびそれを備えた超電導機器に関する。   The present invention relates to an oxide superconducting coil and a superconducting device including the same.

低損失の導電材料として酸化物超電線材を用いたケーブル、コイル、モーター、マグネットなどの超電導機器が開発されている。これらの超電導機器に用いられる超電導体として、例えば、Bi系超電導線材(BiSrCaCu8+δ:Bi2212、BiSrCaCu10+δ:Bi2223)やRE−123系超電導線材(REBaCu7−x:REはYやGdなどを含む希土類元素)が知られている。
一般に図10に示すようにRE−123系の酸化物超電導線材Cは、テープ状の金属基材100上に拡散防止層などの下地層101と結晶配向性の良好な中間層102を介し酸化物超電導層103を成膜した後、この酸化物超電導層103の表面を覆うようにAgからなる第一の金属安定化層104を形成してなる。また、用途に応じてCuからなる図示略の第二の金属安定化層を積層し、必要に応じ外周に絶縁処理を施して酸化物超電導線材が構成される。前記金属安定化層は、酸化物超電導線材が何らかの原因で超電導状態から常電導状態に転位した際の電流パスとして設けられている。
Superconducting devices such as cables, coils, motors, and magnets that use oxide superconductors as low-loss conductive materials have been developed. As a superconductor used in these superconducting devices, for example, Bi-based superconducting wires (Bi 2 Sr 2 CaCu 2 O 8 + δ: Bi2212, Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ: Bi2223) or RE-123-based superconducting wires ( REBa 2 Cu 3 O 7-x : RE is a rare earth element including Y and Gd).
In general, as shown in FIG. 10, the RE-123-based oxide superconducting wire C is formed on a tape-like metal substrate 100 through an underlayer 101 such as a diffusion prevention layer and an intermediate layer 102 with good crystal orientation. After the superconducting layer 103 is formed, a first metal stabilizing layer 104 made of Ag is formed so as to cover the surface of the oxide superconducting layer 103. In addition, an oxide superconducting wire is configured by laminating a second metal stabilization layer (not shown) made of Cu depending on the application, and subjecting the outer periphery to insulation treatment as necessary. The metal stabilization layer is provided as a current path when the oxide superconducting wire is dislocated from the superconducting state to the normal conducting state for some reason.

また、この酸化物超電導線材を巻胴の外周に複数層となるように巻回して得られる酸化物超電導コイルが知られている。この酸化物超電導コイルのモデル構造を図11(a)に示す。図11(a)に示す酸化物超電導コイル105については、コイルの部位に応じ酸化物超電導線材に対し異なる方向の磁場が作用することが知られている。
図11(a)に示す起立状態とした円筒モデルの酸化物超電導コイル105の上部側、約1/4の部分の断面(図11(a)の斜線の領域S)を解析した場合の磁場分布を図11(b)に示す。酸化物超電導コイル105の部分断面の領域Sにおいて図11(b)に矢印で示すように磁場の向きと大きさが作用する。図11(b)において矢印は磁場の向きと大きさ(強さ)をベクトルとして示している。
図11(b)に示すように超電導コイル105においては、コイル上端に近くなるほどX方向(径方向)の磁場成分が多くなり、コイル中央側に近くなるほど、Y方向(起立状態の超電導コイル105の高さ方向)の磁場成分が多くなることがわかる。
In addition, an oxide superconducting coil obtained by winding this oxide superconducting wire in a plurality of layers on the outer periphery of a winding drum is known. The model structure of this oxide superconducting coil is shown in FIG. Regarding the oxide superconducting coil 105 shown in FIG. 11A, it is known that a magnetic field in a different direction acts on the oxide superconducting wire depending on the portion of the coil.
Magnetic field distribution in the case of analyzing the cross section (the hatched area S in FIG. 11A) of the upper side of the oxide superconducting coil 105 of the cylindrical model in the standing state shown in FIG. Is shown in FIG. In the region S of the partial cross section of the oxide superconducting coil 105, the direction and magnitude of the magnetic field acts as shown by the arrow in FIG. In FIG. 11B, the arrow indicates the direction and magnitude (strength) of the magnetic field as a vector.
As shown in FIG. 11B, in the superconducting coil 105, the magnetic field component in the X direction (radial direction) increases as it approaches the upper end of the coil, and the Y direction (the standing state of the superconducting coil 105 increases as it approaches the center of the coil. It can be seen that the magnetic field component in the height direction increases.

また、テープ状の酸化物超電導線材には磁場の方向依存性があり、図10に示すように酸化物超電導線材Cに対し平行(矢印F1方向)に磁場が作用するよりも垂直方向(矢印F2方向)やある任意の方向(矢印F3方向)から磁場が作用する方が臨界電流が低下する。このため、酸化物超電導コイルの運転電流は、使用する酸化物超電導線材Cにより、どの方向の磁場が臨界電流を低下させるのか、そして、超電導コイル内のどの位置で最も臨界電流が低下するのかを把握して制限する必要がある。一般に、高温超電導線材である酸化物超電導線材を適用した超電導コイルを使用する場合、超電導コイル上部や超電導コイル下部における垂直方向に近い部分の特性を勘案して運転電流を制限するケースが多い。 Further, the tape-shaped oxide superconducting wire has a magnetic field direction dependency, and as shown in FIG. 10, it is more perpendicular to the oxide superconducting wire C (in the direction of arrow F1 ) than in the direction of the magnetic field (arrow F2). Direction) or a certain magnetic field acting from any arbitrary direction (arrow F3 direction), the critical current decreases. For this reason, the operating current of the oxide superconducting coil depends on the oxide superconducting wire C to be used, which direction of the magnetic field reduces the critical current, and at which position in the superconducting coil the critical current decreases most. It is necessary to grasp and limit. In general, when using a superconducting coil to which an oxide superconducting wire, which is a high-temperature superconducting wire, is used, the operating current is often limited in consideration of the characteristics of the upper portion of the superconducting coil and the portion near the vertical direction in the superconducting coil.

従来、超電導コイルを製造する場合、テープ状の酸化物超電導線材を3本以上の細幅に分割して超電導細線を製造し、この超電導細線を用いて薄型の酸化物超電導コイルを製造し、これを複数積層して酸化物超電導コイルを製造する技術が知られている。テープ状の酸化物超電導線材を3本以上の細幅の超電導細線に分割する場合、テープ状の酸化物超電導線材の幅方向両端側から切り出すか、幅方向中央側から切り出すかによって得られる超電導細線の臨界電流値が異なることが知られている。
そして、上述の位置毎の磁場の状態に鑑み、臨界電流の高い超電導細線からなる超電導コイルを積層方向端部側に配置し、臨界電流の低い超電導細線からなる超電導コイルを積層方向中央側に配置した構成の積層型超電導コイルが知られている(特許文献1参照)。
また、高温超電導コイルを適用した場合、コイル上部や下部での垂直方向に近い部分で運転電流が制限されるケースが多い。これに対して、コイル両端での磁場の方向を線材に対して水平方向に近づけるようにコイルの上部や下部に別のコイルを配置して磁場の方向を制御する方法が知られている(非特許文献1参照)。
Conventionally, when a superconducting coil is manufactured, a superconducting thin wire is manufactured by dividing a tape-shaped oxide superconducting wire into three or more narrow widths, and a thin oxide superconducting coil is manufactured using this superconducting thin wire. A technique for manufacturing an oxide superconducting coil by stacking a plurality of layers is known. When a tape-shaped oxide superconducting wire is divided into three or more narrow superconducting wires, a superconducting thin wire obtained by cutting from both ends in the width direction or from the center in the width direction of the tape-shaped oxide superconducting wire It is known that the critical current values of are different.
Then, in view of the state of the magnetic field at each position described above, a superconducting coil made of a superconducting thin wire having a high critical current is arranged on the end side in the stacking direction, and a superconducting coil made of a superconducting thin wire having a low critical current is arranged on the center side in the laminating direction A laminated superconducting coil having the above structure is known (see Patent Document 1).
In addition, when a high temperature superconducting coil is applied, the operating current is often limited in a portion close to the vertical direction at the upper and lower portions of the coil. On the other hand, there is known a method of controlling the direction of the magnetic field by arranging another coil at the upper part or the lower part of the coil so that the direction of the magnetic field at both ends of the coil is close to the horizontal direction with respect to the wire. Patent Document 1).

特開2011−258696号公報JP2011-258696A

古別府正他 「多芯テープ線材の活用による超伝導コイルの性能向上」第80回 2009年度春季低温工学・超電導学会 3D−a01 コイル応用(3)P209Masafumi Kobetsu, et al. “Performance improvement of superconducting coil by utilizing multi-core tape wire” The 80th Spring 2009 Low Temperature Engineering and Superconductivity Society 3D-a01 Coil Application (3) P209

先の特許文献1に記載の積層型超電導コイルは、細幅に分割して細線化した構造とするので超電導線材の幅が狭くなり、超電導コイルを設計する上で制約が生じ易い問題がある。
また、非特許文献1に記載のように超電導コイルの上端部や下端部の外周部に別途サブコイルを追加して配置し、磁場の制御を行うコイル構造も提案されている。しかし、コイルの外周部にサブコイルを配置する構造においては、サブコイル設置位置のコイル外径寸法が大きくなる問題があった。
Since the laminated superconducting coil described in Patent Document 1 has a structure in which the superconducting wire is narrowed and thinned, the width of the superconducting wire becomes narrow, and there is a problem that restrictions are likely to occur in designing the superconducting coil.
In addition, as described in Non-Patent Document 1, a coil structure has been proposed in which a subcoil is additionally arranged on the outer peripheral portion of the upper end portion and the lower end portion of the superconducting coil to control the magnetic field. However, in the structure in which the subcoil is arranged on the outer periphery of the coil, there is a problem that the outer diameter of the coil at the subcoil installation position becomes large.

本発明は、前記事情に鑑みなされたもので、コイルに作用する磁場の角度依存性に起因する超電導特性の劣化を抑制でき、コイルの外形寸法を変えることなくコイルの磁場中運転電流低下を抑制できる超電導コイルおよびそれを備えた超電導機器の提供を目的とする。   The present invention has been made in view of the above circumstances, and can suppress deterioration of superconducting characteristics due to the angular dependence of the magnetic field acting on the coil, and suppress a decrease in operating current in the magnetic field of the coil without changing the outer dimensions of the coil. An object of the present invention is to provide a superconducting coil that can be used and a superconducting device including the same.

