JP2020135988A - Oxide superconducting wire and method for producing the same - Google Patents

Oxide superconducting wire and method for producing the same Download PDF

Info

Publication number
JP2020135988A
JP2020135988A JP2019025657A JP2019025657A JP2020135988A JP 2020135988 A JP2020135988 A JP 2020135988A JP 2019025657 A JP2019025657 A JP 2019025657A JP 2019025657 A JP2019025657 A JP 2019025657A JP 2020135988 A JP2020135988 A JP 2020135988A
Authority
JP
Japan
Prior art keywords
superconducting
layer
superconducting layer
superconducting wire
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019025657A
Other languages
Japanese (ja)
Inventor
渉 平田
Wataru Hirata
渉 平田
真司 藤田
Shinji Fujita
真司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2019025657A priority Critical patent/JP2020135988A/en
Publication of JP2020135988A publication Critical patent/JP2020135988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide, in an oxide superconducting wire having a superconducting layer with artificial pins introduced, an oxide superconducting wire that can increase the critical current value, and to provide a method for producing the same.SOLUTION: The oxide superconducting wire is an oxide superconducting wire 10 having a superconducting layer 13 laminated on a substrate 11, and in which the superconducting layer 13 contains an artificial pin composed of an RE-Ba-Cu-O system oxide superconductor (RE is a rare earth element) and ABO(A represents Ba, Sr or Ca, and B represents Hf, Zr or Sn), and, in the cross-sectional TEM image of the superconducting layer, the standard deviation σ of the inclination angle of the artificial pin with respect to the thickness direction of the superconducting layer is in the range of 1.65 to 3.59° and the average of the length of the artificial pins is within the range of 41.03 to 45.54 nm.SELECTED DRAWING: Figure 1

Description

本発明は、酸化物超電導線材及びその製造方法に関する。 The present invention relates to an oxide superconducting wire and a method for producing the same.

REBaCu(REは希土類元素)等のRE−Ba−Cu−O系酸化物超電導体を用いた超電導線材の構造として、金属テープなどの基板上に中間層を介し、酸化物超電導層を成膜した構造が採用されている。特に近年では、磁場中の臨界電流値を向上させるために超電導層中に人工ピン材料を導入することが行われている(特許文献1、非特許文献1参照)。 REBa as 2 Cu 3 O x (RE is a rare earth element) structure of REBa-Cu-O based oxide superconductor superconducting wires using such, via an intermediate layer on a substrate such as a metal tape, oxide superconductor A structure in which layers are formed is adopted. Particularly in recent years, in order to improve the critical current value in a magnetic field, an artificial pin material has been introduced into the superconducting layer (see Patent Document 1 and Non-Patent Document 1).

特許第5736522号公報Japanese Patent No. 57366522

Tomo Yoshida, et al., “Yttrium-based Coated Conductors With Artifitial Pinning Centers” Fujikura Technical Review, No.47 November, 2017, p.19-25Tomo Yoshida, et al., “Yttrium-based Coated Conductors With Artifitial Pinning Centers” Fujikura Technical Review, No.47 November, 2017, p.19-25

超電導線材の磁場中における臨界電流値を増加させる方法として、超電導層に人工ピンを添加する方法がある。超電導層に人工ピンを添加する方法の場合は、人工ピンをロッド状に成長させることでピンニングセンターとなり、磁場中の超電導特性を高めることができる。 As a method of increasing the critical current value in the magnetic field of the superconducting wire, there is a method of adding an artificial pin to the superconducting layer. In the case of the method of adding an artificial pin to the superconducting layer, the artificial pin grows in a rod shape to become a pinning center, and the superconducting characteristics in a magnetic field can be enhanced.

本発明は、上記事情に鑑みてなされたものであり、人工ピンが導入された超電導層を有する酸化物超電導線材において、臨界電流値の増加が可能な酸化物超電導線材及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and provides an oxide superconducting wire having an artificial pin-introduced superconducting layer and an oxide superconducting wire capable of increasing the critical current value and a method for producing the same. That is the issue.

