JPH02232903A - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JPH02232903A
JPH02232903A JP1054073A JP5407389A JPH02232903A JP H02232903 A JPH02232903 A JP H02232903A JP 1054073 A JP1054073 A JP 1054073A JP 5407389 A JP5407389 A JP 5407389A JP H02232903 A JPH02232903 A JP H02232903A
Authority
JP
Japan
Prior art keywords
coil
conduit
electromagnetic force
superconducting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1054073A
Other languages
Japanese (ja)
Other versions
JPH0626165B2 (en
Inventor
Kiyoshi Yoshida
清 吉田
Kiyoshi Okuno
奥野 清
Hiroshi Tsuji
博史 辻
Katsuyoshi Toyoda
豊田 勝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Electric Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP1054073A priority Critical patent/JPH0626165B2/en
Publication of JPH02232903A publication Critical patent/JPH02232903A/en
Publication of JPH0626165B2 publication Critical patent/JPH0626165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To facilitate the manufacture of the title superconducting coil device by a method wherein a spiral electromagnetic supporting member, having an aperture part on the outer circumferential side of a coil, is formed by chipping it out from a cylinder-shaped structural material, and after the outside surface of the conduit of a conductive type superconducting material has been insulation-treated, a superconducting coil is wound in such a manner that it is buried in the aperture part. CONSTITUTION:Spiral electromagnetic force supporting members 17 and 17 are chipped out from cylindrical high strength steel, a conduit type superconducting conductor 7 is fitted to an aperture part 18 and wound thereon. A turn-to-turn insulation-treated part 19 is provided on the conductor 7, and the increase of an eddy current loss generated by the contact between supporting members 17 and 17 is prevented by interposing an insulating sheet 20 between them. Also, a multilayer structure is formed by providing an interlayer insulating material 21, parts 22a and 22b that connect conductors between layers, a connection part between conduit type superconducting material for high magnetic field and one for low magnetic field, a spacer 23, a spool 24, an electromagnetic force supporting member and a ground insulation 26. According to this constitution, electromagnetic force is supported by the spiral supporting member the grading of coil is facilitated, and a reliable current transformer can be obtained.