本発明の酸化物超電導コイルは、テープ状の基材上に中間層と酸化物超電導層を備えた酸化物超電導線材が巻胴の外周に複数層をなすように巻回された酸化物超電導コイルであり、前記巻胴の長さ方向端部側に巻回されている酸化物超電導線材に形成された酸化物超電導層が前記巻胴の他の部分に巻回されている酸化物超電導線材に形成された酸化物超電導層よりも厚くされたことを特徴とする。
本発明は、テープ状の基材上に中間層と酸化物超電導層を備えた酸化物超電導線材が巻胴の外周に複数層をなすように巻回された酸化物超電導コイルであり、前記巻胴の外側に複数層をなすように巻回された酸化物超電導線材において、巻胴の外周面に近い内周側の酸化物超電導線材の酸化物超電導層の厚さが、前記巻胴外側に複数層をなすように巻回されている他の部分の酸化物超電導線材の酸化物超電導層の厚さよりも厚くされたことを特徴とする。
The oxide superconducting coil of the present invention is an oxide superconducting coil in which an oxide superconducting wire having an intermediate layer and an oxide superconducting layer is wound on a tape-shaped substrate so as to form a plurality of layers on the outer periphery of the winding drum. The oxide superconducting wire formed on the oxide superconducting wire wound on the other end of the winding drum. It is characterized by being thicker than the formed oxide superconducting layer.
The present invention is an oxide superconducting coil in which an oxide superconducting wire provided with an intermediate layer and an oxide superconducting layer on a tape-like substrate is wound so as to form a plurality of layers on the outer periphery of a winding drum. In the oxide superconducting wire wound so as to form a plurality of layers on the outer side of the cylinder, the thickness of the oxide superconducting layer of the oxide superconducting wire on the inner peripheral side close to the outer peripheral surface of the winding cylinder is outside the winding cylinder. The thickness of the oxide superconducting wire in the other part of the oxide superconducting wire wound so as to form a plurality of layers is greater than the thickness of the oxide superconducting layer.

基材上に中間層と酸化物超電導層を有する構造のテープ状の酸化物超電導線材にあっては、本発明者の研究により、酸化物超電導層が厚いほど、臨界電流が大きい傾向になることがわかってきている。この傾向は、超電導層を超電導状態に維持できる温度範囲において0.5T以上などの強い磁場が作用する環境において同じ傾向であると把握できる。
このため、巻胴にテープ状の酸化物超電導線材を複数層巻回したコイル構造において、巻胴の長さ方向端部側に巻回された酸化物超電導線材の酸化物超電導層の厚さを他の部分の酸化物超電導層より厚くしておくならば、厚い酸化物超電導層に対しその臨界電流を低下させるように磁場の影響が作用しても、薄い酸化物超電導層を設けた構造よりは臨界電流を大きくできるため、超電導コイルとしての運転電流低下を抑制できる。このため、酸化物超電導線材に作用する磁場角度依存性を加味したとして、運転電流を高いレベルに維持できる酸化物超電導コイルを提供できる。
また、巻胴の外側に複数層をなすように巻回された酸化物超電導線材においても、内周側の酸化物超電導線材の超電導層を他の部分よりも厚くすることで、薄い酸化物超電導層を設けた構造より臨界電流を大きくできるため、超電導コイルとしての運転電流低下を抑制できる。
In the tape-shaped oxide superconducting wire having a structure having an intermediate layer and an oxide superconducting layer on the base material, according to the present inventors' research, the thicker the oxide superconducting layer, the more the critical current tends to increase. I know. It can be understood that this tendency is the same in an environment where a strong magnetic field such as 0.5 T or more acts in a temperature range where the superconducting layer can be maintained in a superconducting state.
For this reason, in a coil structure in which a plurality of layers of tape-shaped oxide superconducting wires are wound around a winding drum, the thickness of the oxide superconducting layer of the oxide superconducting wire wound on the lengthwise end side of the winding drum is If it is made thicker than the oxide superconducting layer in other parts, even if the influence of a magnetic field acts on the thick oxide superconducting layer to reduce its critical current, the structure of the thin oxide superconducting layer is better. Since the critical current can be increased, a decrease in operating current as a superconducting coil can be suppressed. For this reason, it is possible to provide an oxide superconducting coil capable of maintaining the operating current at a high level, considering the magnetic field angle dependency acting on the oxide superconducting wire.
In addition, even in oxide superconducting wires wound in multiple layers on the outside of the winding drum, by making the superconducting layer of the oxide superconducting wire on the inner peripheral side thicker than other parts, a thin oxide superconducting wire Since the critical current can be increased as compared with the structure in which the layer is provided, it is possible to suppress a decrease in the operating current as the superconducting coil.

本発明の酸化物超電導コイルにおいて、前記巻胴の外周に巻回されて環状のコイル本体を構成する酸化物超電導線材のうち、コイル本体の内側と外側に巻回されている酸化物超電導線材に形成された酸化物超電導層の厚さが、前記コイル本体の内側と外側の間の中側に巻回されている酸化物超電導線材に形成された酸化物超電導層の厚さよりも厚くされた構成でも良い。   In the oxide superconducting coil of the present invention, the oxide superconducting wire wound around the inside and outside of the coil body among the oxide superconducting wires wound around the outer periphery of the winding drum to constitute the annular coil body. A structure in which the thickness of the formed oxide superconducting layer is thicker than the thickness of the oxide superconducting layer formed on the oxide superconducting wire wound inside the coil body between the inside and the outside But it ’s okay.

酸化物超電導コイルを超電導状態とするために冷却する場合、巻胴外方に巻回された酸化物超電導線材には、位置毎に異なる熱応力が作用する。そして、この熱応力は巻胴の外方において内側と外側よりも内側と外側の間に位置する中側の酸化物超電導線材の酸化物超電導層に、より大きな剥離力となって作用する。このため、巻胴外方の中側に巻回されている酸化物超電導線材に形成されている酸化物超電導層をその他の部分の酸化物超電導層よりも薄くしておくならば、冷却時の熱応力によって剥離し難い構造とすることができる。このため、冷却時に熱応力が作用しても臨界電流の低下し難い超電導コイルを提供できる。   When the oxide superconducting coil is cooled to be in a superconducting state, different thermal stress acts on the oxide superconducting wire wound around the outer side of the winding drum at each position. The thermal stress acts on the oxide superconducting layer of the middle oxide superconducting wire located between the inner side and the outer side outside the winding drum as a larger peeling force. For this reason, if the oxide superconducting layer formed on the oxide superconducting wire wound inside the outer side of the winding drum is made thinner than the oxide superconducting layer in other parts, A structure that does not easily peel off due to thermal stress can be obtained. For this reason, it is possible to provide a superconducting coil in which the critical current does not easily decrease even when thermal stress acts during cooling.

本発明の酸化物超電導コイルにおいて、前記巻胴外方に巻回されている酸化物超電導線材により形成されたコイル本体の径方向に沿うコイル幅に対し、最内周位置を基点としてコイル幅の8%以上75%以下の領域に巻回されている酸化物超電導線材に形成されている酸化物超電導層の厚さが、その他の領域に巻回されている酸化物超電導線材に形成されている酸化物超電導層の厚さよりも薄くされたことを特徴とする。   In the oxide superconducting coil of the present invention, with respect to the coil width along the radial direction of the coil body formed by the oxide superconducting wire wound outwardly of the winding drum, the coil width is determined based on the innermost circumferential position. The thickness of the oxide superconducting layer formed on the oxide superconducting wire wound in the region of 8% to 75% is formed in the oxide superconducting wire wound in the other region. It is characterized by being made thinner than the thickness of the oxide superconducting layer.

酸化物超電導コイルを超電導状態とするために冷却する場合、巻胴外方に巻回された酸化物超電導線材には、位置毎に異なる熱応力が作用するが、コイル幅に対し、最内周位置を基点としてコイル幅の8%以上75%以下の領域により多くの熱応力が集中する。このため、この領域に設ける酸化物超電導線材の酸化物超電導層の厚さを他の領域の酸化物超電導層より薄い構造にしておくならば、冷却時の熱応力によって剥離し難い構造とすることができる。このため、冷却時に熱応力が作用しても臨界電流の低下し難い超電導コイルを提供できる。   When the oxide superconducting coil is cooled to be in the superconducting state, the oxide superconducting wire wound around the outer side of the winding drum is subjected to different thermal stresses at each position. Many thermal stresses are concentrated in the region of 8% or more and 75% or less of the coil width starting from the position. For this reason, if the thickness of the oxide superconducting layer of the oxide superconducting wire provided in this region is made thinner than that of the oxide superconducting layer in other regions, the structure is difficult to peel off due to thermal stress during cooling. Can do. For this reason, it is possible to provide a superconducting coil in which the critical current does not easily decrease even when thermal stress acts during cooling.

本発明の超電導機器は、先のいずれか一項に記載の酸化物超電導コイルを備えたことを特徴とする。
上述の酸化物超電導コイルを備えた超電導機器であるならば、一般構造の超電導コイルを備えた超電導機器に比較して運転電流を高く設定して使用できる特徴を有する。
A superconducting device according to the present invention includes the oxide superconducting coil according to any one of the preceding items.
If it is a superconducting apparatus provided with the above-mentioned oxide superconducting coil, it has a feature that it can be used by setting the operating current higher than that of a superconducting apparatus provided with a superconducting coil having a general structure.

本発明によれば、通電時の磁場の影響を受けやすい位置の酸化物超電導層を厚くしているので、磁場の影響を受けても臨界電流低下を抑制できるので、運転電流低下を生じ難く、高い運転電流を設定できる超電導コイルと超電導機器を提供できる。   According to the present invention, since the oxide superconducting layer at a position susceptible to the influence of the magnetic field at the time of energization is thickened, the critical current reduction can be suppressed even under the influence of the magnetic field. A superconducting coil and a superconducting device capable of setting a high operating current can be provided.

図1(a)は本発明に係る第1実施形態の酸化物超電導コイルの略図、図1(b)は同酸化物超電導コイルを構成するパンケーキコイルの積層状態を示す図、図1(c)は同酸化物超電導コイルを構成するパンケーキコイルの一例を示す斜視図。FIG. 1A is a schematic diagram of the oxide superconducting coil according to the first embodiment of the present invention, FIG. 1B is a diagram showing a stacked state of pancake coils constituting the oxide superconducting coil, and FIG. ) Is a perspective view showing an example of a pancake coil constituting the oxide superconducting coil. 図2は同酸化物超電導コイルを構成するための酸化物超電導線材の一例を示す部分断面図。FIG. 2 is a partial cross-sectional view showing an example of an oxide superconducting wire for constituting the oxide superconducting coil. 図3はテープ状酸化物超電導線材の磁場角度依存性の一例を示すグラフ。FIG. 3 is a graph showing an example of the magnetic field angle dependency of the tape-shaped oxide superconducting wire. 図4はコイル径方向最内層の軸方向コイル臨界電流(Ic)の最小値Ic_minとの比率を示すグラフ。FIG. 4 is a graph showing a ratio of the axial radial critical current (Ic) of the innermost layer in the coil radial direction to the minimum value Ic_min. 図5はコイル径方向のコイル平均臨界電流(Ic)比率計算結果例を示すグラフ。FIG. 5 is a graph showing an example of the calculation result of the coil average critical current (Ic) ratio in the coil radial direction. 図6は図5に示すコイル平均臨界電流(Ic)比率計算拡大図。6 is an enlarged view of calculation of a coil average critical current (Ic) ratio shown in FIG. 図7は酸化物超電導コイルを構成するパンケーキコイルにおいて、コイル本体の内側部分から外側部分までの熱応力分布解析結果の一例を示す図。FIG. 7 is a diagram showing an example of a thermal stress distribution analysis result from the inner part to the outer part of the coil body in the pancake coil constituting the oxide superconducting coil. 図8(a)はスタッドプル法による剥離試験を実施する場合に用いるスタッドピンの一例を示す図、図8(b)は酸化物超電導層厚と累積ハザード法による50%剥離応力の相関関係を示すグラフ。FIG. 8A is a view showing an example of a stud pin used when a peeling test by the stud pull method is performed, and FIG. 8B shows a correlation between the oxide superconducting layer thickness and the 50% peeling stress by the cumulative hazard method. Graph showing. 図9は自己磁場中と3Tの外部磁場中における酸化物超電導層厚と臨界電流との相関関係を示すグラフ。FIG. 9 is a graph showing the correlation between the oxide superconducting layer thickness and the critical current in a self magnetic field and in a 3T external magnetic field. 図10はテープ状酸化物超電導線材の一例構造を示す部分断面図。FIG. 10 is a partial sectional view showing an example structure of a tape-shaped oxide superconducting wire. 図11(a)は従来の酸化物超電導コイルの一例構造を示す斜視図、図11(b)は同酸化物超電導コイルにおける断面位置毎の磁場分布を示すベクトル図。FIG. 11A is a perspective view showing an example structure of a conventional oxide superconducting coil, and FIG. 11B is a vector diagram showing a magnetic field distribution at each cross-sectional position in the oxide superconducting coil.