本発明の第1態様は、基板に超電導層が積層された酸化物超電導線材であって、前記超電導層が、RE−Ba−Cu−O系酸化物超電導体(REは希土類元素)と、ABO(AはBa、Sr又はCaを表し、BはHf、Zr又はSnを表す。)からなる人工ピンを含み、前記超電導層の断面TEM像において、前記超電導層の厚さ方向に対する前記人工ピンの傾斜角の標準偏差σが、1.65〜3.59°の範囲内であり、前記人工ピンの長さの平均が、41.03〜45.54nmの範囲内であることを特徴とする酸化物超電導線材である。 The first aspect of the present invention is an oxide superconducting wire having a superconducting layer laminated on a substrate, wherein the superconducting layer is a RE-Ba-Cu-O-based oxide superconductor (RE is a rare earth element) and ABO. 3 (A represents Ba, Sr or Ca, B represents Hf, Zr or Sn) includes the artificial pin, and in the cross-sectional TEM image of the superconducting layer, the artificial pin with respect to the thickness direction of the superconducting layer. The standard deviation σ of the inclination angle of is in the range of 1.65 to 3.59 °, and the average length of the artificial pins is in the range of 41.03 to 45.54 nm. It is an oxide superconducting wire.

本発明の第2態様は、基板に超電導層が積層された酸化物超電導線材の製造方法であって、RE−Ba−Cu−O系酸化物超電導体(REは希土類元素)と、ABO(AはBa、Sr又はCaを表し、BはHf、Zr又はSnを表す。)からなる人工ピンを含む前記超電導層を、パルスレーザ蒸着法(PLD法)で成膜する工程を有し、前記超電導層の蒸着速度が23nm/sec未満であることを特徴とする酸化物超電導線材の製造方法である。 A second aspect of the present invention is a method for producing an oxide superconducting wire in which a superconducting layer is laminated on a substrate, wherein a RE-Ba-Cu-O-based oxide superconductor (RE is a rare earth element) and ABO 3 ( A represents Ba, Sr or Ca, and B represents Hf, Zr or Sn). The superconducting layer containing an artificial pin is formed by a pulse laser vapor deposition method (PLD method). This is a method for producing an oxide superconducting wire, characterized in that the vapor deposition rate of the superconducting layer is less than 23 nm / sec.

本発明の第3態様は、前記超電導層の蒸着速度が、5〜14nm/secであることを特徴とする第2態様の酸化物超電導線材の製造方法である。 A third aspect of the present invention is the method for producing an oxide superconducting wire according to a second aspect, wherein the vapor deposition rate of the superconducting layer is 5 to 14 nm / sec.

本発明によれば、所定の態様により人工ピンを含有するため、臨界電流値を増加させることが可能になる。 According to the present invention, since the artificial pin is contained according to a predetermined embodiment, the critical current value can be increased.

酸化物超電導線材の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the oxide superconducting wire. 蒸着速度と臨界電流密度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the deposition rate and the critical current density. 蒸着速度と人工ピンの傾斜角との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the deposition rate and the inclination angle of an artificial pin. 蒸着速度と人工ピンの長さとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the deposition rate and the length of an artificial pin.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。 Hereinafter, the present invention will be described with reference to the drawings based on the preferred embodiments.

図1に本実施形態の酸化物超電導線材を示す。本実施形態の酸化物超電導線材は、基板11に超電導層13が積層された酸化物超電導線材10である。基板11の表面には、超電導層13との間に中間層12を有することが好ましい。基板11、中間層12、超電導層13の各層が積層される方向が厚さ方向である。幅方向は、長手方向及び厚さ方向に垂直な方向である。 FIG. 1 shows the oxide superconducting wire of the present embodiment. The oxide superconducting wire material of the present embodiment is the oxide superconducting wire material 10 in which the superconducting layer 13 is laminated on the substrate 11. It is preferable that the surface of the substrate 11 has an intermediate layer 12 between it and the superconducting layer 13. The direction in which the substrate 11, the intermediate layer 12, and the superconducting layer 13 are laminated is the thickness direction. The width direction is a direction perpendicular to the longitudinal direction and the thickness direction.

基板11は、テープ状の基板(基材)であり、厚さ方向の両側に、それぞれ主面(表面及びこれに対向する裏面)を有する。基板11を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni−W合金などが挙げられる。基板11の厚さは、目的に応じて適宜調整すれば良く、例えば10〜500μmの範囲である。基板11の裏面、側面、またはその両方には、接合性を改善するため、Ag、Cu等の金属薄膜をスパッタ等により形成してもよい。 The substrate 11 is a tape-shaped substrate (base material), and has main surfaces (front surface and back surface facing the same) on both sides in the thickness direction. Specific examples of the metal constituting the substrate 11 include nickel alloys typified by Hastelloy (registered trademark), stainless steel, and oriented NiW alloys in which a texture is introduced into the nickel alloy. The thickness of the substrate 11 may be appropriately adjusted according to the intended purpose, and is, for example, in the range of 10 to 500 μm. A metal thin film such as Ag or Cu may be formed on the back surface, the side surface, or both of the substrate 11 by sputtering or the like in order to improve the bondability.