Description

【発明の詳細な説明】 [ズ業上の利用分野] この発明は、強制冷却方式を採用した超電導コイル装置
に関するものである. [従来の技術] 第4図〜第6図は、例えば、特公昭59−12003号
公報に示された従来のこの種の超電導コイル装置であり
、第4図、第5図において、(1)は超電導々体、(2
)は電磁力支持構造部材、(3)は導体収納用スロット
、(4)は絶縁材、(5)は巻枠である.第6図は導体
間の電気的接続を模式的に示したものであり、(6a)
はフィーダ線、(6b)はコイル外径側渡り線、(6C
)はコイル内径側渡り線である.第7図は、例えば、第
35回低温工学会研究発表会(1986年)の予稿集、
120ページに示された超臨界圧ヘリウムを強制循環し
て冷却するいわゆるコンジット型と呼ばれるコンジット
型超電導々体(フ)であり、(8)は超電導素線、(9
)は多数の超電導素線を束状に撚線した撚線導体、(1
0)は例えば高強度ステンレス鋼からなるコンジットで
あり外部に対してコンジット内を気密に保っている.超
電導素線(8)間の間隙《11》は超臨界圧ヘリウムな
どの冷媒が圧送される冷却チャンネルである.以上の構
成において、第4図に示した超電導コイルの巻線方法は
超電導々体(1)を各々絶縁材(4)でターン間絶縁を
行った後、並列に電磁力支持構造部材(2》のスロット
にはめて巻き込み、第6図のように渡り線(6b)、(
6c)で超電導コイルとして必要な電流が流れるように
結線する. この方法は、超電導々体(1)と電磁力支持構造部材(
2)が同時に回巻きされているため電磁力の大きな、例
えば核融合炉用の超電導コイル製作方法などに適用可能
である. 第4図、第6図の巻線方法はいわゆるパンケーキ巻と呼
ばれる方法である.第4図のコイルは4巻線から1ユニ
ットのコイルが構成されているが、通常は1ユニットを
2巻線から構成するダブルパンケーキ巻が採用されてい
る. 軸方向に長さが要求される超電導コイルの場合には、こ
のパンケーキコイルを軸方向に多数個重ね合わせて必要
なコイル長さを得る. 第7図のコンジット型超電導々体構造は、ステンレス鋼
などの高強度鋼のコンジット(10)の内部に多数本の
超電導素線(8)を束状にした撚線導体(9)を封入し
、超電導素線(8)の間隙の冷却チャンネル(11)に
、例えば超臨界圧ヘリウムなどの冷媒を強制循環して冷
却する.この方式の特徴は、コンジット材が電磁力に対
する強度メンバーとなるので導体自身の強度が高くとれ
ること、およびコンジット外部に冷媒が必要でないので
、冷却特性を損なうことなく確実な絶縁の施工が可能で
耐電圧性がよいこと、および超電導素線(8)の冷却面
積が大きく超電導安定性が良いことなどである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a superconducting coil device that employs a forced cooling method. [Prior Art] Figs. 4 to 6 show a conventional superconducting coil device of this type, which is disclosed in Japanese Patent Publication No. 59-12003, and in Figs. 4 and 5, (1) is a superconductor, (2
) is the electromagnetic force supporting structural member, (3) is the slot for storing the conductor, (4) is the insulating material, and (5) is the winding frame. Figure 6 schematically shows the electrical connection between conductors, (6a)
is the feeder wire, (6b) is the coil outer diameter side crossover wire, (6C
) is the crossover wire on the inner diameter side of the coil. Figure 7 shows, for example, the proceedings of the 35th Society of Cryogenics Research Conference (1986),
This is a so-called conduit type superconductor (F) that is cooled by forced circulation of supercritical pressure helium shown on page 120, (8) is a superconducting strand, (9)
) is a stranded conductor made by twisting a large number of superconducting wires into a bundle, (1
0) is a conduit made of high-strength stainless steel, for example, and keeps the inside of the conduit airtight from the outside. The gap <<11>> between the superconducting wires (8) is a cooling channel through which a coolant such as supercritical helium is pumped. In the above configuration, the superconducting coil winding method shown in FIG. Insert it into the slot and roll it in, and connect the crossover wire (6b), (
6c) Connect the wires so that the necessary current flows as a superconducting coil. This method consists of a superconductor (1) and an electromagnetic support structure member (
2) is wound at the same time, so it can be applied to methods that require large electromagnetic force, such as superconducting coil manufacturing methods for nuclear fusion reactors. The winding method shown in Figures 4 and 6 is a so-called pancake winding method. In the coil shown in Figure 4, one unit of coil is made up of four windings, but double pancake winding is usually used where one unit is made up of two windings. In the case of a superconducting coil that requires length in the axial direction, the required coil length is obtained by stacking many pancake coils in the axial direction. The conduit-type superconductor structure shown in Fig. 7 has a stranded conductor (9) made of a bundle of multiple superconducting wires (8) enclosed inside a conduit (10) made of high-strength steel such as stainless steel. The superconducting strands (8) are cooled by forced circulation of a coolant such as supercritical helium through the cooling channels (11) in the gaps between them. The characteristics of this method are that the conduit material acts as a strong member against electromagnetic force, so the strength of the conductor itself can be high, and since no refrigerant is required outside the conduit, reliable insulation can be achieved without compromising cooling properties. It has good voltage resistance, and the cooling area of the superconducting wire (8) is large, resulting in good superconducting stability.