以下、本発明に係る酸化物超電導線材の接続構造体の第1実施形態を図面に基づいて詳細に説明する。なお、本発明は以下説明の実施形態に限定されるものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするため、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
図1(a)は第1実施形態に係る酸化物超電導コイルAを示すもので、この超電導コイルAは以下に説明するテープ状の酸化物超電導線材1をボビン(巻枠)3に多層になるようにコイル巻きして構成されている。
Hereinafter, a first embodiment of a connection structure of oxide superconducting wires according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. In addition, the drawings used in the following description may show the main parts in an enlarged manner for convenience in order to make the features of the present invention easier to understand, and the dimensional ratios of the respective components are the same as the actual ones. Not always.
FIG. 1A shows an oxide superconducting coil A according to the first embodiment. This superconducting coil A is composed of a tape-shaped oxide superconducting wire 1 described below in a bobbin (winding frame) 3 in multiple layers. Thus, the coil is wound.

超電導コイルAに適用されている酸化物超電導線材1は、図2に示すようにテープ状の基材2の一面(表面)の上方に、中間層5、酸化物超電導層6、保護層7、金属安定化層8を積層してテープ状の超電導積層体9が構成され、この超電導積層体9の外周を覆うように接着層10aを介し絶縁層10が被覆されている。
本実施形態の超電導コイルAは、薄型の巻胴に酸化物超電導線材1を多数ターン巻回した薄型のパンケーキコイル4を複数(この実施形態では6つ)積み重ねて構成されている。そして、薄型の巻胴を6つ積み重ねて構成される巻胴3Aの長さ方向両端部分に鍔板3Bが取り付けられ、積み重ねて構成された巻胴3Aと2枚の鍔板3Bによりボビン3が構成されている。
The oxide superconducting wire 1 applied to the superconducting coil A has an intermediate layer 5, an oxide superconducting layer 6, a protective layer 7, above one surface (surface) of the tape-like substrate 2 as shown in FIG. The metal stabilizing layer 8 is laminated to form a tape-shaped superconducting laminate 9, and the insulating layer 10 is covered with an adhesive layer 10 a so as to cover the outer periphery of the superconducting laminate 9.
The superconducting coil A of this embodiment is configured by stacking a plurality (six in this embodiment) of thin pancake coils 4 each having a number of turns of the oxide superconducting wire 1 wound around a thin winding drum. And the saddle plate 3B is attached to both ends in the length direction of the winding drum 3A constituted by stacking six thin winding drums, and the bobbin 3 is formed by the winding drum 3A constituted by stacking and the two saddle plates 3B. It is configured.

図1(a)の例では以上説明の構造を簡略化して6つのパンケーキコイル4を積み重ねた状態として示し、各パンケーキコイル4に巻回されている複数層のテープ状の酸化物超電導線材1を個々に断面視した状態として薄板状に簡略化して示した。従って、図1(a)では巻胴3Aの外側に薄板状の酸化物超電導線材1を11ターン巻回したように表示されているが、実際の超電導コイルでは必要とされる性能等に合わせて数10ターン〜数100ターン巻回される。なお、パンケーキコイル4は6つ重ねられた後、樹脂含浸されて固定されているので、図1(a)においては各酸化物超電導線材1の周囲をエポキシ樹脂層などの含浸樹脂層11が覆った構造として簡略表示している。   In the example of FIG. 1A, the structure described above is simplified and shown as a state where six pancake coils 4 are stacked, and a plurality of tape-shaped oxide superconducting wires wound around each pancake coil 4 1 is shown in a simplified form as a thin plate as viewed in cross section. Accordingly, in FIG. 1A, the thin plate-like oxide superconducting wire 1 is shown to be wound 11 turns on the outside of the winding drum 3A, but in accordance with the performance required for an actual superconducting coil. It is wound from several tens of turns to several hundreds of turns. Since six pancake coils 4 are stacked and then fixed with resin impregnation, an impregnated resin layer 11 such as an epoxy resin layer is surrounded around each oxide superconducting wire 1 in FIG. Simplified display as covered structure.

以下に酸化物超電導線材1を構成する各要素について説明する。
酸化物超電導線材1において基材2は、可撓性を有する長尺の超電導線材とするためにテープ状やシート状あるいは薄板状であることが好ましい。また、基材2に用いられる材料は、機械的強度が比較的高く、耐熱性があり、線材に加工することが容易な金属を有しているものが好ましく、例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種耐熱性金属材料、もしくはこれら各種金属材料上にセラミックスを配した材料などが挙げられる。中でも、市販品であれば、Ni合金の1種として知られているハステロイ(商品名、米国ヘインズ社製)が好適である。このハステロイの種類には、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等が挙げられ、ここではいずれの種類も使用できる。また、基材2の厚さは、目的に応じて適宜調整すれば良く、通常は10〜500μm、好ましくは20〜200μmである。また、基材2として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。
Below, each element which comprises the oxide superconducting wire 1 is demonstrated.
In the oxide superconducting wire 1, the base material 2 is preferably in the form of a tape, a sheet or a thin plate in order to obtain a long superconducting wire having flexibility. The material used for the substrate 2 is preferably a material having a relatively high mechanical strength, heat resistance, and a metal that can be easily processed into a wire, such as stainless steel and hastelloy. Examples thereof include various heat-resistant metal materials such as nickel alloys, or materials obtained by arranging ceramics on these various metal materials. Among these, a commercially available product is preferably Hastelloy (trade name, manufactured by Haynes, USA), which is known as a kind of Ni alloy. This kind of Hastelloy includes Hastelloy B, C, G, N, W, etc., which have different amounts of components such as molybdenum, chromium, iron, cobalt, etc., and any kind can be used here. Moreover, what is necessary is just to adjust the thickness of the base material 2 suitably according to the objective, and is 10-500 micrometers normally, Preferably it is 20-200 micrometers. Moreover, as the base material 2, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can also be applied.

中間層5は、拡散防止層またはベッド層からなる下地層5Aと、配向層5Bと、キャップ層5Cがこの順に積層された構造を一例として適用することができる。
拡散防止層は、この層よりも上面側に他の層を形成する際に加熱処理した結果、基材2や他の層が熱履歴を受ける場合、基材2の構成元素の一部が拡散し、不純物として酸化物超電導層6側に混入することを抑制する機能を有する。拡散防止層の具体的な例として、上記機能を発現し得るものであれば特に限定されないが、不純物の混入を防止する効果が比較的高いAl、Si、又はGZO(GdZr)等から構成される単層構造あるいは複層構造が望ましい。
As the intermediate layer 5, a structure in which an underlayer 5 </ b> A composed of a diffusion prevention layer or a bed layer, an alignment layer 5 </ b> B, and a cap layer 5 </ b> C are stacked in this order can be applied as an example.
When the base material 2 or another layer receives a thermal history as a result of heat treatment when forming another layer on the upper surface side of this layer, a part of the constituent elements of the base material 2 diffuses. And it has a function which suppresses mixing in the oxide superconducting layer 6 side as an impurity. A specific example of the diffusion preventing layer is not particularly limited as long as it can exhibit the above functions, but Al 2 O 3 , Si 3 N 4 , or GZO (Gd A single layer structure or a multilayer structure composed of 2 Zr 2 O 7 ) or the like is desirable.

ベッド層は、基材2と酸化物超電導層6との界面における構成元素の反応を抑え、この層よりも上に設けられる層の配向性を向上させるために用いられる。ベッド層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、耐熱性が高いY、CeO、La、Dy、Er、Eu、Hoなどの希土類酸化物から構成される単層構造あるいは複層構造が望ましい。拡散防止層とベッド層は両方設けても良く、また、どちらか一方のみ設けても良く、配向層の構成材料によっては略しても良い。 The bed layer is used to suppress the reaction of constituent elements at the interface between the base material 2 and the oxide superconducting layer 6 and to improve the orientation of the layer provided above this layer. The specific structure of the bed layer is not particularly limited as long as it can exhibit the above functions, but Y 2 O 3 , CeO 2 , La 2 O 3 , Dy 2 O 3 , Er 2 O, which have high heat resistance. 3 , a single layer structure or a multilayer structure composed of rare earth oxides such as Eu 2 O 3 and Ho 2 O 3 is desirable. Both the diffusion preventing layer and the bed layer may be provided, or only one of them may be provided, and may be omitted depending on the constituent material of the alignment layer.

配向層5Bは、その上に形成されるキャップ層5Cや酸化物超電導層6の結晶配向性を制御する機能と、基材2の構成元素が酸化物超電導層6へ拡散することを抑制する機能と、基材2と酸化物超電導層6との熱膨張率や格子定数といった物理的特性の差を緩和する機能等を有するものである。配向層5Bの構成材料は、前記機能を発現し得るものであれば特に限定されない。GdZr、MgO、ZrO−Y(YSZ)等の金属酸化物を用いると、後述するイオンビームアシスト蒸着法(以下、IBAD法と呼ぶことがある。)において、結晶配向性の高い層が得られ、キャップ層5Cと酸化物超電導層6の結晶配向性をより良好なものとすることができるため、特に好適である。 The alignment layer 5 </ b> B has a function of controlling the crystal orientation of the cap layer 5 </ b> C and the oxide superconducting layer 6 formed thereon, and a function of suppressing the constituent elements of the base material 2 from diffusing into the oxide superconducting layer 6. And a function to alleviate a difference in physical characteristics such as a coefficient of thermal expansion and a lattice constant between the base material 2 and the oxide superconducting layer 6. The constituent material of the alignment layer 5B is not particularly limited as long as it can exhibit the above functions. When a metal oxide such as Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) is used, a crystal is formed in an ion beam assisted deposition method (hereinafter sometimes referred to as IBAD method). A layer with high orientation can be obtained, and the crystal orientation of the cap layer 5C and the oxide superconducting layer 6 can be made better, which is particularly preferable.