超電導層13は、例えば一般式REBaCuで表されるRE−Ba−Cu−O系の酸化物超電導体が挙げられる。希土類元素REとしては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。超電導層13の厚さは、例えば0.5〜5μm程度である。超電導層13を積層する方法としては、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、パルスレーザ堆積法(PLD法)、化学気相成長法(CVD法)、有機金属塗布熱分解法(MOD法)等が挙げられる。中でも、生産性等の観点から、PLD法で超電導層13を積層することが好ましい。 Superconducting layer 13, for example, the formula REBa 2 Cu 3 oxide REBa-Cu-O system represented by O x superconductor and the like. Examples of the rare earth element RE include one or more of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Be done. The thickness of the superconducting layer 13 is, for example, about 0.5 to 5 μm. Examples of the method for laminating the superconducting layer 13 include a sputtering method, a vacuum vapor deposition method, a laser vapor deposition method, an electron beam vapor deposition method, a pulse laser deposition method (PLD method), a chemical vapor deposition method (CVD method), and an organic metal coating thermal decomposition method. The method (MOD method) and the like can be mentioned. Above all, from the viewpoint of productivity and the like, it is preferable to stack the superconducting layers 13 by the PLD method.

超電導層13は、ABO(AはBa、Sr又はCaを表し、BはHf、Zr又はSnを表す。)からなる人工ピンを含む。人工ピンを構成する材料(人工ピン材料)の具体例としては、BaHfO、SrHfO、CaHfO、BaZrO、BaSnO等の少なくとも1種、これらの固溶体、又は2種以上の混合物等が挙げられる。人工ピンは、太さより長さが大きいロッド状であることが好ましい。人工ピンの長さとしては、平均が40〜50nmの範囲内であることが好ましい。人工ピンの長さの平均の具体例として、41.03〜45.54nmの範囲内が挙げられる。人工ピンの太さとしては、平均が3〜5nmであることが好ましく、平均が4〜5nmであるとより好ましい。気相法で、基板11に垂直な方向に人工ピンを含む超電導体を堆積させる場合、超電導層は、基板面に垂直なc軸を有する傾向がある。この場合、人工ピンロッドは、超電導体のc軸方向あるいはそれから若干傾斜した方向に成長する傾向がある。 The superconducting layer 13 includes an artificial pin composed of ABO 3 (A represents Ba, Sr or Ca, and B represents Hf, Zr or Sn). Specific examples of the material constituting the artificial pin (artificial pin material) include at least one kind such as BaHfO 3 , SrHfO 3 , CaHfO 3 , BaZrO 3 , BaSnO 3 , a solid solution thereof, or a mixture of two or more kinds. Be done. The artificial pin preferably has a rod shape having a length larger than the thickness. The length of the artificial pin is preferably in the range of 40 to 50 nm on average. Specific examples of the average length of the artificial pins include the range of 41.03 to 45.54 nm. The thickness of the artificial pin is preferably 3 to 5 nm on average, and more preferably 4 to 5 nm on average. When a superconductor containing an artificial pin is deposited in a direction perpendicular to the substrate 11 by the vapor phase method, the superconducting layer tends to have a c-axis perpendicular to the substrate surface. In this case, the artificial pin rod tends to grow in the c-axis direction of the superconductor or in a direction slightly inclined from the c-axis direction.

人工ピンロッドの成長する方向(ロッドの長手方向)がc軸方向に揃う場合、磁場がc軸方向に印加された場合は、特に強いピンニング力を示すため、人工ピンの長手方向は、超電導体のc軸方向に揃っていることが好ましい。人工ピンの長手方向が超電導体のc軸方向から傾斜している場合、c軸方向のピンニング力が弱まる傾向がある。磁場中で高い臨界電流値を得るためには、超電導層13の厚さ方向に対する人工ピンの傾斜角(傾き)の標準偏差σが、1〜5°の範囲内であることが好ましい。傾斜角の標準偏差σの具体例として、1.65〜3.59°の範囲内が挙げられる。 When the growth direction of the artificial pin rod (longitudinal direction of the rod) is aligned in the c-axis direction, and when a magnetic field is applied in the c-axis direction, a particularly strong pinning force is exhibited. Therefore, the longitudinal direction of the artificial pin is the direction of the superconductor. It is preferable that they are aligned in the c-axis direction. When the longitudinal direction of the artificial pin is inclined from the c-axis direction of the superconductor, the pinning force in the c-axis direction tends to be weakened. In order to obtain a high critical current value in a magnetic field, the standard deviation σ of the inclination angle (inclination) of the artificial pin with respect to the thickness direction of the superconducting layer 13 is preferably in the range of 1 to 5 °. Specific examples of the standard deviation σ of the inclination angle include the range of 1.65 to 3.59 °.