このことから、電磁力が大きく、かつ数+kV 級の絶
縁性が要求される核融合炉の大形コイル用として研究開
発されている. [発明が解決しようとする課題] 以上のような従来の超電導コイル装置は、第7図に示し
たコンジット型超電導々体ではコンジット材が高強度鋼
であるので超電導々体自身でかなりの電磁力を支持する
ことが可能である.しかしながら、その製作性の問題か
らコンジットの厚さを十分厚くすることが困難であり、
電磁力の大きな核融合炉用の大形超電導コイルではコイ
ル中に電磁力支持を分担し得る他の構造部材が必要とな
る.その候補として第4図の構造が考えられる.これら
2方式の組合せによるものは、十分な強度を有するコイ
ルが製作可能であるという特徴を有する. 第8図にトカマク型の核融合炉の超電導コイル群の必要
部分のみを示すが、トカマク型の核融合炉ではプラズマ
(12》を磁気的に閉じ込めておくトロイダルコイル(
13)と、プラズマを必要な形状に維持するための平衡
磁場コイル(14a)〜(14F>、および、変流器の
原理でプラズマを加熱する変流器コイル(15)がある
.平衡磁場コイル配置は、種々の配置方法がある.これ
らのコイルのうち変流器コイルの大きさはプラズマ実験
の内容と炉の全体寸法に大きな影響を与え、磁場発生空
間(16)の直径は可能な限り大きく、また発生磁場は
可能な限り高くする必要がある.即ち、変流器コイル(
15)のコイル外周側とトロイダルコイル(13)との
間は可能な限り小さくし、変流器コイル(15)の厚さ
は可能な限り薄くする必要がある. また変流器コイル(15)は、軸方向に長いコイルであ
るため、電流を流して磁場を発生させるとコイル内径側
に最大磁場が発生し半径.が増加するに従って磁場は低
くなり、コイル外側では最大磁場の数分の一の磁場とな
っている. 変流器コイル(15)の発生磁場を上げるためには超電
導線材料としては例えばNb Snなどの化合物系の材
料を使用する必要がある. しかしながらNb Snなどの高磁場用の化合物系の超
電導材料は、例えばNbTiなどの比較的低磁場用の合
金系の超電導材料に比べて脆い材料であり、技術的にN
bTiなどの合金系材料より信頼性が落ちる.またその
技術的取扱いの困難さからも高価になる.従って、一般
に高磁場発生コイルでは、高磁界部分のみにNb Sn
系の化合物超電導材料を使用し、低磁場部分にはNbT
i系の合金超電導材料を使用し、コイル内で両者を接続
する.この方法はグレーディングと呼ばれている.超電
導線に流しうる電流は磁場の関数であり低磁場側ではよ
り大きな電流を流しうる.即ち、電流値を高磁場側と低
磁場側を一定とすると、グレーディングを行うことによ
り、低磁場側ではより小さな超電導々体が使用可能とな
り、コイルの厚さを薄くすることが可能となる. 一方、このグレーデイング法をコンジット型超電導々体
と第4図の方法との組合せに適用しようとすると、電磁
力支持構造部材(2)のスロット内の狭い空間でのコン
ジット型超電導々体の接続が必要となり、技術的に非常
に困難なものとなるという欠点を有している.従って、
上記2方式の組合せによるパンケーキ巻のコイル方式で
は、コンジット型超電導々体は内側から外側まで同一の
技術的に困難な高磁場用導体、例えばNb Sn系の化
合物超電導材料を使用することとなる.従って、上記パ
ンケーキ巻は、コイル強度は確保できるものの、技術的
信頼性が落ち、また高価なものとなるという致命的な欠
点を有している. さらに、変流器コイルはパルス運転を行うが、数ターン
の超電導々体を並列に支持する第4図の電磁力支持構造
部材は広い面積で変動磁界を経験するので渦電流にとも
なう交流損失による冷却熱負荷の増加も大きな問題とな
る. この発明は上記のような問題点を解消するためになされ
たもので、コンジット型超電導々体を使用した大形コイ
ルであっても、電磁力に対して支持が可能であり、さら
にコイルのグレーディングも可能なコイル巻線方式を得
ることを目的とする.[課題を解決するための手段] この発明に係る超電導コイル装置は、円筒状の構造材か
らコイル外周側に開口部を有するスバイラル状の電磁力
支持部材を削り出し、コンジット型超電導々体のコンジ
ット外面に絶縁を施工後、開口部に埋め込みながらスパ
イラル状に超電導コイルを巻線したものである. [作用] この発明における超電導コイル装置は、以上のような電
磁力支持部材を有するスパイラル巻としたため、コンジ
ット型超電導々体間の接続をコイル端部の空間で行うこ
とが可能となり、スバイラル状の電磁力支持部材で電磁
力を支持するとともに、コイルのグレーディングも容易
となり安価で信頼性のよい変流器コイルが製作可能であ
る.[実施例] 以下、この発明の一実施例を第1図、第2図について説
明する.第1図はソレノイドコイルの1層分を示したも
のであり、(17)は、円筒型の高強度鋼から削り出し
たスパイラル状の電磁力支持部材であり、(フ)は電磁
力支持部材(17)の開口部(18)にはめ込まれて回
巻きされたコンジット型超電導々体である.コンジット
型超電導々体(7)にはターン間絶縁(19)が施され
ている.(20)は電磁力支持部材間が接触して渦電流
損失が増加するのを防ぐための絶縁シートである. 第2図は、数層分を模式的に示したものである.内径側
は高磁場用超電導材料を使用したコンジット型超電導々
体であり、外径側は低磁場用超電導材料を使用したコン
ジット型超電導々体である.(21)は眉間絶縁材であ
る. (22a), (22b)は眉間の導体間の接続
部である, (22c)は高磁場用コンジット型超電導
々体と低磁場用コンジット型超電導々体間の接続部であ
る.(23)はスペーサ、(24)は巻枠である, (
25)は最外装の電磁力支持部材であり、最外装のため
帯状の部材でよい, (26)は対地絶縁である.最外
層部では電磁力が弱いため、最外装の電磁力支持部材(
25)なしで直接対地絶縁(26)を行うことも可能な
場合もある.次に動作について説明する.磁場中にある
導体に電流が流れると、導体には、磁場×電流の電磁力
が磁場方向と電流方向と直角方向に働く.即ち円形コイ
ルではコイル拡張力となる.この拡張力となる電磁力は
、電磁力の働く導体の外周側の次の層の電磁力支持部材
で支持される.かようにして各超電導々体に発生する電
磁力は次の層の電磁力支持部材で支持されコイル全体と
して電磁力は問題なく支持される. 一方、導体間接続部は空間的に比較的余裕のあるコイル
の軸方向の端部に設けることが可能なため、パンケーキ
型コイルのように空間の利用率を悪化させることはない
. なお本実施例では、ターン間絶縁(19)をコンジット
型超電導々体(7)に施した後、スパイラル状の電磁力
支持部材(17)の開口部(18)に埋め込みながらス
パイラル状に巻線する例について示したが、第3a図に
示すように、ターン間絶縁なしにコンジット型超電導々
体(フ》をスバイラル状の電磁力支持部材(17》の開
口部(18》に埋め込み、その外周部にターン間絶縁(
19)を施すことも可能である.また、変流器コイルに
は軸方向の電磁力も働くので、第3b図に示すように、
コンジット型超電導々体(7)を挿入したスバイラル状
の電磁力支持部材(17)の開口部(18)のコンジッ
ト型超電導々体よりさらに外周側の開口部に高強度ステ
ンレス鋼帯(27》を挿入すれば、軸方向の電磁力に対
してもより強度を増加させることも可能である.更に本
実施例では、主として変流器コイルの空間利用に関する
導体間接続の面から利点を述べたが、かかる電磁力支持
部材は円筒から容易に旋盤のみの削り出し加工で製作で
きるという利点もある. [発明の効果] 以上のように、この発明によれば、円筒状の構造材から
コイル外径側に開口部を有するスバイラル状の電磁力支
持部材を削り出し、コンジット型超電導々体のコンジッ
ト外面に絶縁を施工後、開口部に埋め込みながらスバイ
ラル状に巻線し、導体接続部をコイルの軸方向の端部に
設けたので,スパイラル状の電磁力支持部材で電磁力を
支持するとともに、コイルのグレーディングも容易とな
り安価で信頼性のよい変流器コイルの製作が可能となる
. また、電磁力支持部材を円筒から旋盤のみで容易に削り
出し加工が可能という利点もある.
For this reason, it is being researched and developed for use in large coils for nuclear fusion reactors, which have large electromagnetic forces and require insulation on the order of several +kV. [Problems to be Solved by the Invention] In the conventional superconducting coil device as described above, in the conduit-type superconductor shown in Fig. 7, the conduit material is high-strength steel, so the superconductor itself generates a considerable electromagnetic force. It is possible to support However, due to manufacturability issues, it is difficult to make the conduit sufficiently thick.
Large superconducting coils for fusion reactors with large electromagnetic forces require other structural members within the coil that can share the support of the electromagnetic force. The structure shown in Figure 4 can be considered as a candidate. A combination of these two methods has the characteristic that a coil with sufficient strength can be manufactured. Figure 8 shows only the necessary parts of the superconducting coil group of a tokamak-type fusion reactor.
13), balanced magnetic field coils (14a) to (14F>) for maintaining the plasma in the required shape, and a current transformer coil (15) that heats the plasma using the principle of a current transformer.Balanced magnetic field coil There are various ways to arrange the coils. Among these coils, the size of the current transformer coil has a great influence on the contents of the plasma experiment and the overall dimensions of the reactor, and the diameter of the magnetic field generation space (16) should be kept as small as possible. The magnetic field generated must be as high as possible, i.e. the current transformer coil (