キャップ層5Cは、酸化物超電導層6の結晶配向性を配向層と同等ないしそれ以上強く制御し、酸化物超電導層6を構成する元素の中間層5側への拡散や、酸化物超電導層6の積層時に使用するガスと中間層5との反応を抑制する機能等を有するものである。キャップ層の構成材料は、上記機能を発現し得るものであれば特に限定されないが、CeO、Y、Al、Gd、ZrO、Ho、Nd、YSZ、LMnO等の金属酸化物が酸化物超電導層6との格子整合性の観点から好適である。そのなかでも、酸化物超電導層6とのマッチング性から、CeOあるいはLMnOが特に好適である。ここで、キャップ層にCeOを用いる場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。 The cap layer 5C controls the crystal orientation of the oxide superconducting layer 6 to be equal to or higher than that of the oriented layer, and diffuses the elements constituting the oxide superconducting layer 6 toward the intermediate layer 5 or the oxide superconducting layer 6. It has the function etc. which suppress reaction of the gas used at the time of lamination | stacking, and the intermediate | middle layer 5. The material of the cap layer is not particularly limited as long as it can express the above functions, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, Ho 2 O 3, Nd 2 Metal oxides such as O 3 , YSZ, and LMnO 3 are preferable from the viewpoint of lattice matching with the oxide superconducting layer 6. Among them, CeO 2 or LMnO 3 is particularly preferable because of the matching with the oxide superconducting layer 6. Here, when CeO 2 is used for the cap layer, the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

酸化物超電導層6は、超電導状態の時に電流を流す機能を有するものである。酸化物超電導層6に用いられる材料には、通常知られている組成の酸化物超電導体からなるものを広く適用することができ、例えば、Y系超電導体などの銅酸化物超電導体などが挙げられる。Y系超電導体の組成は、例えば、REBaCu7−x(REは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうち1種または2種以上の希土類元素を示す。xは酸素欠損を表す。)が挙げられ、具体的には、Y123(YBaCu7−x)、Gd123(GdBaCu7−x)が挙げられる。この酸化物超電導体の母物質は絶縁体であるが、酸素アニール処理により酸素を取り込むことで結晶構造の整った酸化物超電導体となり、超電導特性を示す性質を持っている。酸化物超電導層6がこのような優れた結晶配向性を示すためには、上述の良好な結晶配向性のキャップ層上に成膜されていることによる。
このような優れた結晶配向性の酸化物超電導層6であるならば、酸化物超電導線材1として臨界温度以下に冷却し、通電した場合、優れた臨界電流特性を発揮する。
The oxide superconducting layer 6 has a function of flowing current when in the superconducting state. The material used for the oxide superconducting layer 6 can be widely applied to an oxide superconductor having a generally known composition, such as a copper oxide superconductor such as a Y-based superconductor. It is done. The composition of the Y-based superconductor is, for example, REBa 2 Cu 3 O 7-x (RE is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, And one or more rare earth elements among Tm, Yb, and Lu. X represents oxygen deficiency. Specifically, Y123 (YBa 2 Cu 3 O 7-x ), Gd123 ( GdBa 2 Cu 3 O 7-x ) and the like. Although the base material of this oxide superconductor is an insulator, it becomes an oxide superconductor with a well-crystallized structure by incorporating oxygen by oxygen annealing, and has the property of exhibiting superconducting properties. In order for the oxide superconducting layer 6 to exhibit such an excellent crystal orientation, it is formed on the cap layer having the above-described good crystal orientation.
The oxide superconducting layer 6 having such excellent crystal orientation exhibits excellent critical current characteristics when the oxide superconducting wire 1 is cooled below the critical temperature and energized.

保護層7は、酸化物超電導線材1への通電時、何らかの事故により発生する過電流をバイパスする電流路となり、酸化物超電導層6に酸素を取り込ませやすくするために、加熱時には酸素を透過しやすくする機能を有する。このため、保護層7は、AgあるいはAg合金など、Agを主体とする材料から形成されることが好ましい。また、保護層7を形成する材料は、Au、Ptなどの貴金属を含む混合物もしくは合金であってもよく、これらを複数用いてもよい。   The protective layer 7 becomes a current path that bypasses an overcurrent generated by some accident when the oxide superconducting wire 1 is energized, and in order to facilitate the incorporation of oxygen into the oxide superconducting layer 6, it transmits oxygen during heating. Has a function to facilitate. For this reason, it is preferable that the protective layer 7 is formed from a material mainly composed of Ag, such as Ag or an Ag alloy. The material for forming the protective layer 7 may be a mixture or alloy containing a noble metal such as Au or Pt, or a plurality of these may be used.

本実施形態では保護層7の上に金属安定化層8が設けられている。金属安定化層8の用途は、酸化物超電導線材1の用途により異なる。例えば、超電導ケーブルや超電導モーターなどに使用する場合は、何らかの事故によりクエンチが起こり、酸化物超電導6が常電導状態に転移した時に発生する過電流を転流させるバイパスのメイン部として用いられる。このとき、金属安定化層8に用いられる材料は、銅、Cu−Zn合金(黄銅)、Cu−Ni合金等の銅合金、アルミ、アルミ合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅を用いることが好ましい。また、酸化物超電導線材1を超電導限流器に使用する場合、安定化層は、クエンチが起こり常電導状態に転移した時に発生する過電流を瞬時に抑制するために用いられる。この用途の場合、金属安定化層8に用いられる材料は、例えば、Ni−Cr等のNi系合金等の高抵抗金属が挙げられる。   In the present embodiment, a metal stabilizing layer 8 is provided on the protective layer 7. The use of the metal stabilization layer 8 varies depending on the use of the oxide superconducting wire 1. For example, when used for a superconducting cable, a superconducting motor, or the like, it is used as a main part of a bypass that commutates an overcurrent generated when quenching occurs due to some accident and the oxide superconducting 6 transitions to a normal conducting state. At this time, the material used for the metal stabilization layer 8 is made of a relatively inexpensive material such as copper, a Cu-Zn alloy (brass), a copper alloy such as a Cu-Ni alloy, aluminum, an aluminum alloy, and stainless steel. It is preferable to use copper, and it is preferable to use copper because it has high conductivity and is inexpensive. Further, when the oxide superconducting wire 1 is used for a superconducting fault current limiter, the stabilization layer is used to instantaneously suppress an overcurrent generated when a quench occurs and the state transitions to a normal conducting state. In the case of this application, examples of the material used for the metal stabilization layer 8 include high-resistance metals such as Ni-based alloys such as Ni-Cr.

金属安定化層8は主に金属テープの貼合わせ構造あるいはめっき層などにより構成される。金属安定化層8を金属テープの貼合わせ構造とする場合、金属安定化層8の内面側に半田等の導電性接合材を設ける。図2に示す構造では導電性接合材の表示を略しているが、導電性接合材を構成する半田等のスズ合金として例えば、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種、又は2種以上組み合わせて使用することもできる。   The metal stabilizing layer 8 is mainly composed of a metal tape bonding structure or a plating layer. When the metal stabilization layer 8 has a metal tape bonding structure, a conductive bonding material such as solder is provided on the inner surface side of the metal stabilization layer 8. In the structure shown in FIG. 2, the display of the conductive bonding material is omitted, but examples of tin alloys such as solder constituting the conductive bonding material include Sn, Sn—Ag alloy, Sn—Bi alloy, and Sn—Cu. Lead-free solder, Pb—Sn alloy solder, eutectic solder, low-temperature solder, etc. made of an alloy containing Sn as a main component, such as a Sn-based alloy or Sn—Zn-based alloy. It can also be used in combination of more than one species.

次に、本実施形態の酸化物超電導コイルAにおいて、巻胴3Aの外方に巻回されている酸化物超電導線材1のうち、巻胴3Aの長さ方向両端側、即ち、鍔板3Bに最も近い位置に配置されているパンケーキコイル4に形成されている酸化物超電導層6の厚さが、その他の位置のパンケーキコイル4に形成されている酸化物超電導層6の厚さよりも厚く形成されている。なお、説明の容易化のため、以下、図1(a)に示すように6つ重ねられたパンケーキコイル4のうち、鍔板3Bに最も近い上下2つのパンケーキコイル4をパンケーキコイル4Aとして区別して説明し、その他のパンケーキコイル4をパンケーキコイル4Bとして区別して説明することがある。   Next, in the oxide superconducting coil A of the present embodiment, among the oxide superconducting wire 1 wound around the outer side of the winding drum 3A, both ends of the winding drum 3A in the length direction, that is, the flange plate 3B. The thickness of the oxide superconducting layer 6 formed on the pancake coil 4 disposed at the closest position is thicker than the thickness of the oxide superconducting layer 6 formed on the pancake coil 4 at other positions. Is formed. For ease of explanation, of the six pancake coils 4 stacked as shown in FIG. 1 (a), the two upper and lower pancake coils 4 closest to the slat 3B are connected to the pancake coil 4A. And the other pancake coils 4 may be distinguished and described as pancake coils 4B.

酸化物超電導線材1に形成する酸化物超電導層6は、その厚さを0.8μm〜6μmの範囲で任意の厚さに形成できる。この範囲内であっても例えば、1μm〜4μmの範囲を選択することが好ましい。
酸化物超電導層6を形成する方法は、レーザー蒸着法、スパッタ法、真空蒸着法、化学気相成長法(CVD法)、塗布熱分解法(MOD法)等の成膜法を選択できるので、成膜する場合の成膜時間や基材の搬送速度、ターゲットと基材との距離、温度条件等の各種条件を変更することにより膜の厚さは自由に設定できる。
The oxide superconducting layer 6 formed on the oxide superconducting wire 1 can be formed to an arbitrary thickness within the range of 0.8 μm to 6 μm. Even within this range, for example, it is preferable to select a range of 1 μm to 4 μm.
Since the oxide superconducting layer 6 can be formed by a film deposition method such as a laser vapor deposition method, a sputtering method, a vacuum vapor deposition method, a chemical vapor deposition method (CVD method), or a coating pyrolysis method (MOD method), The thickness of the film can be freely set by changing various conditions such as the film formation time, the transport speed of the base material, the distance between the target and the base material, and the temperature condition.