本実施形態の酸化物超電導線材は、温度30K、磁場2Tにおける臨界電流密度Jcが9MA/cm以上であることが好ましい。これにより、高い臨界電流を得ることができる。 The oxide superconducting wire of the present embodiment preferably has a critical current density Jc of 9 MA / cm 2 or more at a temperature of 30 K and a magnetic field of 2 T. Thereby, a high critical current can be obtained.

本実施形態の酸化物超電導線材を製造する方法は、上述の酸化物超電導体及び人工ピンを含む超電導層を、パルスレーザ蒸着法(PLD法)で成膜する工程を有することが好ましい。酸化物超電導体及び人工ピンを含む超電導層を成膜する方法としては、超電導材料及び人工ピン材料を含有する混合ターゲットを用いる方法、超電導材料を含有する第1ターゲットと人工ピン材料を含有する第2ターゲットとの2種を用いる方法が挙げられる。超電導材料及び人工ピン材料を含有するターゲットを2種以上用いてもよい。超電導材料を含有する第1ターゲットは、超電導材料より低濃度の人工ピン材料を含有してもよく、あるいは実質的に人工ピン材料を含有しなくてもよい。人工ピン材料を含有する第2ターゲットは、人工ピン材料より低濃度の超電導材料を含有してもよく、あるいは実質的に超電導材料を含有しなくてもよい。組成が異なるターゲットを2種類以上用いる場合は、各ターゲットを並べて一体化してもよく、超電導層を成膜する空間(成膜空間)内で各ターゲットを異なる位置に配置してもよい。ターゲットにおける超電導材料に対する人工ピンの濃度としては、例えば、0.5〜10mol%が挙げられる。ターゲットにおける人工ピン材料の濃度は、超電導層に対する人工ピンの濃度(モル濃度、数濃度)に応じて調整することができる。超電導層13は、ターゲットの超電導材料に由来するRE等の不純物を含んでもよい。 The method for producing the oxide superconducting wire of the present embodiment preferably includes a step of forming a superconducting layer including the above-mentioned oxide superconductor and artificial pins by a pulse laser vapor deposition method (PLD method). As a method for forming a superconducting layer containing an oxide superconductor and an artificial pin, a method using a mixed target containing the superconducting material and the artificial pin material, a first target containing the superconducting material and a first containing the artificial pin material. A method using two types with two targets can be mentioned. Two or more types of targets containing a superconducting material and an artificial pin material may be used. The first target containing the superconducting material may contain an artificial pin material having a lower concentration than the superconducting material, or may substantially not contain the artificial pin material. The second target containing the artificial pin material may contain a superconducting material having a lower concentration than the artificial pin material, or may substantially not contain the superconducting material. When two or more types of targets having different compositions are used, the targets may be arranged side by side and integrated, or the targets may be arranged at different positions in the space for forming the superconducting layer (deposition space). The concentration of the artificial pin with respect to the superconducting material in the target is, for example, 0.5 to 10 mol%. The concentration of the artificial pin material in the target can be adjusted according to the concentration of the artificial pin (molar concentration, several concentration) with respect to the superconducting layer. The superconducting layer 13 may contain impurities such as RE 2 O 3 derived from the target superconducting material.

本実施形態の製造方法では、人工ピンを含有する超電導層13の蒸着速度を遅くすることが好ましい。超電導層13の蒸着速度としては、例えば、23nm/sec未満が好ましく、5〜14nm/secであることがより好ましい。蒸着速度を遅くすることにより、臨界電流値を増加させることができる。 In the manufacturing method of the present embodiment, it is preferable to slow down the vapor deposition rate of the superconducting layer 13 containing the artificial pin. The vapor deposition rate of the superconducting layer 13 is preferably less than 23 nm / sec, more preferably 5 to 14 nm / sec, for example. The critical current value can be increased by slowing the deposition rate.

超電導層13の配向制御の観点からは、金属からなる基板11の表面に中間層12を設け、中間層12上に超電導層13を成膜することが好ましい。中間層12は、多層構成でもよく、例えば基板11側から超電導層13側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。 From the viewpoint of orientation control of the superconducting layer 13, it is preferable to provide the intermediate layer 12 on the surface of the substrate 11 made of metal and to form the superconducting layer 13 on the intermediate layer 12. The intermediate layer 12 may have a multi-layer structure, and may have a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in the order from the substrate 11 side to the superconducting layer 13 side, for example. These layers are not always provided one by one, and some layers may be omitted, or two or more layers of the same type may be repeatedly laminated.

