JP3033669B2 - Superconducting cable and superconducting coil - Google Patents

Superconducting cable and superconducting coil

Info

Publication number
JP3033669B2
JP3033669B2 JP6307842A JP30784294A JP3033669B2 JP 3033669 B2 JP3033669 B2 JP 3033669B2 JP 6307842 A JP6307842 A JP 6307842A JP 30784294 A JP30784294 A JP 30784294A JP 3033669 B2 JP3033669 B2 JP 3033669B2
Authority
JP
Japan
Prior art keywords
superconducting
wire
wires
coil
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6307842A
Other languages
Japanese (ja)
Other versions
JPH07235227A (en
Inventor
亮 高木
至 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP6307842A priority Critical patent/JP3033669B2/en
Publication of JPH07235227A publication Critical patent/JPH07235227A/en
Application granted granted Critical
Publication of JP3033669B2 publication Critical patent/JP3033669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導マグネット等に用
いる超電導ケーブルおよび、これらが卷回されてなる超
電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting cable used for a superconducting magnet or the like and a superconducting coil formed by winding these cables.

【0002】[0002]

【従来の技術】超電導導体により形成された超電導コイ
ルは、近年素粒子実験用の加速器やその他各種測定器等
に使用されることが増加しつつある。また実験用発電機
やヴィグラーマグネット等にも、超電導コイルの使用が
検討されている。通常、超電導導体としてはモノリス導
体の他、撚線形態の集合導体が使われる。超電導体とし
てはNbTi系等の金属超電導体、Nb3 Sn系等の化
合物超電導体の他、Y系、Bi系等の酸化物系の超電導
体があるが、特に酸化物系超電導線等、加工性が悪い超
電導体を用いた超電導線の場合、集合導体として撚線形
態に加工することが難しい。
2. Description of the Related Art A superconducting coil formed of a superconducting conductor has been increasingly used in accelerators for elementary particle experiments and various other measuring instruments in recent years. Also, the use of superconducting coils in experimental generators, bigger magnets, and the like is being studied. Usually, as a superconducting conductor, a collective conductor in the form of a stranded wire is used in addition to a monolithic conductor. Metal superconductors NbTi system such as superconductors, other compounds superconductor Nb 3 Sn system, etc., Y system, there is a superconductor oxide of Bi system and the like, in particular an oxide superconducting wire or the like, processed In the case of a superconducting wire using a superconductor having poor properties, it is difficult to process the conductor into a stranded form as a collective conductor.

【0003】超電導コイルを組み立てるには、通常、モ
ノリス導体である超電導線を所定のコイル状に卷回する
方法の他、集合導体である超電導撚線を卷回する方法が
採用されている。絶縁体としては例えばセミキュア樹脂
を含ませた絶縁テープ等を用い、これをモノリス導体若
しくは超電導撚線の外周に巻き、コイル状に卷回後、成
形加熱して硬化させることが多い。この方法は主にNb
Ti等の金属超電導線でコイルを組み立てる際に適用さ
れる。Nb3 Sn等化合物超電導線の場合は化合物が脆
いので、通常はコイル状に組み立てた後に化合物を生成
させる熱処理を施す。この熱処理は概ね600℃程度か
それ以上の高温で行うので、Nb3 Sn等化合物超電導
線でコイルを組み立てる場合は、上記絶縁テープに換え
ガラスクロス等の絶縁材を用い、コイル状に卷回後、当
該超電導コイルにセミキュア樹脂を含浸させ成形加熱し
てこれを硬化させることが多い。いずれの場合も生成加
熱してセミキュア樹脂等を硬化させるのは、組み立てた
超電導コイルの形状を保持すると共に超電導線の線占積
率を向上させ、更には超電導線のワイヤムーブメントの
抑制をすることが目的である。
In order to assemble a superconducting coil, a method of winding a superconducting wire, which is a monolithic conductor, into a predetermined coil shape and a method of winding a superconducting twisted wire, which is a collective conductor, are usually employed. As the insulator, for example, an insulating tape or the like containing a semi-cured resin is used, wound around the periphery of a monolithic conductor or a superconducting twisted wire, wound in a coil shape, and then molded, heated and cured in many cases. This method mainly uses Nb
It is applied when assembling a coil with a metal superconducting wire such as Ti. In the case of a compound superconducting wire such as Nb 3 Sn, the compound is brittle, so that a heat treatment for generating the compound is usually performed after assembling into a coil shape. Since this heat treatment is performed at a high temperature of about 600 ° C. or more, when assembling a coil with a compound superconducting wire such as Nb 3 Sn, use an insulating material such as glass cloth instead of the above-mentioned insulating tape, and wind the coil. In many cases, the superconducting coil is impregnated with a semi-cured resin, molded, heated and cured. In any case, the reason for generating and heating to cure the semi-cured resin is to maintain the shape of the assembled superconducting coil, improve the line space factor of the superconducting wire, and further suppress the wire movement of the superconducting wire. Is the purpose.

【0004】ところで絶縁テープ等を巻いた超電導撚線
を卷回して超電導コイルを組み立てる方法は、モノリス
導体を卷回する場合より卷回数が少なくて済み、従って
超電導コイルの組み立て工程上有利である。またモノリ
ス導体を用いて超電導コイルを組み立てるには、所定の
巻き数が得られる程度に長尺な導体を用意する必要があ
るが、集合導体を用いる場合は、超電導撚線を構成する
各々の超電導線の長さが比較的短くてもよいので、モノ
リス導体では達成しにくい長尺・大電流効果が工業的に
得られる利点がある。このような理由により超電導コイ
ルの組み立てには集合導体が多用されている。
By the way, a method of assembling a superconducting coil by winding a superconducting stranded wire wound with an insulating tape or the like requires a smaller number of turns than a case of winding a monolithic conductor, and is therefore advantageous in assembling the superconducting coil. Also, in order to assemble a superconducting coil using a monolithic conductor, it is necessary to prepare a conductor that is long enough to obtain a predetermined number of turns, but when using a collective conductor, each superconducting twisted wire Since the length of the wire may be relatively short, there is an advantage that a long and large current effect that is difficult to achieve with a monolithic conductor can be obtained industrially. For these reasons, collective conductors are frequently used in assembling superconducting coils.

【0005】前述の超電導撚線等の外周に巻く絶縁体と
しては、例えばカプトンやガラスクロスのテープ(厚さ
は25〜100μm程度が普通)にセミキュア樹脂を塗
布、含浸させたものが使用される場合が多い。また絶縁
体の巻き付け方としては、ラップ巻き、ハーフラップ巻
き、ギャップ巻き、或いはこれらの組み合わせ等が適用
される。ギャップ巻きは冷媒通路を得るために敢えてギ
ャップを持たせる巻き方である。
As the insulator wound around the outer periphery of the above-mentioned superconducting twisted wire, for example, a tape of Kapton or glass cloth (thickness is usually about 25 to 100 μm) coated with a semi-cured resin and impregnated is used. Often. As the method of winding the insulator, wrap winding, half wrap winding, gap winding, a combination thereof, or the like is applied. Gap winding is a winding method in which a gap is intentionally provided to obtain a refrigerant passage.

【0006】ここでワイヤムーブメントについて若干の
説明を加えておく。超電導コイルはその使用中に強力な
磁場を発生し、コイルを形成する超電導線には強力なロ
ーレンツ力が作用する。また電動機や発電機の回転子に
超電導コイルを用いた場合は、その回転による遠心力も
作用する。このような電磁力や慣性力が超電導線の微小
なずれを引き起こすことが知られており、ワイヤムーブ
メントと呼ばれている。このようなワイヤムーブメント
は通常微小なものと思われるものの、それが原因で超電
導コイルの通電安定性が阻害されたり、超電導線の安定
性が悪くなったりすることがある。具体的には、超電導
コイル運転中の超電導線のずれ移動は、たとえそれが小
さな移動であっても、超電導体内に存在する磁界が急激
に変動し、その磁界が発生磁界を乱したり、また電界を
励起して通電電流を乱したりするからである。そしてそ
の結果、超電導体の中で固定されていた磁束が移動し
(フラックスフローと称される)たりして、超電導線の
安定性が阻害されるのである。また、超電導線の急激な
ずれ移動は、その摩擦によって熱も発生し、そのため部
分的に臨界温度を越える可能性があり、最悪の場合、ク
エンチに至ることもあるのである。
Here, a brief description of the wire movement will be given. The superconducting coil generates a strong magnetic field during its use, and a strong Lorentz force acts on the superconducting wire forming the coil. When a superconducting coil is used for a rotor of a motor or a generator, centrifugal force due to its rotation also acts. It is known that such an electromagnetic force or inertial force causes a slight displacement of a superconducting wire, and is called a wire movement. Although such a wire movement is usually considered to be minute, it may impair the conduction stability of the superconducting coil or deteriorate the stability of the superconducting wire. Specifically, the displacement movement of the superconducting wire during the operation of the superconducting coil, even if it is a small movement, the magnetic field existing in the superconductor fluctuates rapidly, and the magnetic field disturbs the generated magnetic field, or This is because the electric field is excited to disturb the current. As a result, the magnetic flux fixed in the superconductor moves (referred to as flux flow), and the stability of the superconducting wire is impaired. Also, the sudden displacement of the superconducting wire generates heat due to its friction, which may partially exceed the critical temperature, and in the worst case may lead to quench.