従って、1つの例として、パンケーキコイル4Bを構成する酸化物超電導線材に設けられている酸化物超電導層6の厚さを1μmとした場合、パンケーキコイル4Aを構成する酸化物超電導線材に設けられている酸化物超電導層6の厚さを1.7μmとすることができる。この他、パンケーキコイル4Bを構成する酸化物超電導線材に設けられている酸化物超電導層6の厚さを1〜2μmとした場合、パンケーキコイル4Aを構成する酸化物超電導線材に設けられている酸化物超電導層6の厚さを3〜4μmとする構成など、パンケーキコイル4Aを構成する酸化物超電導線材に設けられている酸化物超電導層6の厚さがパンケーキコイル4Bを構成する酸化物超電導線材に設けられている酸化物超電導層6の厚さよりも厚く形成されている。
パンケーキコイル4Aを構成する酸化物超電導線材に設けられている酸化物超電導層6をその他のものより厚く形成するのは、図1(a)に示す超電導コイルAに通電した場合、巻胴3Aの長さ方向両端側に位置する酸化物超電導線材1の酸化物超電導層6に最も大きく磁場の影響が作用し、その位置の酸化物超電導層6の臨界電流を低下させるためである。従って、巻胴3Aの両端側に位置するパンケーキコイル4Aを構成する酸化物超電導線材に設けられている酸化物超電導層6が他のパンケーキコイル4Bを構成する酸化物超電導線材に設けられている酸化物超電導層6よりも厚く形成されている。
現状本発明者の研究では、0.5μm〜6μmの厚さ範囲の酸化物超電導層であって0.5T以上の磁場が作用する条件下においては、酸化物超電導層の膜厚を大きくした方が臨界電流が大きくなる傾向にあることが分かっている。
このため、図1(a)に示す酸化物超電導コイルAにおいて上述の構造を採用することが好ましい。
Therefore, as an example, when the thickness of the oxide superconducting layer 6 provided on the oxide superconducting wire constituting the pancake coil 4B is 1 μm, the oxide superconducting wire constituting the pancake coil 4A is provided on the oxide superconducting wire. The thickness of the oxide superconducting layer 6 can be 1.7 μm. In addition, when the thickness of the oxide superconducting layer 6 provided on the oxide superconducting wire constituting the pancake coil 4B is set to 1 to 2 μm, the oxide superconducting wire constituting the pancake coil 4A is provided on the oxide superconducting wire. The thickness of the oxide superconducting layer 6 provided on the oxide superconducting wire constituting the pancake coil 4A constitutes the pancake coil 4B, such as a configuration in which the thickness of the oxide superconducting layer 6 is 3 to 4 μm. It is formed thicker than the oxide superconducting layer 6 provided on the oxide superconducting wire.
The oxide superconducting layer 6 provided on the oxide superconducting wire constituting the pancake coil 4A is formed thicker than the others when the superconducting coil A shown in FIG. This is because the influence of the magnetic field is the largest on the oxide superconducting layer 6 of the oxide superconducting wire 1 located at both ends in the length direction of the electrode, and the critical current of the oxide superconducting layer 6 at that position is reduced. Therefore, the oxide superconducting layer 6 provided on the oxide superconducting wire constituting the pancake coil 4A located on both ends of the winding drum 3A is provided on the oxide superconducting wire constituting the other pancake coil 4B. It is formed thicker than the oxide superconducting layer 6.
At present, the inventor's research shows that the oxide superconducting layer has a thickness in the range of 0.5 μm to 6 μm, and the thickness of the oxide superconducting layer is increased under the condition that a magnetic field of 0.5 T or more acts. It has been found that the critical current tends to increase.
For this reason, it is preferable to employ the above-described structure in the oxide superconducting coil A shown in FIG.

次に、図1(a)に示す酸化物超電導コイルAのいずれか1つのパンケーキコイル4において、巻胴3Aの外方(外周側)に内側から中側を介し外側にかけて酸化物超電導線材1が巻回されているが、内側よりの中側に巻回されている酸化物超電導層6の厚さが、内側に巻回されている酸化物超電導層6の厚さよりも薄く、かつ、中側〜外側に巻回されている酸化物超電導層6の厚さよりも薄いことが好ましい。
一例として、パンケーキコイル4において、厚い超電導層を備えた酸化物超電導線材をコイル内側に巻回し、その酸化物超電導線材に薄い酸化物超電導層を備えた酸化物超電導線材を接続してコイル中側に巻回し、この超電導線材に厚い酸化物超電導層を備えた酸化物超電導線材を接続してコイル外側に巻回する構造を採用できる。
また、一例として、酸化物超電導線材1が巻回されている領域の横断面において、最内周位置(巻き初め側位置)から最外周位置(巻き終わり側位置)までの径方向距離に対し、8%未満までの範囲には厚い酸化物超電導層6が設けられ、8%以上(剥離応力として約10MPa以上)75%以下までの範囲には薄い酸化物超電導層6が設けられ、75%超〜100%までの範囲には厚い酸化物超電導層6が設けられていることが好ましい。前記8%以上75%以下の領域においては、剥離応力が約10MPa以上と大きくなるので、膜厚の薄い酸化物超電導層6を備えた酸化物超電導線材を用いることが好ましい。
Next, in any one pancake coil 4 of the oxide superconducting coil A shown in FIG. 1 (a), the oxide superconducting wire 1 extends from the inner side to the outer side on the outer side (outer peripheral side) of the winding drum 3A. However, the thickness of the oxide superconducting layer 6 wound inside from the inside is thinner than the thickness of the oxide superconducting layer 6 wound inside, and It is preferable that the thickness is smaller than the thickness of the oxide superconducting layer 6 wound from the side to the outside.
As an example, in the pancake coil 4, an oxide superconducting wire having a thick superconducting layer is wound inside the coil, and the oxide superconducting wire having a thin oxide superconducting layer is connected to the oxide superconducting wire. It is possible to adopt a structure in which an oxide superconducting wire having a thick oxide superconducting layer is connected to this superconducting wire and wound outside the coil.
As an example, in the cross section of the region where the oxide superconducting wire 1 is wound, with respect to the radial distance from the innermost peripheral position (winding start side position) to the outermost peripheral position (winding end side position), A thick oxide superconducting layer 6 is provided in a range up to less than 8%, and a thin oxide superconducting layer 6 is provided in a range up to 8% or more (about 10 MPa or more as a peeling stress) and less than 75%. It is preferable that a thick oxide superconducting layer 6 is provided in a range of up to 100%. In the region of 8% or more and 75% or less, the peeling stress increases to about 10 MPa or more. Therefore, it is preferable to use an oxide superconducting wire provided with a thin oxide superconducting layer 6.

これは、図1(a)に示す酸化物超電導コイルAにおいて1つのパンケーキコイル4についてエポキシ樹脂含浸したコイル構造において内部熱応力を解析した場合、常温で作製した酸化物超電導コイルAを運転するために77K以下の温度に冷却されるので、冷却に伴い、内部に熱応力が作用する。この熱応力は、1つのパンケーキコイル4について巻胴3Aの外周側に酸化物超電導線材1を多数ターンになるように多数層巻回しているとすると、その位置に応じて異なる熱応力となる。熱応力の作用に関し、上述の範囲で記載すると、最内周位置から最外周位置に向かって20〜55%の範囲が最も大きく、13〜20%の範囲と55〜62%の範囲が2番目に大きく、10〜13%の範囲と62〜70%の範囲が3番目に大きい。以下、順に、8〜10%の範囲と70〜75%の範囲、4〜8%の範囲と75〜82%の範囲の順に小さくなり、最内周側と最外周側に向かうにつれて徐々に小さくなる。上述のように熱応力が作用すると酸化物超電導層6に剥離応力が作用する。   In the oxide superconducting coil A shown in FIG. 1A, when the internal thermal stress is analyzed in a coil structure in which one pancake coil 4 is impregnated with epoxy resin, the oxide superconducting coil A manufactured at room temperature is operated. Therefore, since it is cooled to a temperature of 77K or less, thermal stress acts on the inside as it cools. Assuming that a large number of layers of the oxide superconducting wire 1 are wound around the outer circumference of the winding drum 3A for one pancake coil 4, the thermal stress varies depending on the position. . Regarding the action of the thermal stress, when described in the above range, the range of 20 to 55% is the largest from the innermost peripheral position to the outermost peripheral position, and the range of 13 to 20% and the range of 55 to 62% are the second. The range of 10-13% and the range of 62-70% are the third largest. Hereinafter, in order of 8 to 10% range, 70 to 75% range, 4 to 8% range, and 75 to 82% range, the size decreases gradually toward the innermost and outermost sides. Become. When thermal stress acts as described above, peeling stress acts on the oxide superconducting layer 6.

酸化物超電導線材1を臨界温度以下に冷却した場合、各パンケーキコイル4の酸化物超電導線材1には個々に冷却時の熱応力により、パンケーキコイル4の径方向において内側領域と外側領域よりも中側領域に対し、より大きな応力が作用する。例えば、パンケーキコイル4の横断面(パンケーキコイル4の半径に沿う断面)に沿い、酸化物超電導線材1に対して引張方向に働くような応力が作用する。このような応力が作用しても、本実施形態の酸化物超電導コイルAにおいて、パンケーキコイル4の応力が大きく作用する領域の酸化物超電導層6の厚さを薄くしているので、酸化物超電導層6に剥離が生じるおそれが少ない。これは、厚い酸化物超電導層6に対比し、薄い酸化物超電導層6の方が剥離力に強いことによる。   When the oxide superconducting wire 1 is cooled below the critical temperature, the oxide superconducting wire 1 of each pancake coil 4 is individually separated from the inner region and the outer region in the radial direction of the pancake coil 4 due to thermal stress during cooling. Also, a greater stress acts on the middle region. For example, along the cross section of the pancake coil 4 (cross section along the radius of the pancake coil 4), a stress acting in the tensile direction acts on the oxide superconducting wire 1. Even if such stress acts, in the oxide superconducting coil A of the present embodiment, the oxide superconducting layer 6 in the region where the stress of the pancake coil 4 acts largely is made thin. There is little possibility that peeling occurs in the superconducting layer 6. This is because the thin oxide superconducting layer 6 is stronger in peeling force than the thick oxide superconducting layer 6.

このため、上述のような位置の酸化物超電導線材1について酸化物超電導層6の厚さを上述のように厚い酸化物超電導層6と薄い酸化物超電導層6を使い分けることにより、熱応力の作用を受けても臨界電流の低下し難いパンケーキコイル4とすることができる。また、このようなパンケーキコイル4を酸化物超電導コイルAに設けることで、運転電流を向上させた超電導コイルAを提供できる効果がある。   For this reason, the oxide superconducting wire 1 in the position as described above can be used for the action of thermal stress by selectively using the thick oxide superconducting layer 6 and the thin oxide superconducting layer 6 as described above. Even if it receives, it can be set as the pancake coil 4 with which a critical current cannot fall easily. In addition, providing such a pancake coil 4 in the oxide superconducting coil A has an effect of providing the superconducting coil A with improved operating current.

ところで、酸化物超電導線材1に形成されている酸化物超電導層6の厚さは0.8〜6μmの範囲であり、この範囲の中で厚さを使い分けたとして、100ターン巻回したパンケーキコイル4の外形に及ぼす寸法的な影響は数100μm程度であるので、パンケーキコイル4の外形寸法が大きく異なることにはならず、寸法的な問題は生じない。   By the way, the thickness of the oxide superconducting layer 6 formed on the oxide superconducting wire 1 is in the range of 0.8 to 6 μm, and it is assumed that the thickness is properly used in this range. Since the dimensional influence on the outer shape of the coil 4 is about several hundreds μm, the outer size of the pancake coil 4 does not greatly differ, and no dimensional problem occurs.

図1に示す酸化物超電導コイルAは、全体を臨界温度以下(例えば77K以下)に冷却し、酸化物超電導線材1に通電することにより磁場を発生させて目的のために使用することができる。   The oxide superconducting coil A shown in FIG. 1 can be used for a purpose by generating a magnetic field by cooling the whole to a critical temperature or lower (for example, 77 K or lower) and energizing the oxide superconducting wire 1.