拡散防止層は、基板11の成分の一部が拡散し、不純物として超電導層13側に混入することを抑制する機能を有する。拡散防止層の材質としては、例えば、Si、Al、GZO(GdZr)等が挙げられる。拡散防止層の厚さは、例えば10〜400nmである。 The diffusion prevention layer has a function of suppressing a part of the components of the substrate 11 from diffusing and being mixed into the superconducting layer 13 side as impurities. Examples of the material of the diffusion prevention layer include Si 3 N 4 , Al 2 O 3 , GZO (Gd 2 Zr 2 O 7 ) and the like. The thickness of the diffusion prevention layer is, for example, 10 to 400 nm.

ベッド層は、基板11と超電導層13との界面における反応を低減し、ベッド層の上に形成される層の配向性を向上するために用いられる。ベッド層の材質としては、例えばY、Er、CeO、Dy、Eu、Ho、La等が挙げられる。ベッド層の厚さは、例えば10〜100nmである。 The bed layer is used to reduce the reaction at the interface between the substrate 11 and the superconducting layer 13 and to improve the orientation of the layer formed on the bed layer. Examples of the material of the bed layer include Y 2 O 3 , Er 2 O 3 , CeO 2 , Dy 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , La 2 O 3 and the like. The thickness of the bed layer is, for example, 10 to 100 nm.

配向層は、その上のキャップ層の結晶配向性を制御するために2軸配向する物質から形成される。配向層の材質としては、例えば、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。この配向層はIBAD(Ion-Beam-Assisted Deposition)法で形成することが好ましい。 The alignment layer is formed from a biaxially oriented material to control the crystal orientation of the cap layer above it. The material of the alignment layer is, for example, Gd 2 Zr 2 O 7 , MgO, ZrO 2- Y 2 O 3 (YSZ), SrTIO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Metal oxides such as Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 can be exemplified. This alignment layer is preferably formed by an IBAD (Ion-Beam-Assisted Deposition) method.

キャップ層は、上述の配向層の表面に成膜されて、結晶粒が面内方向に自己配向し得る材料からなる。キャップ層の材質としては、例えば、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等が挙げられる。キャップ層の厚さは、50〜5000nmの範囲が挙げられる。 The cap layer is made of a material that is formed on the surface of the above-mentioned alignment layer and allows crystal grains to self-orient in the in-plane direction. The material of the cap layer, for example, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, YSZ, Ho 2 O 3, Nd 2 O 3, LaMnO 3 , and the like. The thickness of the cap layer is in the range of 50 to 5000 nm.

超電導層13の表面には、保護層を設けることが好ましい。保護層は、事故時に発生する過電流をバイパスしたり、超電導層13と保護層の上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層の材質としては、例えば銀(Ag)、銅(Cu)、金(Au)、金と銀との合金、その他の銀合金、銅合金、金合金などが挙げられる。保護層は、少なくとも超電導層13の表面(厚さ方向で、基板11側に対する反対側の面)を覆っている。さらに保護層は、超電導層13の側面、中間層12の側面、基板11の側面、基板11の裏面から選択される領域の一部または全部を覆ってもよい。 It is preferable to provide a protective layer on the surface of the superconducting layer 13. The protective layer has functions such as bypassing an overcurrent generated at the time of an accident and suppressing a chemical reaction occurring between the superconducting layer 13 and a layer provided on the protective layer. Examples of the material of the protective layer include silver (Ag), copper (Cu), gold (Au), an alloy of gold and silver, other silver alloys, copper alloys, and gold alloys. The protective layer covers at least the surface of the superconducting layer 13 (the surface opposite to the substrate 11 side in the thickness direction). Further, the protective layer may cover a part or all of a region selected from the side surface of the superconducting layer 13, the side surface of the intermediate layer 12, the side surface of the substrate 11, and the back surface of the substrate 11.