The distance between the outer circumferential side of the coil 15) and the toroidal coil (13) must be as small as possible, and the thickness of the current transformer coil (15) must be as thin as possible. In addition, the current transformer coil (15) is a long coil in the axial direction, so when a current is passed and a magnetic field is generated, the maximum magnetic field is generated on the inner diameter side of the coil, and the radius. The magnetic field decreases as the value increases, and the magnetic field outside the coil is a fraction of the maximum magnetic field. In order to increase the magnetic field generated by the current transformer coil (15), it is necessary to use a compound-based material such as Nb Sn as the superconducting wire material. However, compound-based superconducting materials for high magnetic fields, such as NbSn, are more brittle than alloy-based superconducting materials for relatively low magnetic fields, such as NbTi.
Reliability is lower than alloy-based materials such as bTi. It is also expensive due to the technical difficulty of handling it. Therefore, in general, in a high magnetic field generating coil, Nb Sn is used only in the high magnetic field part.
A type of compound superconducting material is used, and NbT is used in the low magnetic field part.
An i-based alloy superconducting material is used to connect the two within the coil. This method is called grading. The current that can flow through a superconducting wire is a function of the magnetic field, and a larger current can flow on the low magnetic field side. In other words, if the current value is constant on the high and low magnetic field sides, grading allows the use of a smaller superconductor on the low magnetic field side, making it possible to reduce the thickness of the coil. On the other hand, when this grading method is applied to a combination of a conduit-type superconductor and the method shown in Fig. 4, it is difficult to connect the conduit-type superconductor in a narrow space within the slot of the electromagnetic force support structure member (2). This method has the disadvantage of being technically extremely difficult. Therefore,
In the pancake-wound coil method, which is a combination of the above two methods, the conduit-type superconductor uses the same technically difficult conductor for high magnetic fields from the inside to the outside, such as Nb Sn-based compound superconducting material. .. Therefore, although the above-mentioned pancake winding can ensure coil strength, it has the fatal disadvantage of lowering technical reliability and becoming expensive. Furthermore, although the current transformer coil operates in pulses, the electromagnetic force support structure member shown in Figure 4, which supports several turns of superconductors in parallel, experiences a fluctuating magnetic field over a wide area, so AC losses due to eddy currents are generated. The increase in cooling heat load also poses a major problem. This invention was made to solve the above-mentioned problems, and even a large coil using a conduit-type superconductor can be supported against electromagnetic force. The purpose is to obtain a coil winding system that allows for [Means for Solving the Problems] A superconducting coil device according to the present invention has a spiral electromagnetic force support member having an opening on the outer circumferential side of the coil cut out of a cylindrical structural material, and a conduit of a conduit-type superconductor. After insulating the outside surface, a superconducting coil is wound in a spiral while embedded in the opening. [Function] Since the superconducting coil device of the present invention has a spiral winding having the electromagnetic force supporting member as described above, it is possible to connect conduit-type superconducting conductors in the space at the end of the coil. The electromagnetic force is supported by the electromagnetic force support member, and the grading of the coil becomes easy, making it possible to manufacture inexpensive and reliable current transformer coils. [Example] An example of the present invention will be described below with reference to FIGS. 1 and 2. Figure 1 shows one layer of a solenoid coil, (17) is a spiral electromagnetic force support member machined from cylindrical high-strength steel, and (F) is an electromagnetic force support member. This is a conduit-type superconductor that is fitted into the opening (18) of (17) and wound. The conduit-type superconductor (7) is provided with inter-turn insulation (19). (20) is an insulating sheet to prevent electromagnetic force supporting members from coming into contact and increasing eddy current loss. Figure 2 schematically shows several layers. The inner diameter side is a conduit-type superconductor using superconducting material for high magnetic fields, and the outer diameter side is a conduit-type superconductor using superconducting material for low magnetic fields. (21) is the insulation material between the eyebrows. (22a) and (22b) are the connections between the conductors between the eyebrows, and (22c) is the connection between the conduit-type superconductor for high magnetic fields and the conduit-type superconductor for low magnetic fields. (23) is a spacer, (24) is a winding frame, (
25) is the outermost electromagnetic force supporting member, and since it is the outermost member, it can be a band-shaped member. (26) is the ground insulation. Since the electromagnetic force is weak in the outermost layer, the outermost electromagnetic force support member (
In some cases, it is possible to provide direct earth insulation (26) without 25). Next, we will explain the operation. When a current flows through a conductor in a magnetic field, an electromagnetic force of magnetic field x current acts on the conductor in a direction perpendicular to the direction of the magnetic field and the direction of the current. In other words, for a circular coil, this is the coil expansion force. The electromagnetic force, which is this expansion force, is supported by the electromagnetic force support member of the next layer on the outer circumferential side of the conductor on which the electromagnetic force acts. In this way, the electromagnetic force generated in each superconductor is supported by the electromagnetic force support member in the next layer, and the electromagnetic force is supported by the coil as a whole without any problems. On the other hand, since the inter-conductor connection can be provided at the axial end of the coil where there is a relatively large amount of space, the space utilization efficiency does not deteriorate as in the case of pancake-shaped coils. In this example, after the inter-turn insulation (19) is applied to the conduit type superconductor (7), the wire is wound in a spiral shape while being embedded in the opening (18) of the spiral electromagnetic force support member (17). As shown in Fig. 3a, a conduit-type superconductor (F) is embedded in the opening (18) of a spiral electromagnetic force support member (17) without inter-turn insulation, and its outer periphery is Turn-to-turn insulation (
19) can also be applied. In addition, since axial electromagnetic force also acts on the current transformer coil, as shown in Figure 3b,
A high-strength stainless steel strip (27) is attached to the opening (18) of the spiral electromagnetic force support member (17) into which the conduit-type superconductor (7) is inserted, which is further outward from the conduit-type superconductor. If inserted, it is possible to further increase the strength against electromagnetic force in the axial direction.Furthermore, in this example, the advantages were mainly described from the perspective of connection between conductors in terms of space utilization of the current transformer coil. This electromagnetic force supporting member has the advantage that it can be easily manufactured from a cylinder by machining using only a lathe. [Effects of the Invention] As described above, according to the present invention, the outer diameter of the coil can be adjusted from a cylindrical structural material. After cutting out a spiral electromagnetic force support member with an opening on the side and applying insulation to the outer surface of the conduit of the conduit-type superconductor, the wire is wound in a spiral shape while being buried in the opening, and the conductor connection part is connected to the coil axis. Since it is provided at the end of the direction, the electromagnetic force is supported by the spiral electromagnetic force support member, and the grading of the coil is also facilitated, making it possible to manufacture inexpensive and reliable current transformer coils. Another advantage is that the force support member can be easily machined from a cylinder using only a lathe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の一実施例を示し、第1
図(a)は一部断面概略斜視図、同図(b)は同図(&
)の一部横断面図、第2図は数層分の一部断面図、第3
a図、第3b図はそれぞれ他の実施例の一部横断面図,
第4図、第5図、第6図は従来の超電導コイル装置を示
し、第4図は一部断面斜視図、第5図は第4図のものの
一部斜視図、第6図は結線図である.第7図は従来の超
電導々体の横断面図、第8図は従来の超電導コイル装置
の使用例の概略横断面図である. (7)・・・コンジット型超電導々体、(17)・・・
スパイラル状の電磁力支持部材、(18)・・・開口部
、(19)・・・ターン間絶縁、(20)・・・絶縁シ
ート、(2l)・・・層間絶縁材、(27)・・・高強
度ステンレス鋼帯.なお、各図中、同一符号は同一また
は相当部分を示す. 島1図 (Q) (b) 代  理  人    大  岩  増  雄7:コ一
ジー,ト型8tjI!.Qヰ 17: スハ0イ51レ収゛電朧力4杼部材1all’
lo静 帛4図 庫5図 第30図 兇3b図
FIG. 1 and FIG. 2 show one embodiment of the present invention.
Figure (a) is a partially cross-sectional schematic perspective view, and figure (b) is the same figure (&
), Figure 2 is a partial cross-sectional view of several layers, and Figure 3 is a partial cross-sectional view of several layers.
Figure a and Figure 3b are partial cross-sectional views of other embodiments, respectively.
Figures 4, 5, and 6 show conventional superconducting coil devices, where Figure 4 is a partially sectional perspective view, Figure 5 is a partial perspective view of the one in Figure 4, and Figure 6 is a wiring diagram. It is. FIG. 7 is a cross-sectional view of a conventional superconducting conductor, and FIG. 8 is a schematic cross-sectional view of an example of the use of a conventional superconducting coil device. (7)... Conduit type superconductor, (17)...
Spiral electromagnetic force support member, (18)...opening, (19)...interturn insulation, (20)...insulation sheet, (2l)...interlayer insulation material, (27)... ...High strength stainless steel strip. In each figure, the same reference numerals indicate the same or equivalent parts. Island 1 diagram (Q) (b) Agent Masuo Oiwa 7: Koichi, G type 8tjI! .. Q17: Suha 0i 51 collection, electric power 4 shuttle parts 1all'
LO Seisaku 4, Figure 5, Figure 30, Figure 3b