また、超電導コイルAの酸化物超電導線材1に通電すると磁場を発生できるが、パンケーキコイル4の酸化物超電導層6に自己磁場が作用する場合、パンケーキコイル4の内周側、中心側の方が磁場が強くなるが、内周側に厚い酸化物超電導層6を備えた酸化物超電導線材1を配しているので、コイルとしての臨界電流が大きく、上述の熱応力に強い超電導コイルAを提供することができる。
なお、本発明は超電導コイルAを備えた超電導マグネット、超電導モーターなどの各種超電導機器に適用することができる。
In addition, a magnetic field can be generated when the oxide superconducting wire 1 of the superconducting coil A is energized. However, when a self-magnetic field acts on the oxide superconducting layer 6 of the pancake coil 4, However, since the oxide superconducting wire 1 having the thick oxide superconducting layer 6 is disposed on the inner peripheral side, the superconducting coil A has a large critical current as a coil and is resistant to the above-described thermal stress. Can be provided.
The present invention can be applied to various superconducting devices such as a superconducting magnet and a superconducting motor provided with the superconducting coil A.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
ハステロイ(商品名ハステロイC−276、米国ヘインズ社製)からなる幅5mm、厚さ100μm、長さ170mのテープ状の基材を複数用意し、表面を研磨した。
次に、以下の形成条件により、複数の基材の一面上に、拡散防止層、ベッド層、配向層およびキャップ層をこの順に積層した。各成膜の際には、成膜装置の内部にテープ状の基材を搬送する送り出しリールと巻き取りリールを設け、基材を所定の速度で移動させつつ基材上に順次成膜する処理を行った。
まず、イオンビームスパッタ法により、テープ状の基材の上にAlからなる膜厚100nmの拡散防止層を形成し、次に、イオンビームスパッタ法により、拡散防止層の上にYからなる膜厚20nmのベッド層を形成した。次に、IBAD法により、ベッド層の上にMgOからなる膜厚10nmの配向層を形成した。
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
A plurality of tape-shaped substrates having a width of 5 mm, a thickness of 100 μm, and a length of 170 m made of Hastelloy (trade name Hastelloy C-276, manufactured by Haynes, USA) were prepared, and the surface was polished.
Next, a diffusion prevention layer, a bed layer, an alignment layer, and a cap layer were laminated in this order on one surface of a plurality of substrates under the following formation conditions. When each film is formed, a feed reel and a take-up reel that transport the tape-shaped substrate are provided inside the film forming apparatus, and the film is sequentially formed on the substrate while moving the substrate at a predetermined speed. Went.
First, a 100 nm-thick diffusion prevention layer made of Al 2 O 3 is formed on a tape-like substrate by ion beam sputtering, and then Y 2 is formed on the diffusion prevention layer by ion beam sputtering. A bed layer made of O 3 and having a thickness of 20 nm was formed. Next, an alignment layer having a thickness of 10 nm made of MgO was formed on the bed layer by IBAD.

配向層を形成後、PLD法によりCeOからなる膜厚400nmのキャップ層を形成し、YBaCu7−xなる組成の厚さ1.7μmの酸化物超電導層を形成し、更に厚さ2μmのAgの保護層をスパッタ法により成膜し、積層体を得た。この積層体を500℃で10時間酸素雰囲気中において酸素アニール処理し、その後に保護層上に厚さ300μmの銅の金属安定化テープをSn半田層により貼り合わせ接合してテープ状の酸化物超電導積層体を得た。この酸化物超電導積層体の外周にポリイミド樹脂テープを巻回して絶縁層を形成し、酸化物超電導線材を得た。
この酸化物超電導線材を内径60mm、外径132mm、高さ10.5mmのGFRP(繊維強化プラスチック)製の円筒状の巻胴の周囲に100ターン巻回し、コイル内径60mm、コイル外径132mmのパンケーキコイルを作製した。
なお、同様の構造の酸化物超電導線材において酸化物超電導層の厚さを1μmとして製造した同一サイズのパンケーキコールを作製した。
これら2種類のパンケーキコイルを使い分け、6層構造の超電導コイルを作成し、エポキシ樹脂含浸して構成した超電導コイルの性能を以下の表1に示す。
After forming the alignment layer, a 400 nm thick cap layer made of CeO 2 is formed by the PLD method, and a 1.7 μm thick oxide superconducting layer having a composition of YBa 2 Cu 3 O 7-x is formed. A protective layer of 2 μm thick Ag was formed by sputtering to obtain a laminate. This laminated body was subjected to oxygen annealing treatment at 500 ° C. for 10 hours in an oxygen atmosphere, and then a 300 μm-thick copper metal stabilization tape was bonded to the protective layer with an Sn solder layer and bonded to form a tape-shaped oxide superconductor. A laminate was obtained. A polyimide resin tape was wound around the outer periphery of the oxide superconducting laminate to form an insulating layer, thereby obtaining an oxide superconducting wire.
This oxide superconducting wire is wound 100 turns around a cylindrical winding cylinder made of GFRP (fiber reinforced plastic) having an inner diameter of 60 mm, an outer diameter of 132 mm, and a height of 10.5 mm, and a pan having a coil inner diameter of 60 mm and a coil outer diameter of 132 mm. A cake coil was prepared.
In addition, the pancake coal of the same size manufactured with the thickness of the oxide superconducting layer being 1 μm in the oxide superconducting wire having the same structure was produced.
Table 1 below shows the performance of a superconducting coil constructed by using these two types of pancake coils to create a superconducting coil having a six-layer structure and impregnating with an epoxy resin.

Figure 0006214196
Figure 0006214196

表1に示すように、設計例1は、6層のうち、1番目(一番下)〜6番目(一番上)のパンケーキコイルに巻回された超電導線材の酸化物超電導層が1.7μmの厚い酸化物超電導層であり、2番目〜5番目までのパンケーキコイルに巻回された酸化物超電導線材の酸化物超電導層が薄い(厚さ1μm)の酸化物超電導層である。
表1に示す比較例は、厚さ1μmの酸化物超電導層を備えた酸化物超電導線材のみを用いて構成したパンケーキコイルを6層積層した構造の超電導コイルである。
設計例1の超電導コイルは比較例の超電導コイルに比較し、コイル臨界電流、コイル中心磁界共に大きくなった。
なお、表1には記載していないが、1番目〜6番目のパンケーキコイルに巻回されている酸化物超電導線材の全てを厚さ1.7μmの酸化物超電導層からなる酸化物超電導線材として製造した超電導コイルの臨界電流は220Aとなる。この対比から、一番下と一番上のパンケーキコイル、即ち、巻胴の軸方向端部側のコイルに設けられている酸化物超電導層について、他の部分に設けられている酸化物超電導層より厚いものを用いることで、コイル全体に厚い酸化物超電導層を用いなくても優れたコイル臨界電流を得られることが判る。
As shown in Table 1, design example 1 has 1 oxide superconducting layer of superconducting wire wound around the first (bottom) to sixth (top) pancake coil among six layers. A thick oxide superconducting layer of 0.7 μm, and the oxide superconducting layer of the oxide superconducting wire wound around the second to fifth pancake coils is a thin (1 μm thick) oxide superconducting layer.
The comparative example shown in Table 1 is a superconducting coil having a structure in which six layers of pancake coils formed by using only an oxide superconducting wire provided with an oxide superconducting layer having a thickness of 1 μm are stacked.
Compared with the superconducting coil of the comparative example, the superconducting coil of design example 1 has a larger coil critical current and coil center magnetic field.
Although not described in Table 1, all of the oxide superconducting wires wound around the first to sixth pancake coils are made of an oxide superconducting layer having a thickness of 1.7 μm. The critical current of the superconducting coil manufactured as follows is 220A. From this comparison, the oxide superconducting layer provided in the other part of the oxide superconducting layer provided in the lowermost and uppermost pancake coils, that is, the coil on the axial end side of the winding drum. It can be seen that by using a material thicker than the layer, an excellent coil critical current can be obtained without using a thick oxide superconducting layer for the entire coil.

図3は先に製造した厚さ1.7μmの酸化物超電導層を有する酸化物超電導線材の横断面に対し種々の角度(θ)から0.5Tの磁場を印加した場合の臨界電流(Ic:A:77K)を測定した結果を示す。
図3に示すように酸化物超電導線材には磁場の方向に応じて臨界電流(Ic)の角度依存性があり、この角度依存性を考慮した上で、超電導コイルの性能を最大限引き出すために望ましい構造設計を行う必要がある。
FIG. 3 shows the critical current (Ic :) when a magnetic field of 0.5 T is applied from various angles (θ) to the cross section of the oxide superconducting wire having the oxide superconducting layer having a thickness of 1.7 μm manufactured previously. A: 77K) is shown.
As shown in FIG. 3, the oxide superconducting wire has an angle dependency of the critical current (Ic) depending on the direction of the magnetic field. In consideration of this angle dependency, the maximum performance of the superconducting coil is obtained. Desired structural design needs to be done.

図4は、貼り合わせ銅厚100μm、幅5mmとした構造以外は、上述の酸化物超電導線材と同等構造の酸化物超電導線材を用い、内径60mm、外径132mmのパンケーキコイルを形成し、このパンケーキコイルを6層積層した超電導コイルについて、50Kにおける超電導コイルIcの比率(コイル軸方向)計算結果を示す。
図3に示す臨界電流の角度依存性において、最も低い値が図3の角度θにおいて40゜付近で得られる。コイル軸方向位置において得られる臨界電流(Ic)の値に対するIc-minの比(Ic/Ic-min)の値が図4に示す値である。
この例の超電導コイルの最内層におけるコイル軸方向分布は、図4に示す通りとなる。超電導コイルの端部(図4では上側)に臨界電流(Ic)の特に低い部分が生じるため、軸方向端部付近に厚い酸化物超電導層を配置することでより効果的な超電導コイルの作製が可能であると考えられる。具体的には、超電導コイルの最上層(超電導コイルの上端部)に他の部分より18%以上厚い酸化物超電導層を備えた酸化物超電導線材を配置することが望ましい。これにより、超電導コイル全体の臨界電流についてコイル寸法を変えることなく、18%向上可能であり、有効な手段であると考えられる。
FIG. 4 shows a pancake coil having an inner diameter of 60 mm and an outer diameter of 132 mm using an oxide superconducting wire having the same structure as the above-described oxide superconducting wire except for a structure in which the bonded copper thickness is 100 μm and the width is 5 mm. The superconducting coil which laminated | stacked six layers of pancake coils is shown the calculation result of the ratio (coil axial direction) of the superconducting coil Ic in 50K.
In the angle dependence of the critical current shown in FIG. 3, the lowest value is obtained in the vicinity of 40 ° at the angle θ of FIG. The value of the ratio of Ic-min (Ic / Ic-min) to the value of the critical current (Ic) obtained at the coil axial position is the value shown in FIG.
The coil axial direction distribution in the innermost layer of the superconducting coil of this example is as shown in FIG. Since a portion having a particularly low critical current (Ic) is generated at the end portion (upper side in FIG. 4) of the superconducting coil, a more effective superconducting coil can be produced by disposing a thick oxide superconducting layer near the end portion in the axial direction. It is considered possible. Specifically, it is desirable to dispose an oxide superconducting wire having an oxide superconducting layer that is 18% or more thicker than the other parts on the uppermost layer of the superconducting coil (the upper end of the superconducting coil). Thus, the critical current of the entire superconducting coil can be improved by 18% without changing the coil size, which is considered to be an effective means.