超電導線材10は、基板11と超電導層13を含む積層体の周囲に、安定化層を有してもよい。安定化層を形成する領域としては、例えば基板11の裏面、超電導層13の表面、基板11又は超電導層13の側面が挙げられる。超電導線材10が保護層を有する場合は、保護層上に安定化層を設けてもよい。安定化層に用いられる材料は、超電導線材10の用途により異なってもよい。例えば、超電導ケーブルや超電導モータなどに使用する場合は、常電導状態への転移時に発生する過電流を転流させるバイパスのメイン部として機能する必要があるため、良導電性の金属が好適に用いられる。良導電性の金属として、銅、銅合金、アルミニウム、アルミニウム合金等の金属が挙げられる。また、超電導限流器に使用する場合は、常電導状態への転移時に発生する過電流を瞬時に抑制する必要があるため、高抵抗金属が好適に用いられる。高抵抗金属として、例えば、Ni−Cr等のNi系合金などが挙げられる。 The superconducting wire 10 may have a stabilizing layer around the laminate including the substrate 11 and the superconducting layer 13. Examples of the region forming the stabilizing layer include the back surface of the substrate 11, the front surface of the superconducting layer 13, and the side surface of the substrate 11 or the superconducting layer 13. When the superconducting wire 10 has a protective layer, a stabilizing layer may be provided on the protective layer. The material used for the stabilizing layer may differ depending on the use of the superconducting wire material 10. For example, when used in a superconducting cable or a superconducting motor, a metal with good conductivity is preferably used because it needs to function as the main part of the bypass that commutates the overcurrent generated at the time of transition to the normal conducting state. Be done. Examples of the metal having good conductivity include metals such as copper, copper alloy, aluminum, and aluminum alloy. Further, when used in a superconducting current limiter, a high resistance metal is preferably used because it is necessary to instantly suppress the overcurrent generated at the time of transition to the normal conduction state. Examples of the high resistance metal include Ni-based alloys such as Ni—Cr.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the present invention has been described above based on a preferred embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

超電導線材10は、テープ状、ケーブル状、コイル状等、種々の形態で使用することができる。超電導線材10を用いて超電導コイルを作製するには、超電導線材10を巻き枠の外周面に沿って必要な層数巻き付けてコイル形状(多層巻きコイル)とした後、巻き付けた超電導線材10を覆うようにエポキシ樹脂等の樹脂を含浸させて超電導線材10を固定することができる。また、超電導線材10は、外部端子を有することができる。外部端子を有する箇所では、他の箇所と異なる断面構造を有してもよい。 The superconducting wire 10 can be used in various forms such as a tape shape, a cable shape, and a coil shape. In order to manufacture a superconducting coil using the superconducting wire 10, the superconducting wire 10 is wound along the outer peripheral surface of the winding frame in the required number of layers to form a coil shape (multilayer winding coil), and then the wound superconducting wire 10 is covered. As described above, the superconducting wire 10 can be fixed by impregnating a resin such as an epoxy resin. Further, the superconducting wire member 10 can have an external terminal. The portion having the external terminal may have a cross-sectional structure different from that of the other portion.

以下、実施例をもって本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

ハステロイ(登録商標)からなるテープ状の基板にイオンビームスパッタ法等を用いて中間層を形成した。人工ピン材料としてBaHfOを添加したEuBaCuターゲットを使用し、PLD法により超電導層を形成して、超電導線材を作製した。蒸着速度を変更して各々の超電導線材を試作した。 An intermediate layer was formed on a tape-shaped substrate made of Hastelloy (registered trademark) by using an ion beam sputtering method or the like. Using the EuBa 2 Cu 3 O x target in which the addition of BaHfO 3 as an artificial pin material, to form a superconducting layer by a PLD method to produce the superconducting wire. Each superconducting wire was prototyped by changing the vapor deposition rate.

試作した超電導線材について、四端子法で磁場中の臨界電流値を測定した。臨界電流値の測定条件は、温度30K、磁場2Tとした。超電導線材の臨界電流値と超電導層の断面積とから、超電導層の温度30K、磁場2Tにおける臨界電流密度Jcを算出した。図2に、超電導層の蒸着速度と臨界電流密度Jcの関係の一例を示す。蒸着速度が23nm/sec未満の領域では、蒸着速度の低下に伴い、臨界電流密度が単調に増加する傾向がみられた。蒸着速度が5〜14nm/secの範囲内では、臨界電流密度の値が、好適な臨界電流密度の目安となる9MA/cm以上の高い値をとっていることが分かった。蒸着速度が23nm/sec未満の領域では、超電導層に導入される人工ピンロッドがc軸方向に沿って成長し、形状も揃った状態となり易く、ピン止め効果によって臨界電流密度が高くなると考えられる。 For the prototype superconducting wire, the critical current value in the magnetic field was measured by the four-terminal method. The measurement conditions for the critical current value were a temperature of 30 K and a magnetic field of 2 T. From the critical current value of the superconducting wire and the cross-sectional area of the superconducting layer, the critical current density Jc at a temperature of the superconducting layer of 30K and a magnetic field of 2T was calculated. FIG. 2 shows an example of the relationship between the vapor deposition rate of the superconducting layer and the critical current density Jc. In the region where the deposition rate was less than 23 nm / sec, the critical current density tended to increase monotonically as the deposition rate decreased. It was found that the value of the critical current density was as high as 9 MA / cm 2 or more, which is a guideline for a suitable critical current density, when the vapor deposition rate was in the range of 5 to 14 nm / sec. In the region where the vapor deposition rate is less than 23 nm / sec, the artificial pin rod introduced into the superconducting layer grows along the c-axis direction, and the shape tends to be uniform, and it is considered that the critical current density increases due to the pinning effect.