【0007】[0007]

【発明が解決しようとする課題】上述したように、超電
導撚線(集合導体)を用いて超電導コイルを組み立てれ
ば、モノリス導体では達成しにくい長尺・大電流効果が
工業的に得られる利点がある。集合導体の場合、当然モ
ノリス導体の場合より電流容量が大きくなる。しかし例
えば7本の超電導線からなる集合導体の場合、1本1本
の超電導線には供給電流の7分の1程度の電流が流れる
ことになる(直流の場合)。換言すれば、集合導体を卷
回して組み立てた超電導コイルに通電するには、その端
部に当該集合導体を構成する超電導線の本数分の電流を
供給しなければならないのである。
As described above, if a superconducting coil is assembled using a superconducting twisted wire (collective conductor), there is an advantage that a long and large current effect that is difficult to achieve with a monolithic conductor can be industrially obtained. is there. In the case of the collective conductor, the current capacity is naturally larger than that of the monolith conductor. However, for example, in the case of a collective conductor composed of seven superconducting wires, a current of about 1/7 of the supplied current flows through each superconducting wire (in the case of direct current). In other words, in order to energize the superconducting coil assembled by winding the collective conductor, a current corresponding to the number of superconducting wires constituting the collective conductor must be supplied to the end.

【0008】一方、モノリス導体を卷回して組み立てた
超電導コイルに通電するには、その端部の1本の超電導
線に通電する分の電流供給でよい。この際、電流が流れ
るループは集合導体を用いた場合より長くなるが、超電
導線の場合、理想的には電気抵抗による電流減衰の問題
はない。従って、通電に際し供給電流が少なくて済み、
また電源設備もより小型なもので済むので運転コストや
設備費の観点で有利である。
On the other hand, in order to energize the superconducting coil assembled by winding the monolithic conductor, it is sufficient to supply a current for energizing one superconducting wire at the end. At this time, the loop through which the current flows becomes longer than when the collective conductor is used. However, in the case of a superconducting wire, there is no problem of current decay due to electric resistance ideally. Therefore, the supply current is small when energizing,
In addition, since the power supply equipment can be smaller, it is advantageous in terms of operation costs and equipment costs.

【0009】以上の理由により、集合導体を卷回して組
み立てた超電導コイルは、モノリス導体を用いる場合に
比べ、長尺・大電流効果が工業的に得られる利点および
コイルの組み立て工程数が少ない利点があるものの、運
転コストや設備費の観点で不利であった。そこで超電導
撚線等の集合導体を用いながらも、少ない電流供給で通
電できる方法として、超電導撚線を形成する各々の超電
導線(ストランド)を絶縁して、各々の超電導線に流れ
る電流の方向が一致するように直列に接続して通電する
方法が考えられる。この方法であれば、各々の超電導線
の接続抵抗分の電流減衰は避けられないものの、理想的
には、超電導撚線を形成する超電導線の本数分の電流を
供給すればよいからである。しかしながら、超電導撚線
または超電導成形撚線を製造する際、加工前に各超電導
線が絶縁されていても、撚線加工中に受ける圧縮力やせ
ん断力等により絶縁被覆層が部分的に破れてしまうこと
が多い。圧縮成形加工を受ける成形撚線の場合はなお更
である。このように絶縁被覆層が例え部分的であっても
破れると、直列に接続した超電導線同士が短絡し、所定
の電流が流れなくなる、という問題が発生する。従って
超電導撚線を用いたコイルの場合、通電に際し供給電流
が多く必要となる等、運転コストや設備費の観点で不利
であった。
For the above reasons, a superconducting coil assembled by winding a collective conductor is advantageous in that a long and large current effect can be obtained industrially and that the number of coil assembling steps is smaller than when a monolith conductor is used. However, it is disadvantageous in terms of operating costs and equipment costs. Therefore, as a method of supplying electricity with a small amount of current while using a collective conductor such as a superconducting stranded wire, the direction of the current flowing through each superconducting wire is insulated by insulating each superconducting wire (strand) forming the superconducting stranded wire. A method of energizing by connecting in series so as to match each other is conceivable. According to this method, although current decay corresponding to the connection resistance of each superconducting wire cannot be avoided, ideally, a current corresponding to the number of superconducting wires forming the superconducting twisted wire may be supplied. However, when manufacturing a superconducting stranded wire or a superconducting molded stranded wire, even if each superconducting wire is insulated before processing, the insulating coating layer is partially broken due to compressive force or shear force received during stranded wire processing. It often happens. Even more so in the case of molded stranded wires undergoing compression molding. If the insulating coating layer is broken, even if it is partial, the superconducting wires connected in series will be short-circuited, causing a problem that a predetermined current will not flow. Therefore, in the case of a coil using a superconducting stranded wire, a large amount of supply current is required for energization, and this is disadvantageous in terms of operating costs and equipment costs.

【0010】そこで集合導体である超電導ケーブルを用
いて超電導コイルを組み立てた場合であって、モノリス
導体を用いて組み立てた超電導コイルの場合と同様、少
ない電流供給で通電を行う場合については、当該集合導
体を構成する各々の超電導線の絶縁被覆が確実であるこ
とが望まれていた。
Therefore, in the case where a superconducting coil is assembled using a superconducting cable which is a collective conductor, and in the case where current is supplied with a small amount of current supply as in the case of a superconducting coil assembled using a monolithic conductor, such a superconducting coil is used. It has been desired that the insulating coating of each superconducting wire constituting the conductor is reliable.

【0011】また集合導体である超電導ケーブルを用い
て超電導コイルを組み立てた場合であって、モノリス導
体を用いて組み立てた超電導コイルの場合と同様の少な
い電流供給で通電を行う必要がない場合であっても、従
来の超電導ケーブルには次のような問題があった。例え
ば酸化物系の超電導線等、加工性が極めて悪い超電導線
の場合、撚線加工が困難であるため撚線形態の集合導体
を用いることが実用的に難しい、という問題である。
[0011] Further, in the case where a superconducting coil is assembled using a superconducting cable which is a collective conductor, there is no need to supply electricity with a small current supply as in the case of a superconducting coil assembled using a monolithic conductor. However, the conventional superconducting cable has the following problems. For example, in the case of a superconducting wire having extremely poor workability, such as an oxide-based superconducting wire, it is practically difficult to use a collective conductor in the form of a stranded wire because the stranded wire is difficult to process.

【0012】また交流用途に使用する場合、超電導撚線
を構成する超電導線(ストランド)間の結合損失(交流
損失の一つ)を低減することを目的として、ストランド
にCrめっき層を形成したり、表面を酸化させたりする
ことがある。しかしこうして形成した高抵抗層は、撚線
加工の際、せん断力等を受けて部分的に破れてしまうと
いう問題である。こうなると結合損失の低減が不十分に
なってしまう。そこで撚線加工が困難である超電導線に
好適に適用可能である超電導ケーブルが望まれ、また当
該超電導ケーブルを構成する各々の超電導線の外周に結
合損失の低減を目的する高抵抗層を形成した場合にあっ
ては、その高抵抗層の損傷が少なく、効果的に結合損失
を低減させることが可能な超電導ケーブルが望まれてい
た。
When used in an AC application, a Cr plating layer is formed on the strand for the purpose of reducing the coupling loss (one of the AC losses) between the superconducting wires (strands) constituting the superconducting stranded wire. May oxidize the surface. However, there is a problem that the thus formed high resistance layer is partially broken by a shearing force or the like during the stranded wire processing. In this case, the reduction of the coupling loss becomes insufficient. Therefore, a superconducting cable which can be suitably applied to a superconducting wire in which stranded wire processing is difficult is desired, and a high resistance layer for reducing coupling loss is formed on the outer periphery of each superconducting wire constituting the superconducting cable. In such a case, there has been a demand for a superconducting cable capable of reducing the damage of the high resistance layer and effectively reducing the coupling loss.

【0013】[0013]

【課題を解決するための手段】本発明は上述のような問
題に鑑みてなされたものである。即ちこの発明による第
1の超電導ケーブルは、複数本の超電導線が平行に配列
され、細線が横添えされて一体化された超電導ケーブル
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. That is, the first superconducting cable according to the present invention is a superconducting cable in which a plurality of superconducting wires are arranged in parallel, and thin wires are laterally added and integrated.

【0014】またこの発明による第2の超電導ケーブル
は、絶縁被覆された複数本の超電導線が平行に配列さ
れ、細線が横添えされて一体化された超電導ケーブルで
ある。
A second superconducting cable according to the present invention is a superconducting cable in which a plurality of superconducting wires coated with insulation are arranged in parallel, and thin wires are laterally added and integrated.

【0015】更に本発明の第3の超電導ケーブルとし
て、断面形状の異なる少なくとも2種以上の超電導線が
略くさび型形状に平行配列され、細線が横添えされて一
体化された超電導ケーブルを提供する。
Furthermore, as a third superconducting cable of the present invention, there is provided a superconducting cable in which at least two or more superconducting wires having different cross-sectional shapes are arranged in parallel in a substantially wedge shape, and thin wires are laterally added and integrated. .