Claims (1)

【特許請求の範囲】[Claims]  超電導線を束状に撚線し、周囲を高強度ステンレス鋼
でなるコンジットで覆い、前記コンジット内部に冷媒を
強制循環して冷却するコンジット型超電導々体を円筒状
に回巻きした超電導コイル装置において、連続回巻き方
向を軸方向とし、前記コンジット型超電導々体をコイル
外径側に開口部を有する高強度ステンレス鋼よりなるス
パイラル状の電磁力支持部材の前記開口部に挿入してな
ることを特徴とする超電導コイル装置。
In a superconducting coil device in which superconducting wires are twisted into a bundle, the surroundings are covered with a conduit made of high-strength stainless steel, and a conduit-type superconductor is wound into a cylindrical shape for cooling by forced circulation of a refrigerant inside the conduit. , the continuous winding direction is the axial direction, and the conduit type superconductor is inserted into the opening of a spiral electromagnetic force support member made of high strength stainless steel and having an opening on the outer diameter side of the coil. Characteristic superconducting coil device.
JP1054073A 1989-03-07 1989-03-07 Superconducting coil device Expired - Lifetime JPH0626165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054073A JPH0626165B2 (en) 1989-03-07 1989-03-07 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054073A JPH0626165B2 (en) 1989-03-07 1989-03-07 Superconducting coil device

Publications (2)

Publication Number Publication Date
JPH02232903A true JPH02232903A (en) 1990-09-14
JPH0626165B2 JPH0626165B2 (en) 1994-04-06

Family

ID=12960445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054073A Expired - Lifetime JPH0626165B2 (en) 1989-03-07 1989-03-07 Superconducting coil device

Country Status (1)

Country Link
JP (1) JPH0626165B2 (en)

Also Published As

Publication number Publication date
JPH0626165B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
EP1212760B1 (en) Rotor assembly with superconducting magnetic coil
US5581220A (en) Variable profile superconducting magnetic coil
JP4558517B2 (en) Superconducting coil
EP1653485A1 (en) Superconducting wire and superconducting coil employing it
EP2487691A1 (en) Superconductor cable and ac power transmission cable
US20210319938A1 (en) Bent toroidal field coils
US20160351310A1 (en) Low Temperature Superconductive and High Temperature Superconductive Amalgam Magnet
US5604473A (en) Shaped superconducting magnetic coil
US4151498A (en) Combined superconducting coil
JP4774494B2 (en) Superconducting coil
JPH10214713A (en) Superconducting coil
CN217061586U (en) Stepped high-temperature superconducting CICC conductor with high current-carrying capacity
JP2011003468A (en) Superconductive cable
JP6491331B2 (en) Superconducting coil using partially insulated winding and method of manufacturing superconducting coil
JP3840819B2 (en) Superconducting coil for induction equipment
JPH02232903A (en) Superconducting coil device
JPH06260335A (en) High temperature superconducting magnet
US3483493A (en) Superconducting magnet coils
JPH0482205A (en) Superconducting coil apparatus
JP4674457B2 (en) Superconducting coil
JP2002075727A (en) Superconducting coil, its manufacturing method, and superconductor used for the same
JP2001245430A (en) Superconducting current-limiting device of magnetic- shielding type
Keilin et al. Plane-turns superconducting magnets: Option for fusion
JPS5868910A (en) Superconductive device
Dustmann et al. Studies on design and tests of superconductors for Tokamaks