人工ピンの傾斜角及び長さを測定するため、各々の蒸着速度で成膜した超電導層のサンプルについてTEM(透過型電子顕微鏡)を用いた断面観察を実施した。これらの断面TEM画像は、超電導層の厚さ方向に平行な断面を撮影した像である。断面組織観察で確認される人工ピンロッドは、蒸着速度が低いと超電導体の結晶c軸方向に沿って直線状に成長する傾向を示していた。これに対して、蒸着速度が高いと人工ピンロッドの成長方向が結晶c軸方向から傾き、ランダムな向きに成長する傾向を示していた。 In order to measure the inclination angle and length of the artificial pin, a cross-sectional observation using a TEM (transmission electron microscope) was performed on a sample of the superconducting layer formed at each vapor deposition rate. These cross-sectional TEM images are images of cross-sections parallel to the thickness direction of the superconducting layer. The artificial pin rod confirmed by cross-sectional structure observation showed a tendency to grow linearly along the crystal c-axis direction of the superconductor when the deposition rate was low. On the other hand, when the vapor deposition rate was high, the growth direction of the artificial pin rod was inclined from the crystal c-axis direction, showing a tendency to grow in a random direction.

サンプルNo.1〜6の超電導層の厚さ方向に平行な断面をTEM(透過型電子顕微鏡)で観察して、140nm×170nmの領域の超電導層中に出現した人工ピンの傾斜角及び長さを測定した。傾斜角は、超電導層の厚さ方向に対する人工ピンの傾斜角である。長さは、断面に沿った人工ピンの長さである。長さが太さ以下である場合等、人工ピンの長さ方向が断面に沿っていない場合は、傾斜角及び長さの測定対象から除外した。図3に、蒸着速度と人工ピンの傾斜角(c軸方向からの傾き)との関係の一例を示す。図4に、蒸着速度と人工ピンの長さ(ロッド長さ)との関係の一例を示す。これらのグラフでは、蒸着速度が32nm/secと同じサンプル3〜6の結果は、まとめて示した。表1に、各サンプルについて測定した人工ピンの傾斜角の最小値、最大値、平均値及び標準偏差を示す。表2には、人工ピンの長さの最小値、最大値、平均値及び標準偏差を示す。 Sample No. The cross sections parallel to the thickness direction of the superconducting layers 1 to 6 were observed with a TEM (transmission electron microscope), and the inclination angle and length of the artificial pin appearing in the superconducting layer in the region of 140 nm × 170 nm were measured. .. The inclination angle is the inclination angle of the artificial pin with respect to the thickness direction of the superconducting layer. The length is the length of the artificial pin along the cross section. When the length direction of the artificial pin does not follow the cross section, such as when the length is less than the thickness, it was excluded from the measurement targets of the inclination angle and the length. FIG. 3 shows an example of the relationship between the vapor deposition rate and the inclination angle of the artificial pin (inclination from the c-axis direction). FIG. 4 shows an example of the relationship between the vapor deposition rate and the length of the artificial pin (rod length). In these graphs, the results of Samples 3-6 with the same deposition rate of 32 nm / sec are shown together. Table 1 shows the minimum value, maximum value, average value, and standard deviation of the inclination angle of the artificial pin measured for each sample. Table 2 shows the minimum value, maximum value, average value, and standard deviation of the length of the artificial pin.

Figure 2020135988
Figure 2020135988

Figure 2020135988
Figure 2020135988

10…酸化物超電導線材、11…基板、12…中間層、13…超電導層。 10 ... Oxide superconducting wire, 11 ... Substrate, 12 ... Intermediate layer, 13 ... Superconducting layer.