図5と図6は超電導コイルの臨界電流(Ic)分布と径方向における臨界電流(Ic)比率との相関関係を示す。
基材厚100μm、貼り合わせ銅厚300μm、幅10mm、その他の構造は先の実施例の酸化物超電導線材と同等構造を適用し、内径260mm、外径535mm、コイル高さ20.6mmの2層パンケーキコイル(パンケーキコイルを2層積層した構造)の各磁場分布から各点のコイルIc(77K)を算出し、うち1層(シングルパンケーキ)コイルの幅方向平均Icを算出した。その幅方向平均コイルIcとコイル全体の最小Ic(先の例のIc-min に相当)との比率の関係を図5に示す。また、図5の横軸の径方向130mm〜160mmの領域の拡大を図6に示す。
図5、図6においてIop(通電電流)=162A時のIc/最小Icを示す。
5 and 6 show the correlation between the critical current (Ic) distribution of the superconducting coil and the critical current (Ic) ratio in the radial direction.
The base material thickness is 100 μm, the bonded copper thickness is 300 μm, the width is 10 mm, and the other structure is the same structure as the oxide superconducting wire of the previous embodiment, and has two layers with an inner diameter of 260 mm, an outer diameter of 535 mm, and a coil height of 20.6 mm. A coil Ic (77K) at each point was calculated from each magnetic field distribution of the pancake coil (a structure in which two layers of pancake coils were laminated), and an average Ic in the width direction of one layer (single pancake) coil was calculated. FIG. 5 shows the relationship between the ratio of the average coil Ic in the width direction and the minimum Ic of the entire coil (corresponding to Ic-min in the previous example). Moreover, the expansion of the area | region of radial direction 130mm-160mm of the horizontal axis of FIG. 5 is shown in FIG.
5 and FIG. 6, Ic / minimum Ic when Iop (energization current) = 162 A is shown.

図6に示す結果から、12.5%以上Icが向上する膜厚の酸化物超電導層を備えた酸化物超電導線材を超電導コイルの内側(130〜157.5mmの領域であって、後述する図7の結果に示す熱応力の低い部分)に適用することにより、超電導コイルとしてのIcを12.5%以上向上できると見込むことができる。
更に、超電導コイルの内側(130〜141mmの領域:後述する図7の結果に示す更に熱応力の低い部分)に4.5%以上Icが向上する膜厚の酸化物超電導層を備えた酸化物超電導線材を用いることにより超電導コイルとしてのIcを4.5%以上向上できることを見込むことができる。
これらのように熱応力の影響を受けにくく、かつ、コイルIcを向上させ、コイル寸法がほとんど変わらない(超電導層を厚くする厚さ×ターン数 以下;例えば2μm厚くし、240ターンの場合はコイル寸法が480μm程度の増大で納まる)超電導コイルを提供できる。
From the results shown in FIG. 6, an oxide superconducting wire having an oxide superconducting layer with a film thickness that improves Ic by 12.5% or more is formed inside the superconducting coil (a region of 130 to 157.5 mm, which will be described later. It can be expected that Ic as a superconducting coil can be improved by 12.5% or more by applying to the portion having a low thermal stress shown in the result of No. 7.
Further, an oxide provided with an oxide superconducting layer having a thickness that improves Ic by 4.5% or more on the inner side of the superconducting coil (region of 130 to 141 mm: a portion having a lower thermal stress shown in the result of FIG. 7 described later). By using a superconducting wire, it can be expected that Ic as a superconducting coil can be improved by 4.5% or more.
As described above, the coil Ic is hardly affected by the thermal stress, and the coil dimensions are hardly changed (thickness to increase the superconducting layer × number of turns or less; for example, 2 μm thick, and in the case of 240 turns, the coil A superconducting coil can be provided in which the dimensions are accommodated by an increase of about 480 μm.

図7は、パンケーキコイル4の断面をとり、この断面においてどの位置に熱応力が作用するのか解析した結果を示す説明図である。
図7に示すパンケーキコイル内応力分布解析は、有限要素法(ANSYS)に基づきシミュレーションした結果である。基板厚100μm、貼り合わせ銅の金属安定化層の厚さ300μm、幅10mmの酸化物超電導線材を用いて内径260mm、外径530mmのサイズのパンケーキコールを2つ積層した、2層パンケーキコイルの積層体であり、エポキシ樹脂で樹脂含浸した超電導コイルを室温から77Kに冷却した際のコイル断面における熱応力分布シミュレーション結果を図7に示す。
FIG. 7 is an explanatory view showing the result of analyzing the position where the thermal stress acts on the cross section of the pancake coil 4 in this cross section.
The stress distribution analysis in the pancake coil shown in FIG. 7 is a result of simulation based on the finite element method (ANSYS). Two-layer pancake coil in which two pancake coles having an inner diameter of 260 mm and an outer diameter of 530 mm are laminated using an oxide superconducting wire having a substrate thickness of 100 μm, a bonded copper metal stabilization layer thickness of 300 μm, and a width of 10 mm FIG. 7 shows the thermal stress distribution simulation result in the coil cross section when the superconducting coil impregnated with epoxy resin and cooled with the epoxy resin is cooled from room temperature to 77K.

図7に示すシミュレーション結果から、超電導コイルの内側(最内周位置側)から外側(最外周位置側)にかけて位置毎に異なる応力が作用することが判明した。
最内周位置から最外周位置まで径方向に沿って酸化物超電導線材の巻回位置毎の応力を解析した場合、最内周位置から最外周位置までの長さ(酸化物超電導線材を巻線したコイル本体部分のコイル幅)に対し、最内周位置を基点として、20%以上55%以下の領域に最も大きな応力が作用し、13%以上20%未満の領域と55%を超えて62%以下の領域に2番目に大きな応力が作用し、10%以上13%未満の領域と62%を超えて70%以下の領域に3番目に大きな応力が作用することが分かる。また、8%以上10%未満の領域と70%を超えて75%以下の領域に第4番目の応力が作用し、4%以上8%未満の領域と75%を超えて82%以下の領域に第5番目の応力が作用することが分かる。
例えば、図6を用いて説明したように、130〜157.5mmの領域は、図7に示す8%以上20%以下の領域なので、20%以上55%以下の領域の酸化物超電導線材の超電導層の膜厚に対し、Icが高いだけ(例:12.5%以上)厚い膜厚の酸化物超電導層を有する酸化物超電導線材を用いることが好ましい。
また、図6を用いて説明したように、130〜141mmの領域は、図7に示す8%以下の領域なので、20%以上55%以下の領域の酸化物超電導線材の超電導層の膜厚に対し、Icが高いだけ(例:4.5%以上)厚い膜厚の酸化物超電導層を有する酸化物超電導線材を用いることが好ましい。
図5、図6、図7を総括すると、図7の20〜55%の領域、55〜100%の領域は同じ膜厚の酸化物超電導層を備えた酸化物超電導線材を用い、0〜20%未満の領域はそれらよりも厚い膜厚の酸化物超電導層を備えた酸化物超電導線材を用いることができると説明できる。また、0〜20%未満の領域に12.5%以上臨界電流Icが大きい酸化物超電導層を用いると、コイル臨界電流Icを12.5%以上大きくすることができることがわかる。また、0〜8%未満の領域に4.5%以上臨界電流Icが大きい酸化物超電導層を用いると、コイル臨界電流Icは4.5%以上大きくなることがわかる。
即ち、臨界電流Icが12.5%、4.5%以上の領域は磁場中では臨界電流Icが酸化物超電導層の膜厚に比例するので、膜厚を12.5%以上、あるいは4.5%以上にすることとなる。
From the simulation results shown in FIG. 7, it was found that different stresses act for each position from the inner side (the innermost circumferential position side) to the outer side (the outermost circumferential position side) of the superconducting coil.
When analyzing the stress at each winding position of the oxide superconducting wire along the radial direction from the innermost position to the outermost position, the length from the innermost position to the outermost position (winding the oxide superconducting wire Coil width of the coil main body portion) with the innermost peripheral position as a base point, the greatest stress acts on the region of 20% to 55%, and the region of 13% to less than 20% and more than 55% to 62% It can be seen that the second largest stress acts on the region of% or less, and the third largest stress acts on the region of 10% or more and less than 13% and the region exceeding 62% and 70% or less. The fourth stress acts on the region of 8% or more and less than 10% and the region of 70% or more and 75% or less, and the region of 4% or more and less than 8% and the region of 75% or more and 82% or less. It can be seen that the fifth stress acts on.
For example, as described with reference to FIG. 6, the region of 130 to 157.5 mm is the region of 8% or more and 20% or less shown in FIG. 7, and thus the superconductivity of the oxide superconducting wire in the region of 20% or more and 55% or less. It is preferable to use an oxide superconducting wire having an oxide superconducting layer that is thicker than Ic (e.g., 12.5% or more) with respect to the layer thickness.
Further, as described with reference to FIG. 6, the region of 130 to 141 mm is the region of 8% or less shown in FIG. 7, and therefore the thickness of the superconducting layer of the oxide superconducting wire in the region of 20% or more and 55% or less. On the other hand, it is preferable to use an oxide superconducting wire having an oxide superconducting layer that is thick only because of high Ic (eg, 4.5% or more).
5, 6, and 7, the 20% to 55% region and the 55% to 100% region in FIG. 7 use an oxide superconducting wire having an oxide superconducting layer of the same thickness, and 0 to 20%. It can be explained that the oxide superconducting wire provided with the oxide superconducting layer having a thicker film thickness can be used in the region of less than%. It can also be seen that the coil critical current Ic can be increased by 12.5% or more when an oxide superconducting layer having a large critical current Ic of 12.5% or more is used in the region of 0 to less than 20%. It can also be seen that the coil critical current Ic increases by 4.5% or more when an oxide superconducting layer having a large critical current Ic of 4.5% or more is used in the region of 0 to less than 8%.
That is, in the region where the critical current Ic is 12.5%, 4.5% or more, the critical current Ic is proportional to the film thickness of the oxide superconducting layer in the magnetic field. It will be 5% or more.

次に、酸化物超電導線材の酸化物超電導層における剥離強度と層厚の関係を調査した。剥離強度の測定には、図8(a)に示す構成のスタッドピンを用いたスタッドプル法により測定した。前述の工程で製造される酸化物超電導線材において、基材上に酸化物超電導層と保護層までを成膜した線材20を別途用意し、この線材20の基材裏面側をセラミックス基板21の一面にエポキシ樹脂22で接着し、反対側の保護層の表面にφ2.7mmのスタッドピン23をエポキシ樹脂24で接着し、スタッドピン23を長さ方向に引き抜く方法により測定した。
剥離試験は各厚さに対応して30本ずつ測定を行い、累積ハザード法によるワイブル解析を行い、50%剥離応力を算出した。
酸化物超電導層の層厚(μm)と剥離応力(MPa)との相関関係を図8(b)に示す。
Next, the relationship between the peel strength and the layer thickness in the oxide superconducting layer of the oxide superconducting wire was investigated. The peel strength was measured by a stud pull method using a stud pin having the configuration shown in FIG. In the oxide superconducting wire manufactured in the above-described process, a wire 20 in which an oxide superconducting layer and a protective layer are formed on a base material is separately prepared. It was measured by a method in which a stud pin 23 having a diameter of 2.7 mm was adhered to the surface of the opposite protective layer with an epoxy resin 24 and the stud pin 23 was pulled out in the length direction.
In the peel test, 30 samples corresponding to each thickness were measured, Weibull analysis was performed by the cumulative hazard method, and 50% peel stress was calculated.
FIG. 8B shows a correlation between the layer thickness (μm) of the oxide superconducting layer and the peeling stress (MPa).