【0016】本発明の超電導ケーブルを用いた本発明の
第1の超電導コイルとして、上記本発明の第1乃至第3
の何れかの超電導ケーブルであって、前記細線がセミキ
ュア線である超電導ケーブルを用いて、これを所定形状
に卷回した後、前記セミキュア線のキュア温度以上に加
熱することで硬化させてなる超電導コイルを提供する。
また本発明の第2の超電導コイルとして、上記本発明の
第1乃至第3の超電導ケーブルが所定形状に卷回された
後、加熱して当該超電導ケーブルに巻かれた絶縁材を硬
化させてなる超電導コイルを提供する。
The first to third superconducting coils of the present invention using the superconducting cable of the present invention are the first to third coils of the present invention.
The superconducting cable according to any one of the above, wherein the thin wire is a semi-cured wire, and after winding it into a predetermined shape, the super-conducting wire is cured by heating to a temperature equal to or higher than the curing temperature of the semi-cured wire. Provide coils.
Further, as the second superconducting coil of the present invention, the first to third superconducting cables of the present invention are wound into a predetermined shape, and then heated to cure the insulating material wound around the superconducting cable. Provide a superconducting coil.

【0017】[0017]

【作用】この発明による第1の超電導ケーブルは、複数
本の超電導線が平行に配列され、細線が横添えされて一
体化されることで、撚線加工等が施されることなく形成
された集合導体である。従って酸化物系等、撚線加工が
困難である超電導線に好適に適用可能であるが、金属超
電導線にも好適に適用できることはもちろんである。ま
た結合損失の低減を目的する高抵抗層を超電導線の外周
に設けた場合は、その高抵抗層の損傷が少ないので、効
果的に結合損失を低減させることができる。またこの発
明による第2、第3の超電導ケーブルは当該超電導ケー
ブルを形成する各々の超電導線が絶縁されている。その
絶縁方法は常法に従えばよい。例えばポリビニルホルマ
ール、ポリアミドイミド、ポリエステル、ポリエステル
イミド等、通常の有機絶縁被覆層を焼き付け塗装する方
法の他、これらの樹脂テープを超電導線に巻き付ける方
法等が採用できる。その厚さはあまり薄いと破れやすい
ので、厚さ5μm以上あることが望ましい。
In the first superconducting cable according to the present invention, a plurality of superconducting wires are arranged in parallel, and thin wires are laterally added and integrated, so that the first superconducting cable is formed without being subjected to stranded wire processing or the like. It is a collective conductor. Therefore, the present invention can be suitably applied to superconducting wires, such as oxide-based ones, for which stranded wire processing is difficult, but can of course be suitably applied to metal superconducting wires. Further, when a high resistance layer for the purpose of reducing the coupling loss is provided on the outer periphery of the superconducting wire, the damage of the high resistance layer is small, so that the coupling loss can be effectively reduced. Further, in the second and third superconducting cables according to the present invention, each superconducting wire forming the superconducting cable is insulated. The insulating method may follow a conventional method. For example, besides a method of baking and coating a usual organic insulating coating layer such as polyvinyl formal, polyamide imide, polyester and polyester imide, a method of winding these resin tapes around a superconducting wire can be adopted. If the thickness is too small, it is easy to be broken. Therefore, it is preferable that the thickness is 5 μm or more.

【0018】この発明による第2の超電導ケーブルによ
れば、図1に示すように超電導線10の外周に絶縁被覆
層20が形成された絶縁被覆超電導線30が複数平行に
配列され、細線40が横添えされて一体化されているこ
とで、各々の絶縁被覆超電導線30が相互に拘束され、
超電導コイルを組み立てる際、集合導体として卷回する
ことが可能になる。また細線40がセミキュア線である
場合は、所定形状に卷回した後にキュア温度以上に加熱
することにより硬化させることで各々の超電導線10の
拘束がより強固になるので、ワイアムーブメント等が抑
制される効果もある。なお図1では見やすいように、細
線40の本数を少な目に描いてある。また図1の超電導
ケーブル50は、7本の絶縁被覆超電導線30が配列さ
れた例であるが、この本数はもちろん任意である。
According to the second superconducting cable according to the present invention, as shown in FIG. 1, a plurality of insulating coated superconducting wires 30 each having an insulating coating layer 20 formed on the outer periphery of the superconducting wire 10 are arranged in parallel. By being laterally attached and integrated, the respective insulating-coated superconducting wires 30 are mutually restrained,
When a superconducting coil is assembled, it can be wound as a collective conductor. When the fine wire 40 is a semi-cured wire, the wire is wound into a predetermined shape and then cured by heating to a temperature equal to or higher than the curing temperature, so that the restraint of each superconducting wire 10 is further strengthened. There is also an effect. In FIG. 1, the number of the thin lines 40 is drawn in a small number for easy viewing. Further, the superconducting cable 50 in FIG. 1 is an example in which seven insulating superconducting wires 30 are arranged, but the number is of course arbitrary.

【0019】また上記第2の超電導ケーブルの外周には
絶縁材を巻くことが望ましい。絶縁材を巻くことで卷回
後の成形加熱により、当該コイルの形状保持と、絶縁被
覆超電導線30のワイヤムーブメントの抑制がより確実
になるからである。また絶縁材を巻くことで配列された
超電導線が崩れにくくなるので超電導コイルの組み立て
工程がより容易になることも期待できる。
Preferably, an insulating material is wound around the outer periphery of the second superconducting cable. This is because, by winding the insulating material, the shape and the shape of the coil and the suppression of the wire movement of the insulated superconducting wire 30 can be more reliably achieved by the forming and heating after the winding. In addition, since the superconducting wires arranged are less likely to collapse by winding the insulating material, it can be expected that the assembly process of the superconducting coil is further facilitated.

【0020】ところで上記第2の超電導ケーブルの外周
に絶縁材を巻いてからコイルを組み立てる場合は、配列
された超電導線の固定には主に絶縁材が寄与するので、
細線による固定は簡略に済ませても構わない。この場合
は、細線は絶縁材が巻かれるまでの仮止めの役割をも兼
ねる訳であるが、隣接する超電導線同士の間に添えられ
る細線が超電導線の拘束の役目を失う訳ではない。
When the coil is assembled after the insulating material is wound around the outer periphery of the second superconducting cable, the insulating material mainly contributes to fixing the arranged superconducting wires.
The fixing by the thin line may be simplified. In this case, the thin wire also serves as a temporary fixing until the insulating material is wound, but the thin wire attached between adjacent superconducting wires does not lose the role of restraining the superconducting wires.

【0021】図1に示す超電導ケーブル50は、断面丸
形の超電導線10を用いた場合であるが、その他、例え
ば図2に示すように断面矩形の超電導線11を用いても
よい。また図1、2では絶縁被覆超電導線30、31が
1列に配列された例が示されているが、図3、4に示す
ように絶縁被覆超電導線33を複数列に配列してもよ
い。
Although the superconducting cable 50 shown in FIG. 1 uses the superconducting wire 10 having a round cross section, the superconducting wire 11 having a rectangular cross section as shown in FIG. 2 may be used. Although FIGS. 1 and 2 show an example in which the insulated superconducting wires 30 and 31 are arranged in one row, the insulated superconducting wires 33 may be arranged in a plurality of rows as shown in FIGS. .

【0022】この発明による第3の超電導ケーブルは、
断面形状の異なる少なくとも2種以上の超電導線を、略
くさび型形状に平行配列し、細線を横添えして一体化し
たものである。図5には、半径の異なる5種類の超電導
線14a、14b、14c、14d、14eを用い、絶
縁後、その大きさ順に配列した例が示されている。この
ように大きさ順に配列すれば、超電導ケーブル54の略
断面形状は、略扇形のくさび型形状になる。なお配列す
る超電導線の断面形状や本数は任意であり、また配列は
1列でも複数列でもよい。
The third superconducting cable according to the present invention comprises:
At least two or more types of superconducting wires having different cross-sectional shapes are arranged in parallel in a substantially wedge-shaped shape, and thin wires are laterally added to be integrated. FIG. 5 shows an example in which five types of superconducting wires 14a, 14b, 14c, 14d, and 14e having different radii are used and arranged in the order of their sizes after insulation. By arranging the superconducting cables 54 in such a size order, the approximate cross-sectional shape of the superconducting cable 54 becomes a substantially fan-shaped wedge shape. The cross-sectional shape and the number of superconducting wires to be arranged are arbitrary, and the arrangement may be one or more.

【0023】この第3の超電導ケーブルはその断面の形
状が略くさび型であるので、線密度高くコイルを組み立
てることが可能になる。特に粒子加速器用超電導コイル
等、高い巻線密度と高い巻き精度が要求され、かつ運転
時に発生する電磁力等による巻線変位の防止が要求され
る場合には、断面略形状の上記第3の超電導ケーブルが
好適に用いられる。この第3の超電導ケーブルの場合、
各々の超電導線の臨界電流密度をほぼ揃えておくことが
望ましい。
Since the third superconducting cable has a substantially wedge-shaped cross section, it is possible to assemble a coil with a high linear density. In particular, when a high winding density and high winding accuracy are required, such as a superconducting coil for a particle accelerator, and prevention of winding displacement due to electromagnetic force or the like generated during operation is required, the third section having a substantially cross-sectional shape is used. Superconducting cables are preferably used. In the case of this third superconducting cable,
It is desirable that the critical current densities of the respective superconducting wires are substantially equalized.

【0024】またこの第3の超電導ケーブルも、上述し
た第2の超電導ケーブルの場合同様、外周に絶縁材を巻
いてもよい。この絶縁材により各々の超電導線の拘束が
より強固になる等の効果があることは第2の超電導ケー
ブルの場合と同様である。また上述の第2の超電導ケー
ブルの場合と同様、超電導ケーブルの外周に絶縁材を巻
いて用いる場合は、配列された超電導線の固定には主に
絶縁材が寄与するので、細線による固定は簡略に済ませ
ても構わない。この場合は、細線は絶縁材が巻かれるま
での仮止めの役割をも兼ねる訳であるが、隣接する超電
導線同士の間に添えられる細線が超電導線の拘束の役目
を失う訳ではないことも、第2の超電導ケーブルの場合
と同様である。
Also, the third superconducting cable may have an insulating material wound around the outer periphery, as in the case of the above-described second superconducting cable. This insulating material has the effect of strengthening the restraint of each superconducting wire, as in the case of the second superconducting cable. Also, as in the case of the above-described second superconducting cable, when the insulating material is wound around the outer periphery of the superconducting cable, the insulating material mainly contributes to the fixing of the arranged superconducting wires. You can do it. In this case, the thin wire also serves as a temporary fixing until the insulating material is wound, but the thin wire attached between adjacent superconducting wires does not necessarily lose the role of restraining the superconducting wire. , And the second superconducting cable.

【0025】次に本発明において用いられる細線につい
て説明する。使用できる細線としては、配列された絶縁
被覆超電導線が相互に拘束できれば特に限定はされな
い。例えばポリアミド、ポリエステル、ポリプロピレ
ン、ポリ塩化ビニル、セミキュアエポキシ樹脂等の有機
樹脂糸の他、木綿糸や麻糸等の天然繊維、スチール線等
の金属繊維、アルミナ繊維、ガラス繊維やSiC繊維等
の無機繊維等が使用できる。但し請求項2記載の超電導
ケーブルに適用する場合は、金属細線を用いると絶縁被
覆層を摩擦等により破る可能性があるので、短絡を防ぐ
意味で金属細線自体にも絶縁被覆しておくことが望まし
い。これら細線の太さは特に限定されないが、余り太い
と隣接する超電導線との間隔が広くなりすぎたり、細線
の柔軟性が低下するので編込み作業上の不都合が生ずる
恐れがあるので、細線の太さは数百μmかそれ以下であ
ることが望ましい。また外周にセミキュアの絶縁材を巻
く場合は、コイル状に卷回後に加熱して前記絶縁材を硬
化させることが多いが、この場合は細線自体は熱硬化す
る必要性はない。もちろん、細線自体も硬化すればより
超電導線の拘束が強固になるので、セミキュア細線若し
くはセミキュア樹脂を含浸させた木綿糸等を用いること
が望ましい。
Next, a thin line used in the present invention will be described. The usable fine wire is not particularly limited as long as the arranged insulating-coated superconducting wires can be mutually restrained. For example, in addition to organic resin yarns such as polyamide, polyester, polypropylene, polyvinyl chloride and semi-cured epoxy resin, natural fibers such as cotton yarn and hemp yarn, metal fibers such as steel wire, inorganic fibers such as alumina fiber, glass fiber and SiC fiber. Fibers and the like can be used. However, when applied to the superconducting cable according to claim 2, use of a thin metal wire may break the insulating coating layer due to friction or the like. desirable. The thickness of these thin wires is not particularly limited, but if the thickness is too large, the interval between adjacent superconducting wires may be too large, or the flexibility of the thin wires may be reduced, which may cause inconvenience in knitting work. It is desirable that the thickness be several hundred μm or less. When a semi-cured insulating material is wound around the periphery, the insulating material is often hardened by heating after winding into a coil. In this case, however, the thin wire itself does not need to be heat-cured. Of course, the hardening of the fine wire itself further strengthens the constraint of the superconducting wire. Therefore, it is desirable to use a semi-cured fine wire or a cotton thread impregnated with a semi-cured resin.

【0026】ところで細線を編込む方法であるが、超電
導線を配列し、従来の製織機を使用して編込む方法が簡
便である。図1では2本の細線で編込んだ例が、また図
2は1本の細線が編込まれた例が示されているが、本発
明では編込む本数は任意である。図1〜7では見やすく
する目的で編みこませた細線の間隔を広く描いてある
が、実際には、編みこませた細線の間隔を狭くしてより
多く編み込ませた方が強固に超電導線が拘束できるので
望ましいことは言うまでもない。
By the way, a method of knitting a fine wire is a simple method of arranging superconducting wires and knitting using a conventional weaving machine. FIG. 1 shows an example in which two thin wires are woven, and FIG. 2 shows an example in which one thin wire is woven. However, in the present invention, the number of woven wires is arbitrary. In Figs. 1 to 7, the spacing between the fine wires braided is drawn widely for the purpose of making it easier to see, but in practice, the narrower the spacing between the fine wires braided and the more braided, the stronger the superconducting wire Needless to say, it can be restrained.

【0027】以上説明した本発明の第1乃至第3の何れ
かに記載の超電導ケーブルであって、前記細線がセミキ
ュア線であるものを所定形状に卷回した後、加熱して前
記セミキュア線を硬化させた本発明の第1の超電導コイ
ルは、モノリス導体を卷回して組み立てる場合より工程
上有利である。また細線によって当該超電導ケーブルを
構成する超電導線のワイヤムーブメントが抑制されてい
る。また本発明の第1乃至第3の何れかに記載の超電導
ケーブルの外周に絶縁体を巻き、これを所定形状に卷回
した後、加熱して前記絶縁体を硬化させた本発明の第2
の超電導コイルは、上記同様、モノリス導体を卷回して
組み立てる場合より工程上有利である。また絶縁体が硬
化することによってコイル形状の保持が一層確実にな
り、超電導線のワイヤムーブメントも一層抑制される。
The superconducting cable according to any one of the first to third aspects of the present invention described above, wherein the thin wire is a semi-cured wire, wound into a predetermined shape, and then heated to form the semi-cured wire. The hardened first superconducting coil of the present invention is more advantageous in process than a case where a monolith conductor is wound and assembled. Further, the wire movement of the superconducting wire constituting the superconducting cable is suppressed by the thin wire. Also, an insulator is wound around the outer periphery of the superconducting cable according to any one of the first to third aspects of the present invention, which is wound into a predetermined shape, and then heated to cure the insulator.
As described above, the superconducting coil described above is more advantageous in process than a case where a monolithic conductor is wound and assembled. Further, the hardening of the insulator makes it possible to more reliably maintain the coil shape, and further suppresses the wire movement of the superconducting wire.

【0028】本発明の第2、第3の超電導ケーブルは、
これを構成する超電導線が絶縁被覆されている。そして
当該超電導ケーブルは撚線加工を経ないので殆ど絶縁被
覆層は損傷を受けない。従って各々の超電導線間の絶縁
は維持され、本発明の第2、第3の超電導ケーブルを卷
回してなる本発明の超電導コイルに通電する際、供給電
流を節約することが可能になる。このことを図1を例に
説明する。図1の超電導ケーブル50を卷回してなる超
電導コイルに電流を供給する場合、この端部全体に絶縁
被覆超電導線30の7本分の電流を供給してもよいが、
各々の絶縁被覆超電導線30に流れる電流の方向が揃う
ように直列に接続して通電すれば1本分の電流供給で済
むことになる。この本発明の超電導ケーブル50の場
合、撚線加工を経ていないので、絶縁被覆層20が部分
的に破れて、隣接する絶縁被覆超電導線30との短絡が
生じない。従って理想的には1本分の電流供給で所定の
電流を流すことが可能になる。もちろん厳密には各々の
絶縁被覆超電導線30を直列に接続する部分の接続抵抗
が存在しているが、その他の部分は超電導状態にある。
このように本発明の第2、第3の超電導ケーブルを用い
た場合は、従来の超電導撚線に通電する場合より供給電
流を節約することが可能である。
The second and third superconducting cables of the present invention are:
The superconducting wire constituting this is covered with insulation. Since the superconducting cable does not undergo stranded wire processing, the insulating coating layer is hardly damaged. Therefore, the insulation between the superconducting wires is maintained, and the supply current can be saved when the superconducting coil of the present invention formed by winding the second and third superconducting cables of the present invention is energized. This will be described with reference to FIG. When a current is supplied to the superconducting coil formed by winding the superconducting cable 50 of FIG. 1, a current corresponding to seven insulated superconducting wires 30 may be supplied to the entire end thereof.
If currents are connected in series and energized so that the directions of the currents flowing through the respective insulating-coated superconducting wires 30 are aligned, only one current needs to be supplied. In the case of the superconducting cable 50 of the present invention, since the stranded wire processing has not been performed, the insulating coating layer 20 is partially torn, and no short circuit occurs with the adjacent insulating coated superconducting wire 30. Therefore, ideally, a predetermined current can be supplied by supplying one current. Strictly speaking, there is a connection resistance at a portion connecting each of the insulating coated superconducting wires 30 in series, but the other portions are in a superconducting state.
As described above, when the second and third superconducting cables of the present invention are used, it is possible to reduce the supply current as compared with the case where the conventional superconducting twisted wire is energized.

【0029】以上のように本発明の第2、第3の超電導
ケーブルは、モノリス導体を用いる場合に比べ、長尺・
大電流効果が工業的に得られると共にコイルの組み立て
が容易であるという集合導体の利点を維持している。ま
た上記細線や上記絶縁体によって組み立てた超電導コイ
ルの形状保持や、超電導線のワイヤムーブメントが抑制
されている。また本発明の第2、第3の超電導ケーブル
を用いた超電導コイルは少ない電流供給で運転すること
も可能であり、運転コストや設備費の低減も可能であ
る。
As described above, the second and third superconducting cables of the present invention are longer and longer than those using a monolithic conductor.
The advantage of the collective conductor is that the large current effect is obtained industrially and the coil is easy to assemble. Further, the shape of the superconducting coil assembled by the thin wires and the insulator is prevented, and the wire movement of the superconducting wire is suppressed. Further, the superconducting coil using the second and third superconducting cables of the present invention can be operated with a small current supply, and the operating cost and equipment cost can be reduced.

【0030】[0030]

【実施例】以下本発明を実施例に基づいて説明する。 本発明例1 図1を参照しながら説明する。断面丸形(径0.8m
m)のNbTi/Cu系の超電導線10にポリビニルホ
ルマール樹脂(PVF)からなる絶縁被覆層20(平均
厚さ25μm)を常法により被覆した絶縁被覆超電導線
30を作製した。次に絶縁被覆超電導線30を7本並べ
て図示する如く細線40(ポリプロピレン繊維、径0.
1mm)を製織機を用いて編込んで超電導ケーブル50
を作製した。なお図1は見やすくなるように、細線40
の本数を粗に描いてあるが、実際には細線40同士が密
接する程度に密に編み込んである。こうして作製した本
発明例1の超電導ケーブルの絶縁被覆超電導線30間の
絶縁破壊電圧は、測定の結果5kVであり、また5T
(テスラ)、4.2K(ケルビン)での通電容量は55
0Aであった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Invention Example 1 This will be described with reference to FIG. Round cross section (diameter 0.8m
m) An NbTi / Cu-based superconducting wire 10 was coated with an insulating covering layer 20 (average thickness 25 μm) made of polyvinyl formal resin (PVF) by an ordinary method to produce an insulating-coated superconducting wire 30. Next, as shown in the figure, seven insulating-coated superconducting wires 30 are arranged side by side to form a thin wire 40 (polypropylene fiber, diameter of 0.1 mm).
1mm) using a weaving machine to knit the superconducting cable 50.
Was prepared. FIG. 1 shows a thin line 40 for easy viewing.
Are drawn roughly, but they are actually braided so closely that the thin wires 40 come into close contact with each other. The dielectric breakdown voltage between the insulated superconducting wires 30 of the superconducting cable of Example 1 of the present invention thus produced was 5 kV as a result of the measurement, and 5 T
(Tesla), the current carrying capacity at 4.2K (Kelvin) is 55
It was 0A.

【0031】上記超電導ケーブル50(約1000m使
用)の外周に絶縁体(ポリイミドフィルムにエポキシ樹
脂を塗布含浸させたテープ、厚さ25μm)をハーフラ
ップ巻きで巻き付け、次いでボア径1mの鞍型コイルを
組み立てた。その後、加圧しながら150℃で5時間保
持する成形加熱処理を施して上記絶縁体を硬化させた。
こうして作製した本発明例1の超電導コイルの通電とし
て、7本の絶縁被覆超電導線30に流れる電流の向きが
全て一致するように、絶縁被覆超電導線30同士を直列
に接続し、直列に440Aの直流電流を供給した。本発
明例1の超電導コイルは通電安定性に優れ、途中クエン
チがなく、4Tの安定磁場を発生させることができた。
An insulator (tape obtained by coating and impregnating a polyimide film with an epoxy resin, thickness: 25 μm) is wound around the outer periphery of the superconducting cable 50 (approximately 1000 m thick) by half-wrap winding, and then a saddle-shaped coil having a bore diameter of 1 m is wound. Assembled. Thereafter, a molding heat treatment was performed at 150 ° C. for 5 hours while applying pressure to cure the insulator.
As the energization of the superconducting coil of the present invention example 1 thus produced, the insulating coated superconducting wires 30 are connected in series so that the directions of the currents flowing through the seven insulating coated superconducting wires 30 are all the same, and 440 A of DC current was supplied. The superconducting coil of Example 1 of the present invention was excellent in energization stability, was able to generate a 4T stable magnetic field without quenching on the way.

【0032】従来例1 本発明例1の場合の超電導線10(絶縁被覆層は設けな
い)と同様のものを7本用いて、成形撚線加工すること
で略矩形形状のラザフォード型超電導ケーブル(略形
状:1.4mm×2.05mm)を作製した。この超電
導ケーブルの通電容量は5T、4.2Kで3850Aで
あった。この従来例1の超電導ケーブル(約1000m
使用)の外周に絶縁体(ポリイミドフィルムにエポキシ
樹脂を塗布したテープ、厚さ0.075μm)をハーフ
ラップ巻きして巻き付け、次いでこれを卷回して、本発
明例1と同様の超電導コイルを組み立てた。その後、加
圧しながら150℃で5時間保持する成形加熱処理を施
して上記絶縁体を硬化させた。こうして作製した従来例
1の超電導コイルによって、4Tの安定磁場を発生を3
080Aの直流電流の通電で達成できた。しかし本発明
例1に比べ通電電流が大きく、供給電流を多く必要とし
た。
Conventional Example 1 A substantially rectangular Rutherford type superconducting cable (formed in the form of the present invention example 1) was formed by using seven superconducting wires 10 (without an insulating coating layer) and forming and twisting the same. Substantially shape: 1.4 mm × 2.05 mm). The current carrying capacity of this superconducting cable was 3850 A at 5T and 4.2K. The superconducting cable of this conventional example 1 (about 1000 m
Insulation (tape coated with epoxy resin on a polyimide film, thickness 0.075 μm) is wound around the outer periphery of the used half-wrap and wound, and then wound to assemble a superconducting coil similar to that of Example 1 of the present invention. Was. Thereafter, a molding heat treatment was performed at 150 ° C. for 5 hours while applying pressure to cure the insulator. The superconducting coil of Conventional Example 1 produced in this way generates a 4T stable magnetic field by 3
This was achieved by passing a DC current of 080 A. However, as compared with Example 1 of the present invention, the supplied current was larger, and a larger supply current was required.

【0033】比較例1 本発明例1の場合の絶縁被覆超電導線30と同様のもの
を7本用いて、成形撚線加工することで略矩形形状のラ
ザフォード型超電導ケーブル(略形状:1.4m×2.
05mmmm)を作製した。この超電導ケーブルは測定
の結果、絶縁被覆超電導線間の絶縁が破れていることを
確認した。これは成形撚線加工の際受けたせん断力によ
って、絶縁被覆層が部分的に破れたためであると推定で
きる。またこの超電導ケーブルの通電容量は5T、4.
2Kで3850Aであった。この比較例1の超電導ケー
ブル(約1000m使用)の外周に絶縁体(ポリイミド
フィルムにエポキシ樹脂を塗布したテープ、厚さ0.0
75μm)をハーフラップ巻きして巻き付け、次いでこ
れを卷回して、本発明例1と同様の超電導コイルを組み
立てた。その後、加圧しながら150℃で5時間保持す
る成形加熱処理を施して上記絶縁体を硬化させた。こう
して作製した従来例1の超電導コイルによって、4Tの
安定磁場を発生するのに3080Aの直流電流の電流供
給を要した。
Comparative Example 1 A substantially rectangular Rutherford type superconducting cable (substantially in shape: 1.4 m) was formed by using seven of the same insulated superconducting wires 30 in the case of Inventive Example 1 and forming and twisting them. × 2.
05mmmm). As a result of the measurement, it was confirmed that the insulation between the insulated superconducting wires was broken. This can be presumed to be because the insulating coating layer was partially broken by the shearing force received during the forming stranded wire processing. The current carrying capacity of this superconducting cable is 5T;
It was 3850 A at 2K. An insulator (a tape in which an epoxy resin is applied to a polyimide film, a thickness of 0.0
75 μm) was wound in a half-wrap manner, and then wound, to assemble a superconducting coil similar to that of Example 1 of the present invention. Thereafter, a molding heat treatment was performed at 150 ° C. for 5 hours while applying pressure to cure the insulator. With the superconducting coil of Conventional Example 1 thus manufactured, a current supply of 3080 A direct current was required to generate a 4T stable magnetic field.

【0034】本発明例2 図2を参照しながら説明する。断面4角形(0.7×
1.4mm)の超電導線11にポリアミドからなる絶縁
被覆層21(厚さ20μm)を形成して絶縁被覆超電導
線31を作製した。次に絶縁被覆超電導線31を7本並
べて、図示する如く細線41(ポリプロピレン繊維、径
0.1mm)を製織機にて編込んで超電導ケーブル51
を作製した。なお図2は見やすくなるように、細線41
の本数を粗に描いてあるが、本発明例2では細線41同
士が密接する程度に密に編み込んである。こうして作製
した本発明例2の超電導ケーブルの絶縁被覆超電導線3
1間の絶縁破壊電圧は、測定の結果10Vであり、また
5T(テスラ)、4.2K(ケルビン)での通電容量は
800Aであった。
Embodiment 2 of the present invention will be described with reference to FIG. Square cross section (0.7 ×
An insulating coating layer 21 (thickness: 20 μm) made of polyamide was formed on the superconducting wire 11 having a thickness of 1.4 mm) to produce an insulating coated superconducting wire 31. Next, seven insulated superconducting wires 31 are arranged, and a thin wire 41 (polypropylene fiber, diameter: 0.1 mm) is knitted by a weaving machine as shown in the drawing to form a superconducting cable 51.
Was prepared. FIG. 2 shows a thin line 41 for easy viewing.
Are drawn roughly, but in the example 2 of the present invention, the fine wires 41 are tightly woven so as to be in close contact with each other. The insulating superconducting wire 3 of the superconducting cable of the present invention example 2 thus produced
As a result, the dielectric breakdown voltage between the two was 10 V, and the current carrying capacity at 5 T (tesla) and 4.2 K (kelvin) was 800 A.

【0035】上記超電導ケーブル51(約1000m使
用)の外周に絶縁体(ポリアラミド織布にエポキシ樹脂
を塗布含浸させたテープ、厚さ100μm)をハーフラ
ップ巻きして巻き付け、次いでボア径2mのレーストラ
ック型コイルを組み立てた。その後、加圧しながら15
0℃で5時間保持する成形加熱処理を施して上記絶縁体
を硬化させた。こうして作製した本発明例2の超電導コ
イルの通電として、7本の絶縁被覆超電導線31に流れ
る電流の向きが全て一致するように、絶縁被覆超電導線
31同士を直列に接続し、直列に680Aの直流電流を
供給した。本発明例2の超電導コイルは通電安定性に優
れ、途中クエンチがなく、4.2Tの安定磁場を発生さ
せることができた。
An insulator (a tape made by coating and impregnating a polyaramid woven fabric with an epoxy resin, having a thickness of 100 μm) is wound around the outer periphery of the superconducting cable 51 (approximately 1000 m thick) by half-wrapping, and then a race track having a bore diameter of 2 m. The mold coil was assembled. Then, pressurize 15
The insulator was cured by performing a molding heat treatment at 0 ° C. for 5 hours. As the energization of the superconducting coil of Example 2 of the present invention thus produced, the insulated superconducting wires 31 were connected in series so that the directions of the currents flowing through the seven insulated covered superconducting wires 31 were all the same, and a 680 A DC current was supplied. The superconducting coil of Example 2 of the present invention was excellent in conduction stability, was able to generate a 4.2 T stable magnetic field without quench.

【0036】本発明例3 図5を参照しながら説明する。断面丸形で径が異なる5
種類の超電導線14a、14b、14c、14d、14
e(NbTi/Cu系、径は各々1.0mm、0.98
mm、0.96mm、0.94mm、0.92mm)を
用意した。これら超電導線の臨界電流値は全て850A
(at5T、4.2K)に調整されている。これら超電
導線にポリビニルホルマール樹脂(PVF)からなる絶
縁被覆層24(平均厚さ50μm)を常法により被覆
し、絶縁被覆超電導線34a、34b、34c、34
d、34eを作製した。次にこれら絶縁被覆超電導線を
図示するように、径の大きさ順に配列し、図示する如く
細線44(ポリアラミド繊維、径50mmを製織機を用
いて編込んで超電導ケーブル54を作製した。なお図5
は見やすくなるように、細線44の本数を粗に描いてあ
るが、実際には細線44同士が密接する程度に密に編み
込んである。こうして作製した本発明例3の超電導ケー
ブルの絶縁被覆超電導線間の絶縁破壊電圧は、測定の結
果7kVであり、また5T(テスラ)、4.2K(ケル
ビン)での通電容量は800Aであった。
Embodiment 3 of the present invention will be described with reference to FIG. 5 with round cross section and different diameter
Types of superconducting wires 14a, 14b, 14c, 14d, 14
e (NbTi / Cu system, diameters are 1.0 mm and 0.98, respectively)
mm, 0.96 mm, 0.94 mm, 0.92 mm). The critical current values of these superconducting wires are all 850 A
(At5T, 4.2K). These superconducting wires are coated with an insulating coating layer 24 (average thickness 50 μm) made of polyvinyl formal resin (PVF) by a conventional method, and the insulating coated superconducting wires 34a, 34b, 34c, 34
d and 34e were produced. Next, as shown in the drawing, these insulating-coated superconducting wires were arranged in the order of the diameter, and as shown, the thin wires 44 (polyaramid fiber, diameter 50 mm) were woven using a weaving machine to produce a superconducting cable 54. 5
Although the number of the fine wires 44 is roughly drawn for easy viewing, the fine wires 44 are actually woven so closely that the fine wires 44 are in close contact with each other. The dielectric breakdown voltage between the insulated superconducting wires of the superconducting cable of Inventive Example 3 thus produced was 7 kV as a result of the measurement, and the current carrying capacity at 5 T (tesla) and 4.2 K (kelvin) was 800 A. .

【0037】上記超電導ケーブル54(約1000m使
用)の外周に、本発明例1の場合と同様の絶縁体(ポリ
イミドフィルムにエポキシ樹脂を塗布含浸させたテー
プ、厚さ25μm)をハーフラップ巻きして巻き付け、
次いでボア径1mの鞍型コイルを組み立てた。その後、
加圧しながら150℃で5時間保持する成形加熱処理を
施して上記絶縁体を硬化させた。こうして作製した本発
明例3の超電導コイルの通電として、5本の絶縁被覆超
電導線34a、34b、34c、34d、34eに流れ
る電流の向きが全て一致するように、直列に接続し、6
80Aの直流電流を供給した。本発明例3の超電導コイ
ルは通電安定性に優れ、途中クエンチがなく、4.2T
の安定磁場を発生させることができた。
The same insulator (a tape in which a polyimide film is coated with an epoxy resin and impregnated, thickness: 25 μm) is half-wrapped around the outer periphery of the superconducting cable 54 (using about 1000 m). Winding,
Next, a saddle coil having a bore diameter of 1 m was assembled. afterwards,
The above-mentioned insulator was cured by applying a molding heat treatment of maintaining the temperature at 150 ° C. for 5 hours while applying pressure. As the energization of the superconducting coil of Inventive Example 3 thus produced, the superconducting coils were connected in series so that the directions of the currents flowing through the five insulating-coated superconducting wires 34a, 34b, 34c, 34d, and 34e all coincided.
A DC current of 80 A was supplied. The superconducting coil of Example 3 of the present invention has excellent conduction stability, has no quench on the way, and has a 4.2 T
Was able to generate a stable magnetic field.

【0038】本発明例4 図6を参照しながら説明する。断面矩形でサイズが異な
る5種類の超電導線15a、15b、15c、15d、
15e(NbTi/Cu系)を用意した。これらのサイ
ズは、各々1.4×0.7mm、1.38×0.68m
m、1.36×0.66mm、1.34×0.64m
m、1.32×0.62mmである。これら超電導線の
臨界電流値は、何れも550A(7T、4.2K)であ
る。これらの超電導線にポリビニルホルマール樹脂(P
VF)からなる絶縁被覆層25(平均厚さ20μm)を
常法により被覆し、絶縁被覆超電導線35a、35b、
35c、35d、35eを作製した。これら絶縁被覆超
電導線を図示するように、径の大きさ順に配列し、図示
する如く細線45(ポリプロピレン繊維、径50μm
m)を製織機を用いて編込んで超電導ケーブル55を作
製した。なお図6は見やすくなるように、細線45の本
数を粗に描いてあるが、実際には細線45同士が密接す
る程度に密に編み込んである。こうして作製した本発明
例4の超電導ケーブルの絶縁被覆超電導線間の絶縁破壊
電圧は、測定の結果5kVであり、また7T(テス
ラ)、4.2K(ケルビン)での通電容量は500Aで
あった。
Inventive Example 4 This will be described with reference to FIG. 5 types of superconducting wires 15a, 15b, 15c, 15d having rectangular cross sections and different sizes
15e (NbTi / Cu system) was prepared. These sizes are 1.4 × 0.7 mm, 1.38 × 0.68 m, respectively.
m, 1.36 × 0.66 mm, 1.34 × 0.64 m
m, 1.32 × 0.62 mm. The critical current value of each of these superconducting wires is 550A (7T, 4.2K). Polyvinyl formal resin (P
VF) is coated with an insulating coating layer 25 (average thickness 20 μm) by an ordinary method, and the insulating coating superconducting wires 35a, 35b,
35c, 35d, and 35e were produced. These insulated superconducting wires are arranged in the order of diameter as shown in the figure, and as shown in the figure, a thin wire 45 (polypropylene fiber, diameter 50 μm
m) was knitted using a weaving machine to produce a superconducting cable 55. In FIG. 6, the number of the fine wires 45 is roughly drawn for easy understanding, but actually, the fine wires 45 are densely woven so that the fine wires 45 are in close contact with each other. The dielectric breakdown voltage between the insulated superconducting wires of the superconducting cable of Inventive Example 4 thus produced was 5 kV as a result of the measurement, and the current carrying capacity at 7 T (tesla) and 4.2 K (kelvin) was 500 A. .

【0039】上記超電導ケーブル55(約1000m使
用)の外周に絶縁体(ポリプロピレンにエポキシ樹脂を
塗布含浸させたテープ、厚さ100μm)をハーフラッ
プ巻きして巻き付け、次いでボア径1mの鞍型コイルを
組み立てた。その後、加圧しながら180℃で3時間保
持する成形加熱処理を施して細線45および上記絶縁体
を硬化させた。こうして作製した本発明例4の超電導コ
イルに、5本の絶縁被覆超電導線35a、35b、35
c、35d、35eに流れる電流の向きが全て一致する
ように、直列に接続し、350Aの直流電流を通電し
た。本発明例4の超電導コイルは通電安定性に優れ、途
中クエンチの発生が3回で済み、5.6Tの安定磁場を
発生させることができた。
An insulator (tape made by coating and impregnating epoxy resin with epoxy resin, thickness of 100 μm) is wound around the outer periphery of the superconducting cable 55 (approximately 1000 m in length) by half-wrap winding, and then a saddle coil having a bore diameter of 1 m is wound. Assembled. Thereafter, a molding heat treatment of maintaining at 180 ° C. for 3 hours while applying pressure was performed to cure the fine wires 45 and the insulator. The superconducting coil of Example 4 of the present invention thus produced was provided with five insulating-coated superconducting wires 35a, 35b, 35.
They were connected in series so that the directions of the currents flowing through c, 35d, and 35e all coincided, and a DC current of 350 A was passed. The superconducting coil of Example 4 of the present invention was excellent in current-carrying stability, and required only three quench steps on the way to generate a stable magnetic field of 5.6 T.

【0040】本発明例5 図7を参照しながら説明する。断面矩形でサイズ径が異
なる3種類の超電導線16a、16b、16c(NbT
i/Cu系)を用意した。これらのサイズは、各々1.
4×0.7mm、1.36×0.66mm、1.32×
0.62mmである。これら超電導線の臨界電流値は、
何れも1000A(5T、4.2K)である。次にセミ
キュアエポキシ系樹脂からなる絶縁被覆層26(平均厚
さ25μm)を常法により被覆し、絶縁被覆超電導線3
6a、36b、36cを作製した。これら絶縁被覆超電
導線を図示するように、3本づつ径の大きさ順に配列
し、図示する如く細線46(エポキシ含浸ガラス繊維、
径100mm)を製織機を用いて編込んで超電導ケーブ
ル56を作製した。なお図7は見やすくなるように、細
線46の本数を粗に描いてあるが、実際には細線46同
士が密接する程度に密に編み込んである。こうして作製
した本発明例5の超電導ケーブルの絶縁被覆超電導線間
の絶縁破壊電圧は、測定の結果5kVであり、また5T
(テスラ)、4.2K(ケルビン)での通電容量は90
0Aであった。
Inventive Example 5 This will be described with reference to FIG. Three types of superconducting wires 16a, 16b, 16c (NbT
i / Cu system). These sizes are each 1.
4 × 0.7mm, 1.36 × 0.66mm, 1.32 ×
0.62 mm. The critical current value of these superconducting wires is
All are 1000A (5T, 4.2K). Next, an insulating coating layer 26 (average thickness 25 μm) made of semi-cured epoxy resin is coated by a conventional method, and the insulating coated superconducting wire 3 is formed.
6a, 36b and 36c were produced. These insulating coated superconducting wires are arranged three by three in the order of the diameter as shown in the figure, and as shown in the figure, the thin wire 46 (epoxy-impregnated glass fiber,
The superconducting cable 56 was manufactured by knitting with a weaving machine. In FIG. 7, the number of the fine wires 46 is roughly drawn for easy viewing, but actually, the fine wires 46 are densely woven so that the fine wires 46 are in close contact with each other. The insulation breakdown voltage between the insulating coated superconducting wires of the superconducting cable of Example 5 of the present invention thus produced was 5 kV as a result of the measurement, and 5T
(Tesla), conduction capacity at 4.2K (Kelvin) is 90
It was 0A.

【0041】上記超電導ケーブル56(約1000m使
用)の外周に絶縁体(Eガラスクロステープにエポキシ
樹脂を塗布含浸させたテープ、厚さ100μm)をハー
フラップ巻きして巻き付け、次いでボア径1mの鞍型コ
イルを組み立てた。その後、加圧しながら170℃で3
時間保持する成形加熱処理を施して上記絶縁体を硬化さ
せた。こうして作製した本発明例5の超電導コイルの通
電として、9本の絶縁被覆超電導線36a、36b、3
6cに流れる電流の向きが全て一致するように、直列に
接続し、720Aの直流電流を供給した。本発明例5の
超電導コイルは通電安定性に優れ、途中クエンチがな
く、4Tの安定磁場を発生させることができた。
An insulator (a tape of E glass cloth tape impregnated with an epoxy resin, a thickness of 100 μm) is half-wrapped and wound around the outer periphery of the superconducting cable 56 (using about 1000 m), and then a saddle having a bore diameter of 1 m is wound. The mold coil was assembled. Then, pressurize at 170 ° C for 3
The insulator was cured by performing a molding heat treatment for holding for a time. As the energization of the superconducting coil of Example 5 of the present invention thus produced, nine insulating-coated superconducting wires 36a, 36b, 3
6c were connected in series so that the directions of the currents flowing through them all matched, and a DC current of 720A was supplied. The superconducting coil of Inventive Example 5 was excellent in conduction stability, was able to generate a 4 T stable magnetic field without quench.

【0042】以上説明した本発明例1乃至5の超電導ケ
ーブル集合導体であるからモノリス導体の場合に比べ、
超電導コイルの組み立て工数が少なくて済む利点があ
る。そして超電導ケーブルを構成する超電導線の絶縁が
確実であるので、組み立てた超電導コイルに通電する
際、これらの超電導線を直列に接続することで、モノリ
ス導体を卷回してなる超電導コイルの場合同様、少ない
電流供給で運転することも可能になる。
The superconducting cable assembly conductors of Examples 1 to 5 of the present invention described above, so that they are compared with the case of a monolithic conductor.
There is an advantage that the number of assembling steps of the superconducting coil is reduced. And since the superconducting wire constituting the superconducting cable is reliably insulated, when energizing the assembled superconducting coil, by connecting these superconducting wires in series, as in the case of a superconducting coil formed by winding a monolithic conductor, It is also possible to operate with a small current supply.

【0043】本発明例6 本発明例1の絶縁被覆超電導線30に換えて、電気めっ
きによりCrめっき層(厚さ5μm)を設けた同サイズ
のNb3 Sn超電導線を用い、細線45に換え金属細線
(SUS線、径20μm)を用いた以外は本発明例1と
同様にして超電導ケーブルを作製した。こうして作製し
た本発明例6の超電導ケーブルの各々の超電導線間の結
合損失は約5mJ/cm2 と低い値になった。これは従
来の超電導撚線の場合と異なり、撚線加工時にCrめっ
き層が脱落しなかった効果である。
Inventive Example 6 In place of the insulated superconducting wire 30 of Inventive Example 1, an Nb 3 Sn superconducting wire of the same size provided with a Cr plating layer (thickness: 5 μm) by electroplating was used. A superconducting cable was produced in the same manner as in Inventive Example 1 except that a thin metal wire (SUS wire, diameter 20 μm) was used. The coupling loss between the superconducting wires of the superconducting cable of Inventive Example 6 thus produced was as low as about 5 mJ / cm 2 . This is an effect that unlike the case of the conventional superconducting stranded wire, the Cr plating layer did not fall off during the stranded wire processing.

【0044】従来例2 本発明例6におけるCrめっき層を設けたNb3 Sn超
電導線と同様のものを用い、これを7本成形撚線加工す
ることで略矩形形状のラザフォード型超電導ケーブル
(略形状:1.4mm×2.05mm)を作製した。こ
の従来例2の超電導ケーブルの各々の超電導線間の結合
損失は約15mJ/cm2 となった。これは成形撚線加
工時にCrめっき層が一部脱落したため、本発明例6に
比べ結合損失が高くなったものと考えられる。このよう
に本発明例6の超電導ケーブルは、結合損失の低減を目
的する高抵抗層の損傷が少なく、効果的に結合損失を低
減させることが可能な超電導ケーブルである。
[0044] Using those conventional similar to the two invention Examples Nb 3 Sn superconducting wire provided with a Cr plating layer in 6, Rutherford superconducting cable (short for substantially rectangular by processing this seven-molded stranded wire (Shape: 1.4 mm x 2.05 mm). The coupling loss between the superconducting wires of the superconducting cable of Conventional Example 2 was about 15 mJ / cm 2 . This is considered to be due to the fact that the Cr plating layer was partially dropped during the forming stranded wire processing, so that the coupling loss was higher than that of Example 6 of the present invention. As described above, the superconducting cable of Example 6 of the present invention is a superconducting cable in which the high-resistance layer for the purpose of reducing the coupling loss is less damaged and the coupling loss can be effectively reduced.

【0045】本発明例7 断面丸形で径が異なる5種類のBi系酸化物超電導線
(径は各々1.0mm、0.98mm、0.96mm、
0.94mm、0.92mm)を用意した。これらを本
発明例3の場合と同様に一本ずつ径の大きさ順に配列し
(図5の超電導線14a〜eを上記径のBi系酸化物超
電導線に読み換える、絶縁被覆層24は形成していな
い)、図5の細線44に換えて金属細線(SUS線、径
30μm)を用いて編込んで超電導ケーブルを作製し
た。この超電導ケーブルの通電容量は5T(テスラ)、
4.2K(ケルビン)で1000Aであった。またこの
超電導ケーブルを用いてボア径1mの円筒型ソレノイド
コイルを作製した。このコイルは中心磁界1Tを発生さ
せることができた。本発明例7の超電導ケーブルは撚線
加工を施しておらず、酸化物系超電導線等、加工性の悪
い超電導線に好適に適用できる。また本発明例7の超電
導ケーブルは断面形状が略扇形であるので、コイルを組
み立てる際、好都合である。
Invention Example 7 Five types of Bi-based oxide superconducting wires having a round cross section and different diameters (diameters of 1.0 mm, 0.98 mm, 0.96 mm,
0.94 mm, 0.92 mm). These are arranged one by one in the order of diameter in the same manner as in Example 3 of the present invention (the superconducting wires 14a to 14e in FIG. 5 are replaced with Bi-based oxide superconducting wires having the above diameter, and the insulating coating layer 24 is formed. (Not shown), and a superconducting cable was produced by braiding using a thin metal wire (SUS wire, diameter 30 μm) instead of the thin wire 44 in FIG. The current carrying capacity of this superconducting cable is 5T (tesla),
It was 1000A at 4.2K (Kelvin). Using this superconducting cable, a cylindrical solenoid coil having a bore diameter of 1 m was produced. This coil was able to generate a central magnetic field of 1T. The superconducting cable of Example 7 of the present invention is not subjected to stranded wire processing, and can be suitably applied to superconducting wires having poor workability, such as oxide-based superconducting wires. Further, since the superconducting cable of Example 7 of the present invention has a substantially fan-shaped cross section, it is convenient when assembling a coil.

【0046】[0046]

【効果】以上説明したよう本発明は、超電導ケーブルを
用いて超電導コイルを組み立てた場合であって、モノリ
ス導体を用いて組み立てた超電導コイルの場合と同様、
少ない電流供給で通電を行う場合については、当該集合
導体を構成する各々の超電導線の絶縁被覆が確実で、少
ない電流供給で通電可能である。また交流用途に使用す
る場合で、超電導ケーブルを構成する各々の超電導線の
外周に結合損失の低減を目的する高抵抗層を形成した場
合にあっては、その高抵抗層の損傷が少なく、効果的に
結合損失を低減させることが可能である。また本発明の
超電導ケーブル、超電導コイルは酸化物系の超電導線
等、加工性が極めて悪い超電導線に好適に適用できるも
のである。このように本発明は産業上の寄与が著しいも
のである。
As described above, the present invention relates to a case where a superconducting coil is assembled using a superconducting cable, and is similar to a case of a superconducting coil assembled using a monolithic conductor.
In the case where current is supplied with a small amount of current supply, the superconducting wires constituting the collective conductor are surely coated with insulation and can be supplied with a small amount of current supply. In addition, when used for AC applications, when a high-resistance layer is formed around the superconducting wires constituting the superconducting cable to reduce coupling loss, the high-resistance layer is less damaged, It is possible to reduce the coupling loss. Further, the superconducting cable and the superconducting coil of the present invention can be suitably applied to a superconducting wire having extremely poor workability, such as an oxide-based superconducting wire. As described above, the present invention has a remarkable industrial contribution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 1 is a partially sectional perspective view of a superconducting cable according to the present invention.

【図2】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 2 is a partially sectional perspective view of a superconducting cable according to the present invention.

【図3】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 3 is a partially sectional perspective view of a superconducting cable according to the present invention.

【図4】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 4 is a partially sectional perspective view of a superconducting cable according to the present invention.

【図5】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 5 is a partially sectional perspective view of a superconducting cable according to the present invention.

【図6】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 6 is a partially sectional perspective view of a superconducting cable according to the present invention.

【図7】本発明に係る超電導ケーブルの一部断面斜視図
である。
FIG. 7 is a partially sectional perspective view of a superconducting cable according to the present invention.

【符号の説明】[Explanation of symbols]

10、11、12、13 超電導線 14a、14b、14c、14d、14e 超電導線 15a、15b、15c、15d、15e 超電導線 16a、16b、16c 超電導線 20、21、22、23、24、25、26 絶縁被覆
層 30、31、32、33 絶縁被覆超電導線 34a、34b、34c、34d、34e 絶縁被覆超
電導線 35a、35b、35c、35d、35e 絶縁被覆超
電導線 36a、36b、36c 絶縁被覆超電導線 40、41、42、43、44、45、46 細線 50、51、52、53、54、55、56 超電導ケ
ーブル
10, 11, 12, 13 superconducting wires 14a, 14b, 14c, 14d, 14e superconducting wires 15a, 15b, 15c, 15d, 15e superconducting wires 16a, 16b, 16c superconducting wires 20, 21, 22, 23, 24, 25, 26 Insulation coating layer 30, 31, 32, 33 Insulation coating superconducting wire 34a, 34b, 34c, 34d, 34e Insulation coating superconducting wire 35a, 35b, 35c, 35d, 35e Insulation coating superconducting wire 36a, 36b, 36c Insulation coating superconducting wire 40, 41, 42, 43, 44, 45, 46 Fine wire 50, 51, 52, 53, 54, 55, 56 Superconducting cable

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数本の超電導線が平行に配列され、細
線が横添えされて一体化された超電導ケーブル。
1. A superconducting cable in which a plurality of superconducting wires are arranged in parallel, and thin wires are laterally attached and integrated.
【請求項2】 絶縁被覆された複数本の超電導線が平行
に配列され、細線が横添えされて一体化された超電導ケ
ーブル。
2. A superconducting cable in which a plurality of insulated superconducting wires are arranged in parallel, and thin wires are laterally attached and integrated.
【請求項3】 断面形状の異なる少なくとも2種以上の
超電導線が略くさび型形状に平行配列され、細線が横添
えされて一体化された超電導ケーブル。
3. A superconducting cable in which at least two or more superconducting wires having different cross-sectional shapes are arranged in parallel in a substantially wedge shape, and thin wires are laterally added and integrated.
【請求項4】 前記細線がセミキュア線である請求項1
乃至3の何れかに記載の超電導ケーブルが所定形状に卷
回された後、前記セミキュア線のキュア温度以上に加熱
することで硬化させてなる超電導コイル。
4. The method according to claim 1, wherein the fine wire is a semi-cured wire.
4. A superconducting coil obtained by winding the superconducting cable according to any one of claims 3 to 3 into a predetermined shape, and then heating the cable to a temperature equal to or higher than the curing temperature of the semi-cured wire.
【請求項5】 請求項1乃至3の何れかに記載の超電導
ケーブルが所定形状に卷回された後、加熱して当該超電
導ケーブルに巻かれた絶縁材を硬化させてなる超電導コ
イル。
5. A superconducting coil obtained by winding the superconducting cable according to any one of claims 1 to 3 into a predetermined shape, and then heating and curing an insulating material wound around the superconducting cable.
JP6307842A 1993-12-28 1994-12-12 Superconducting cable and superconducting coil Expired - Lifetime JP3033669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307842A JP3033669B2 (en) 1993-12-28 1994-12-12 Superconducting cable and superconducting coil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-350458 1993-12-28
JP35045893 1993-12-28
JP6307842A JP3033669B2 (en) 1993-12-28 1994-12-12 Superconducting cable and superconducting coil

Publications (2)

Publication Number Publication Date
JPH07235227A JPH07235227A (en) 1995-09-05
JP3033669B2 true JP3033669B2 (en) 2000-04-17

Family

ID=26565290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307842A Expired - Lifetime JP3033669B2 (en) 1993-12-28 1994-12-12 Superconducting cable and superconducting coil

Country Status (1)

Country Link
JP (1) JP3033669B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270422A (en) * 2001-03-08 2002-09-20 Toshiba Corp Superconducting device and its cooling system
JP4774494B2 (en) * 2005-01-14 2011-09-14 成卓 岩熊 Superconducting coil
KR100945195B1 (en) * 2008-08-27 2010-03-03 한국전기연구원 Current lead using rutherford cable
JP2013048125A (en) * 2009-11-25 2013-03-07 Fujikura Ltd Superconducting coil and manufacturing method therefor
WO2011129325A1 (en) * 2010-04-16 2011-10-20 株式会社フジクラ Superconducting coil and method for manufacturing the same
KR102381550B1 (en) * 2020-01-17 2022-04-01 주식회사 디에스엔프라 Wire harness with excellent electromagnetic radiation and electromagnetic immunity

Also Published As

Publication number Publication date
JPH07235227A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
EP1691381B1 (en) Fault current limiting superconducting coil
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US20230101820A1 (en) Partitioned Superconducting Cable
US8260386B2 (en) Armored superconducting winding and method for its production
JP3033669B2 (en) Superconducting cable and superconducting coil
US5604473A (en) Shaped superconducting magnetic coil
JP7123828B2 (en) Superconducting coil conductor and method for manufacturing superconducting coil conductor
US4093817A (en) Superconductor
JP5008112B2 (en) Radial collective conductor
MXPA02009646A (en) Superconductive armature winding for an electrical machine.
US11587701B2 (en) Series-connected superconducting magnet cables
WO2018150470A1 (en) Superconducting wire material and superconducting coil
JP4757985B2 (en) Superconducting coil, manufacturing method thereof and superconducting conductor used therefor
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JPH08222428A (en) Persistent current switch
JPH08167332A (en) Superconducting cable
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
Acerbi et al. The 18 Tesla-100 mm 4.2 K free bore solenoid for LASA-Milan
Ogasawara et al. Development of multifilamentary NbTi and Nb 3 Sn composite conductors with very fine filaments
Waltman et al. Stability Measurements of Aluminum-Stabilized Nb-Ti and Bronze Matrix Nb3Sn Potted Superconducting Magnets
JPH06176924A (en) Superconducting magnet
JPH0715844B2 (en) Superconducting coil
JPH0613222A (en) Manufacture of closely wound coil
Nishijima et al. Development of Pre-Bent High-Strength ${\rm Nb} _ {3}{\rm Sn} $ Cable With Stainless-Steel Reinforcement Strands