Claims (3)

基板に超電導層が積層された酸化物超電導線材であって、
前記超電導層が、RE−Ba−Cu−O系酸化物超電導体(REは希土類元素)と、ABO(AはBa、Sr又はCaを表し、BはHf、Zr又はSnを表す。)からなる人工ピンを含み、
前記超電導層の断面TEM像において、前記超電導層の厚さ方向に対する前記人工ピンの傾斜角の標準偏差σが、1.65〜3.59°の範囲内であり、前記人工ピンの長さの平均が、41.03〜45.54nmの範囲内であることを特徴とする酸化物超電導線材。
An oxide superconducting wire with a superconducting layer laminated on a substrate.
The superconducting layer is derived from RE-Ba-Cu-O oxide superconductor (RE is a rare earth element) and ABO 3 (A represents Ba, Sr or Ca, and B represents Hf, Zr or Sn). Including artificial pins
In the cross-sectional TEM image of the superconducting layer, the standard deviation σ of the inclination angle of the artificial pin with respect to the thickness direction of the superconducting layer is within the range of 1.65 to 3.59 °, and the length of the artificial pin is An oxide superconducting wire having an average in the range of 41.03 to 45.54 nm.
基板に超電導層が積層された酸化物超電導線材の製造方法であって、
RE−Ba−Cu−O系酸化物超電導体(REは希土類元素)と、ABO(AはBa、Sr又はCaを表し、BはHf、Zr又はSnを表す。)からなる人工ピンを含む前記超電導層を、パルスレーザ蒸着法(PLD法)で成膜する工程を有し、
前記超電導層の蒸着速度が23nm/sec未満であることを特徴とする酸化物超電導線材の製造方法。
A method for manufacturing an oxide superconducting wire in which a superconducting layer is laminated on a substrate.
Includes an artificial pin consisting of a RE-Ba-Cu-O oxide superconductor (RE is a rare earth element) and ABO 3 (A represents Ba, Sr or Ca, and B represents Hf, Zr or Sn). The superconducting layer has a step of forming a film by a pulsed laser vapor deposition method (PLD method).
A method for producing an oxide superconducting wire, wherein the vapor deposition rate of the superconducting layer is less than 23 nm / sec.
前記超電導層の蒸着速度が、5〜14nm/secであることを特徴とする請求項2に記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 2, wherein the vapor deposition rate of the superconducting layer is 5 to 14 nm / sec.
JP2019025657A 2019-02-15 2019-02-15 Oxide superconducting wire and method for producing the same Pending JP2020135988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025657A JP2020135988A (en) 2019-02-15 2019-02-15 Oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025657A JP2020135988A (en) 2019-02-15 2019-02-15 Oxide superconducting wire and method for producing the same

Publications (1)

Publication Number Publication Date
JP2020135988A true JP2020135988A (en) 2020-08-31

Family

ID=72279007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025657A Pending JP2020135988A (en) 2019-02-15 2019-02-15 Oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP2020135988A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉田 朋 ほか: "人工ピン入りイットリウム系超電導線材", フジクラ技報, vol. 第130号, JPN6022037362, 2017, JP, pages 22 - 28, ISSN: 0004999937 *

Similar Documents

Publication Publication Date Title
RU2414769C2 (en) Superconducting wire
JP2007188756A (en) Rare earth based tape shape oxide superconductor
EP2284918A1 (en) High temperature superconductor, in particular improved coated conductor
WO2013002372A1 (en) Re-123 superconducting wire and method for manufacturing same
JP6104757B2 (en) Oxide superconducting wire and method for producing the same
WO2020196035A1 (en) Oxide superconducting wire
JP6788152B1 (en) Oxide superconducting wire and its manufacturing method
US8912126B2 (en) Substrate, method of producing substrate, superconducting wire, and method of producing superconducting wire
JP5694866B2 (en) Superconducting wire
JP2020135988A (en) Oxide superconducting wire and method for producing the same
JP5736522B2 (en) RE123-based superconducting wire and method for producing the same
JP6461776B2 (en) Superconducting wire and method of manufacturing superconducting wire
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP6743232B1 (en) Oxide superconducting wire
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
JP2016143516A (en) Oxide superconducting wire and manufacturing method therefor
JP6262304B2 (en) Manufacturing method of oxide superconducting wire
JP6652447B2 (en) Method for producing superconducting wire and method for producing superconducting coil
JP6404556B2 (en) Oxide superconducting conductor and manufacturing method thereof
CN108140457A (en) Oxide superconducting wire rod
JP2023121990A (en) Oxide superconducting laminated body, oxide superconducting wire material, and connection structure
JP5986871B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2019125436A (en) Oxide superconducting wire
JP2022168627A (en) Oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230228