図8(b)に示す結果から、剥離応力については、酸化物超電導層の厚さが厚くなるほど膜厚に応じて徐々に低下することが判明した。この結果から、厚さ0.8μm〜4μmの酸化物超電導層は薄いものの方が剥離応力が高く、厚いものの方が剥離応力が小さいことが分かる。よって、酸化物超電導コイルに対し熱応力に応じた剥離応力が作用する場合、大きな剥離応力が作用する位置に厚さ0.8μm〜4μmの酸化物超電導層において薄い酸化物超電導層を配置し、小さな剥離応力が作用する位置には厚い酸化物超電導層を配置することが熱応力に対し有効であると想定できる。
なお、先の例から、20〜55%の領域は熱応力が大きいとして薄い膜を使用する場合、膜厚に特に制限はない。目的とする超電導コイルに必要な臨界電流を発揮できる厚さの酸化物超電導層を備えた酸化物超電導線材を0.8〜4μmの範囲で選択し、他の領域に設けている酸化物超電導層より薄い酸化物超電導層を用いることが望ましい。
From the results shown in FIG. 8 (b), it was found that the peeling stress gradually decreases as the thickness of the oxide superconducting layer increases. From this result, it can be seen that a thin oxide superconducting layer having a thickness of 0.8 μm to 4 μm has a higher peel stress and a thicker one has a smaller peel stress. Therefore, when a peeling stress corresponding to the thermal stress acts on the oxide superconducting coil, a thin oxide superconducting layer is disposed in the oxide superconducting layer having a thickness of 0.8 μm to 4 μm at a position where a large peeling stress acts, It can be assumed that disposing a thick oxide superconducting layer at a position where a small peeling stress acts is effective against thermal stress.
From the above example, when the thin film is used in the region of 20 to 55% because the thermal stress is large, the film thickness is not particularly limited. An oxide superconducting layer provided in another region by selecting an oxide superconducting wire having an oxide superconducting layer with a thickness capable of exhibiting a critical current necessary for the target superconducting coil in a range of 0.8 to 4 μm. It is desirable to use a thinner oxide superconducting layer.

次に、酸化物超電導線材の磁場中特性について調査した。3T(テスラ)の磁場を発生可能な超電導マグネットを用いて測定対象の超電導線材が発生させる自己磁場と3Tの外部磁場中において、77Kにおける超電導層の臨界電流密度(Jc)を測定した結果を図9に示す。また、3Tの外部磁場中において厚さの異なる酸化物超電導層(1.4μm、1.6μm、2.5μm、5.5μm)についてそれぞれの臨界電流密度(Jc:77K:MA/cm)を測定した。これらの結果を併せて図9に示す。図9は、酸化物超電導層の膜厚を変えて、外部磁場無しの自己磁場中の臨界電流密度Jcと、3Tの外部磁場中の臨界電流密度Jcを測定したことを意味する。 Next, the characteristics of the oxide superconducting wire in the magnetic field were investigated. Fig. 3 shows the result of measuring the critical current density (Jc) of the superconducting layer at 77K in a self-magnetic field generated by the superconducting wire to be measured and a 3T external magnetic field using a superconducting magnet capable of generating a 3T (Tesla) magnetic field. 9 shows. In addition, the critical current densities (Jc: 77K: MA / cm 2 ) of the oxide superconducting layers (1.4 μm, 1.6 μm, 2.5 μm, 5.5 μm) having different thicknesses in an external magnetic field of 3T are set. It was measured. These results are shown together in FIG. FIG. 9 means that the critical current density Jc in a self magnetic field without an external magnetic field and the critical current density Jc in a 3T external magnetic field were measured by changing the film thickness of the oxide superconducting layer.

図9に示す結果から、自己磁場中においては酸化物超電導層を厚くした方が臨界電流密度が低くなる傾向があるが、3T磁場中では酸化物超電導層の厚さに対する依存性がほとんど見られない。図9は、酸化物超電導層が厚くなっても臨界電流密度が低下せず、厚くなるに従って臨界電流が大きくなることを意味する。   From the results shown in FIG. 9, the critical current density tends to be lower when the oxide superconducting layer is thicker in the self magnetic field, but almost all the dependence on the thickness of the oxide superconducting layer is seen in the 3T magnetic field. Absent. FIG. 9 means that the critical current density does not decrease even when the oxide superconducting layer becomes thicker, and the critical current increases as the oxide superconducting layer becomes thicker.

A…超電導コイル、1…酸化物超電導線材、2…基材、3…ボビン、3A…巻胴、3B…鍔板、4、4A、4B…パンケーキコイル、5…中間層、6…酸化物超電導層、7…保護層(第一の金属安定化層)、8…第二の金属安定化層、9…超電導積層体、10…被覆層、11…含浸樹脂層。   A ... Superconducting coil, 1 ... Oxide superconducting wire, 2 ... Base material, 3 ... Bobbin, 3A ... Winding drum, 3B ... Plate, 4, 4A, 4B ... Pancake coil, 5 ... Intermediate layer, 6 ... Oxide Superconducting layer, 7 ... protective layer (first metal stabilizing layer), 8 ... second metal stabilizing layer, 9 ... superconducting laminate, 10 ... coating layer, 11 ... impregnated resin layer.

Claims (5)

テープ状の基材上に中間層と酸化物超電導層と金属安定化層をこの順に備えた酸化物超電導線材が巻胴の外周に複数層をなすように巻回されたパンケーキコイルを、前記巻胴の長さ方向に1つ設けて構成される環状のコイル本体を有する酸化物超電導コイルであり、前記コイル本体の内側と外側に巻回されている酸化物超電導線材に形成された酸化物超電導層の厚さが、前記コイル本体の内側と外側の間の中側に巻回されている酸化物超電導線材に形成された酸化物超電導層の厚さよりも厚くされたことを特徴とす酸化物超電導コイル。 A pancake coil in which an oxide superconducting wire having an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer in this order on a tape-like substrate is wound so as to form a plurality of layers on the outer periphery of the winding drum , An oxide superconducting coil having an annular coil body formed by providing one in the length direction of a winding drum, and formed on an oxide superconducting wire wound inside and outside the coil body the thickness of the superconducting layer, characterized in that it is thicker than the thickness of the coil body of the inner and outer oxide superconducting layer formed on the oxide superconducting wire is wound around the middle side between Oxide superconducting coil. テープ状の基材上に中間層と酸化物超電導層と金属安定化層をこの順に備えた酸化物超電導線材が巻胴の外周に複数層をなすように巻回されたパンケーキコイルを、前記巻胴の長さ方向に2つ積み重ねて構成される環状のコイル本体を有する酸化物超電導コイルであり、前記コイル本体の内側と外側に巻回されている酸化物超電導線材に形成された酸化物超電導層の厚さが、前記コイル本体の内側と外側の間の中側に巻回されている酸化物超電導線材に形成された酸化物超電導層の厚さよりも厚くされたことを特徴とす酸化物超電導コイル。 A pancake coil in which an oxide superconducting wire having an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer in this order on a tape-like substrate is wound so as to form a plurality of layers on the outer periphery of the winding drum , An oxide superconducting coil having an annular coil body formed by stacking two in the longitudinal direction of a winding drum, and formed on an oxide superconducting wire wound inside and outside the coil body the thickness of the superconducting layer, characterized in that it is thicker than the thickness of the coil body of the inner and outer oxide superconducting layer formed on the oxide superconducting wire is wound around the middle side between Oxide superconducting coil. 前記巻胴外方に巻回されている酸化物超電導線材により形成されたコイル本体の径方向に沿うコイル幅に対し、最内周位置を基点としてコイル幅の8%以上75%以下の領域に巻回されている酸化物超電導線材に形成されている酸化物超電導層の厚さが、その他の領域に巻回されている酸化物超電導線材に形成されている酸化物超電導層の厚さよりも薄くされたことを特徴とする請求項1または2に記載の酸化物超電導コイル。 With respect to the coil width along the radial direction of the coil main body formed by the oxide superconducting wire wound around the outer side of the winding drum, it is in a region of 8% or more and 75% or less of the coil width starting from the innermost peripheral position. The thickness of the oxide superconducting layer formed on the wound oxide superconducting wire is thinner than the thickness of the oxide superconducting layer formed on the oxide superconducting wire wound in the other region. The oxide superconducting coil according to claim 1 or 2 , wherein the oxide superconducting coil is formed. 前記酸化物超電導層の厚さが0.8μm〜6μmの範囲であることを特徴とする請求項1〜3のいずれか一項に記載の酸化物超電導コイル。The oxide superconducting coil according to any one of claims 1 to 3, wherein a thickness of the oxide superconducting layer is in a range of 0.8 µm to 6 µm. 請求項1〜4のいずれか一項に記載の酸化物超電導コイルを備えたことを特徴とする超電導機器。   A superconducting device comprising the oxide superconducting coil according to any one of claims 1 to 4.
JP2013091242A 2013-04-24 2013-04-24 Oxide superconducting coil and superconducting equipment provided with the same Expired - Fee Related JP6214196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091242A JP6214196B2 (en) 2013-04-24 2013-04-24 Oxide superconducting coil and superconducting equipment provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091242A JP6214196B2 (en) 2013-04-24 2013-04-24 Oxide superconducting coil and superconducting equipment provided with the same

Publications (2)

Publication Number Publication Date
JP2014216411A JP2014216411A (en) 2014-11-17
JP6214196B2 true JP6214196B2 (en) 2017-10-18

Family

ID=51941927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091242A Expired - Fee Related JP6214196B2 (en) 2013-04-24 2013-04-24 Oxide superconducting coil and superconducting equipment provided with the same

Country Status (1)

Country Link
JP (1) JP6214196B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370505A (en) * 1986-09-12 1988-03-30 Toshiba Corp Superconducting coil
JPH06260335A (en) * 1993-03-05 1994-09-16 Sumitomo Electric Ind Ltd High temperature superconducting magnet
JPH07142245A (en) * 1993-11-17 1995-06-02 Mitsubishi Electric Corp High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
US5525583A (en) * 1994-01-24 1996-06-11 American Superconductor Corporation Superconducting magnetic coil
JP2011228479A (en) * 2010-04-20 2011-11-10 Fujikura Ltd Superconducting coil
JP5879749B2 (en) * 2011-05-30 2016-03-08 住友電気工業株式会社 Superconducting coil, superconducting magnet, and manufacturing method of superconducting coil

Also Published As

Publication number Publication date
JP2014216411A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
US9418776B2 (en) Oxide superconductor wire and superconducting coil
JP5841862B2 (en) High temperature superconducting wire and high temperature superconducting coil
WO2011129252A1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
JP2008270307A (en) Superconductive coil and superconductor used for the same
US6194985B1 (en) Oxide-superconducting coil and a method for manufacturing the same
JP5771751B2 (en) High temperature superconducting coil and superconducting equipment
JP2013012645A (en) Oxide superconducting coil and superconducting apparatus
JP2013232297A (en) Oxide superconducting wire
JP2011228479A (en) Superconducting coil
JP2012256744A (en) Superconductive coil
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2013247281A (en) Oxide superconducting coil
WO2011129245A1 (en) Superconducting wire material, superconducting coil, and superconducting protective device
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
JP6349439B1 (en) Superconducting coil
JP6461776B2 (en) Superconducting wire and method of manufacturing superconducting wire
CN110494935A (en) Superconducting wire and superconducting coil
JP6724125B2 (en) Oxide superconducting wire and method for producing the same
JP6318284B1 (en) Superconducting wire
JP6404556B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2013225399A (en) Oxide superconducting wire rod and superconducting coil
JP2020167039A (en) Superconducting coil and method for manufacturing the same
JP2020135988A (en) Oxide superconducting wire and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6214196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees