JP2018129128A - Superconductive cable, and connected part of superconductive cable - Google Patents

Superconductive cable, and connected part of superconductive cable Download PDF

Info

Publication number
JP2018129128A
JP2018129128A JP2017019803A JP2017019803A JP2018129128A JP 2018129128 A JP2018129128 A JP 2018129128A JP 2017019803 A JP2017019803 A JP 2017019803A JP 2017019803 A JP2017019803 A JP 2017019803A JP 2018129128 A JP2018129128 A JP 2018129128A
Authority
JP
Japan
Prior art keywords
superconducting
cable
layer
cylindrical electrode
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017019803A
Other languages
Japanese (ja)
Other versions
JP6818578B2 (en
Inventor
達尚 中西
Tatsunao Nakanishi
達尚 中西
信博 三堂
Nobuhiro Sandou
信博 三堂
北村 祐
Yu Kitamura
祐 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2017019803A priority Critical patent/JP6818578B2/en
Publication of JP2018129128A publication Critical patent/JP2018129128A/en
Application granted granted Critical
Publication of JP6818578B2 publication Critical patent/JP6818578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Processing Of Terminals (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To equalize a current to flow favorably by reducing a variation of connection resistances of a plurality of superconductive wire rods connected to an electrode.SOLUTION: The superconductive cable includes: a superconductor layer formed by winding a plurality of superconductive rods around a core material in a circular form; and a superconductive wire rod for circumferentially setting wound around an outer periphery of the super conductor layer, and electrically connected to each of a plurality of the super conductive wire rods of the super conductor layer.SELECTED DRAWING: Figure 2

Description

本発明は、超電導ケーブル及び超電導ケーブルの接続部に関する。   The present invention relates to a superconducting cable and a connecting portion of the superconducting cable.

常電導ケーブルと比較して、大容量の電流を低損失で送電できる超電導ケーブルの一般的に知られる構成は、フォーマ(心材)の外周に超電導テープがスパイラル状に巻回されている。また、超電導ケーブルにおいては、大電流送電を可能とするために、超電導テープが、同心円状に多層に配置されている構造も知られている。多層配置された超電導テープの層間(すなわち超電導テープの間)には、超電導テープを押えるとともに、超電導テープ間での電気絶縁をとる押えテープが設けられる。   In a generally known configuration of a superconducting cable capable of transmitting a large-capacity current with low loss compared to a normal conducting cable, a superconducting tape is spirally wound around the outer periphery of a former (core material). In addition, in the superconducting cable, a structure is also known in which superconducting tapes are concentrically arranged in multiple layers to enable large current transmission. Between the layers of the superconducting tapes arranged in multiple layers (that is, between the superconducting tapes), a presser tape is provided for pressing the superconducting tape and for electrically insulating the superconducting tape.

このような層構造の超電導ケーブルを、超電導応用機器に応用する場合、例えば、特許文献1及び特許文献2に示すような、超電導ケーブルの超電導テープと、外部電源、外部回路或いは常温ケーブル等の常温側に設置された機器に接続される金属端子(電極)とを電気的に接続した端末構造が用いられる。   When the superconducting cable having such a layer structure is applied to a superconducting application device, for example, as shown in Patent Document 1 and Patent Document 2, a superconducting tape of a superconducting cable and an external power source, an external circuit, a normal temperature cable, or the like A terminal structure in which a metal terminal (electrode) connected to a device installed on the side is electrically connected is used.

特許文献1及び特許文献2の端末構造では、超電導テープが層状に配設された超電導ケーブルの端末を、常温側に設置された設置された機器、例えば、常電導ケーブル等に接続され、且つ、超電導テープによる層の外径に対応した内径の筒状の金属端子に挿入する。 そして、金属端子と、この金属端子に挿入された超電導テープの層との間に半田を流し込むことで超電導テープと金属端子とは電気的に接続されている。   In the terminal structures of Patent Document 1 and Patent Document 2, the terminal of the superconducting cable in which the superconducting tape is arranged in layers is connected to an installed device installed on the normal temperature side, such as a normal conducting cable, and It is inserted into a cylindrical metal terminal having an inner diameter corresponding to the outer diameter of the layer made of superconducting tape. The superconducting tape and the metal terminal are electrically connected by pouring solder between the metal terminal and the layer of the superconducting tape inserted into the metal terminal.

特開2010−287349号公報JP 2010-287349 A 特開2013−178957号公報JP 2013-178957 A

ところで、従来のように、超電導ケーブルを金属端子の内側に挿入して半田を介して接続する構造では、接続長のバラツキや接続作業上の接続精度の問題により、半田の量或いは金属端子と各超電導テープとの接触状態の違い等が生じて、金属端子と各超電導テープとの接続抵抗にバラツキが生じることが多い。接続抵抗にバラツキが生じると、接続抵抗の高い超電導線材を流れない電流は、接続抵抗の低い超電導線材に流れるようになり、許容電流量を超えて、超電導ケーブルの通電性が劣化する恐れがある。特許文献2では、電極に相当する常電導導体に接続される超電導ケーブルの超電導線材毎に、それぞれの長手方向に沿って、分流用超電導部材を取り付けることにより、超電導線材と常電導導体の境界部分における電流の集中が緩和される。   By the way, in the conventional structure in which a superconducting cable is inserted inside a metal terminal and connected via solder, due to variations in connection length and connection accuracy in connection work, the amount of solder or the metal terminal and each Due to the difference in contact state with the superconducting tape, etc., the connection resistance between the metal terminal and each superconducting tape often varies. If the connection resistance varies, the current that does not flow through the superconducting wire with a high connection resistance will flow into the superconducting wire with a low connection resistance, which may exceed the allowable current amount and degrade the conductivity of the superconducting cable. . In Patent Document 2, for each superconducting wire of a superconducting cable connected to a normal conducting conductor corresponding to an electrode, by attaching a superconducting member for shunting along the respective longitudinal direction, a boundary portion between the superconducting wire and the normal conducting conductor The current concentration at is reduced.

しかしながら、特許文献2では、各超電導線材において、それぞれが接続される常電導体との接続抵抗にバラツキがある場合、特に、常電導体側から超電導ケーブル側に送電する場合では、接続抵抗により流れる電流量が決定されるので、接続抵抗のバラツキによって超電導線材毎に流れる電流の大きさの違いは解消されにくい。   However, in Patent Document 2, in each superconducting wire, when there is variation in the connection resistance with the normal conductor to which each is connected, particularly when power is transmitted from the normal conductor side to the superconducting cable side, the current flowing through the connection resistance Since the amount is determined, it is difficult to eliminate the difference in the magnitude of the current flowing for each superconducting wire due to variations in connection resistance.

本発明はかかる点に鑑みてなされたものであり、電極に接続される複数の超電導線材の接続抵抗のバラツキを低減して電流を均一化して好適に流すことができる超電導ケーブル及び超電導ケーブルの接続部を提供することを目的とする。   The present invention has been made in view of such a point, and a superconducting cable capable of reducing the variation in connection resistance of a plurality of superconducting wires connected to electrodes and uniforming the current to flow appropriately, and the connection of the superconducting cable The purpose is to provide a department.

本発明の超電導ケーブルの一つの態様は、
芯材の周囲に円状に複数の超電導線材が巻き付けてなる超電導導体層と、
前記超電導導体層の外周に周方向で巻き付けられ、前記超電導導体層の前記複数の超電導線材のそれぞれに電気的に接続された周設用超電導線材と、
を有する構成を採る。
One aspect of the superconducting cable of the present invention is:
A superconducting conductor layer in which a plurality of superconducting wires are wound in a circle around the core; and
A circumferential superconducting wire wound around an outer periphery of the superconducting conductor layer in a circumferential direction and electrically connected to each of the plurality of superconducting wires of the superconducting conductor layer;
The structure which has is taken.

本発明の超電導ケーブルの接続部の一つの態様は、
上記構成の超電導ケーブルと、
前記超電導ケーブルの前記超電導導体層を囲むように配設され、前記超電導導体層と記周設用超電導線材とに半田部を介して電気的に接合される筒状電極と、
を有する構成を採る。
One aspect of the connecting portion of the superconducting cable of the present invention is:
A superconducting cable configured as described above;
A cylindrical electrode which is disposed so as to surround the superconducting conductor layer of the superconducting cable, and is electrically joined to the superconducting conductor layer and the superconducting wire for peripheral wiring via a solder portion;
The structure which has is taken.

本発明によれば、電極に接続される複数の超電導線材の接続抵抗のバラツキを低減して電流を均一化して好適に流すことができる。   According to the present invention, variation in connection resistance of a plurality of superconducting wires connected to electrodes can be reduced and current can be made to flow uniformly.

本発明に係る実施の形態1の超電導ケーブルの接続部の構成を示す側面図The side view which shows the structure of the connection part of the superconducting cable of Embodiment 1 which concerns on this invention. 同超電導ケーブルの接続部の要部構成を示す縦断面図Longitudinal sectional view showing the main configuration of the connection part of the superconducting cable 同超電導ケーブルの要部構成を示す斜視図The perspective view which shows the principal part structure of the superconducting cable 図1のA―A線矢視断面図1 is a cross-sectional view taken along line AA in FIG. 本発明に係る実施の形態2の超電導ケーブルの接続部の変形例1の要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure of the modification 1 of the connection part of the superconducting cable of Embodiment 2 which concerns on this invention 本発明に係る実施の形態3の超電導ケーブルの接続部の変形例2の要部構成を示す縦断面図The longitudinal cross-sectional view which shows the principal part structure of the modification 2 of the connection part of the superconducting cable of Embodiment 3 which concerns on this invention

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本発明に係る実施の形態1の超電導ケーブルの接続部の構成を示す側面図であり、図2は、同超電導ケーブルの接続部の要部構成を示す縦断面図である。
(Embodiment 1)
FIG. 1 is a side view showing the configuration of the connecting portion of the superconducting cable according to the first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing the main configuration of the connecting portion of the superconducting cable.

図1に示す超電導ケーブル100の接続部10は、超電導ケーブル100と、筒状の引出用電極(以下、筒状電極と呼ぶ)210とを有する。本実施の形態の例では、筒状電極210は、超電導ケーブル100が有する超電導テープ113aに接続されるとともに、リードケーブル230が電気的に接続される。筒状電極210は、リードケーブル230を介して常電導体である常温部と,超電導ケーブル100の一方の端末とを接続する。実際の使用時には、超電導ケーブル100および筒状電極210は、液体窒素等の極低温の液体に浸される。そして、超電導ケーブル100の電流が、筒状電極210を介してリードケーブル230によって常温部に引き出されるようになっている。例えば、リードケーブル230は、ポリマー套管(図示せず)等を介して気中に導出される。なお、超電導ケーブル100の他方の端末は、筒状電極210と同様に形成された筒状電極を介して、他の常温部等に接続される。   The connection part 10 of the superconducting cable 100 shown in FIG. 1 has the superconducting cable 100 and a cylindrical extraction electrode (hereinafter referred to as a cylindrical electrode) 210. In the example of the present embodiment, the cylindrical electrode 210 is connected to the superconducting tape 113a included in the superconducting cable 100, and the lead cable 230 is electrically connected. The cylindrical electrode 210 connects a normal temperature portion, which is a normal conductor, and one end of the superconducting cable 100 via a lead cable 230. In actual use, superconducting cable 100 and cylindrical electrode 210 are immersed in a cryogenic liquid such as liquid nitrogen. Then, the current of the superconducting cable 100 is drawn out to the room temperature portion by the lead cable 230 via the cylindrical electrode 210. For example, the lead cable 230 is led out into the air via a polymer sleeve (not shown) or the like. Note that the other end of the superconducting cable 100 is connected to another room temperature portion or the like via a cylindrical electrode formed in the same manner as the cylindrical electrode 210.

接続部10では、超電導ケーブル100が、筒状電極210内に挿入され、筒状電極210の内側で半田部170を介して電気的に接続される。   In the connection part 10, the superconducting cable 100 is inserted into the cylindrical electrode 210 and electrically connected via the solder part 170 inside the cylindrical electrode 210.

図3は、本実施の形態に係る超電導ケーブルの要部構成を示す斜視図である。   FIG. 3 is a perspective view showing a main configuration of the superconducting cable according to the present embodiment.

図1及び図2に示すように、超電導ケーブル100は、外周に押えテープ112が巻回された芯材(フォーマ)111及び複数の超電導テープ113aを有するケーブル本体部110と、周設用超電導線材120と、を有する。   As shown in FIGS. 1 and 2, a superconducting cable 100 includes a cable body 110 having a core material (former) 111 and a plurality of superconducting tapes 113a around which a pressing tape 112 is wound, and a superconducting wire for peripheral installation. 120.

芯材111は、円筒形状であり、例えば、Cu(銅)の撚線から構成されている。この芯材111の外周には、不織布からなる押えテープ112が巻回されている。   The core material 111 has a cylindrical shape, and is made of, for example, a stranded wire of Cu (copper). A pressing tape 112 made of a nonwoven fabric is wound around the outer periphery of the core material 111.

押えテープ112の外周には、第1の超電導導体層113を構成する超電導テープ113aが、図3に示すように、周方向で各テープ間に若干の所定間隔Gを空けて、それぞれスパイラル状に巻回されている。押えテープ112は、1本の不織布が間隔を空けずにスパイラル状に巻回されることにより層状の絶縁部分として構成されている。   On the outer periphery of the presser tape 112, as shown in FIG. 3, the superconducting tape 113a constituting the first superconducting conductor layer 113 is spirally spaced with a predetermined gap G between the tapes in the circumferential direction. It is wound. The presser tape 112 is configured as a layered insulating portion by winding a single non-woven fabric spirally without a gap.

本実施の形態の例では、1層あたり10本の超電導テープがスパイラル状に所定間隔を空けて巻回されている。つまり、超電導テープ113aによる超電導導体層113は、それぞれ、10本の超電導テープ113aから構成されている。なお、超電導ケーブル100において、超電導テープ113aによる層を構成する超電導テープの本数は、何本でもよく、12本等の10本以上で構成して良いし、少なくとも1本以上であればよい。超電導テープ113aによる層としては、例えば、厚さ0.1mm、幅5mmの超電導テープが撚ピッチ250mmで、10枚巻回されている。押えテープ112としては、例えば、厚さ0.2mm、幅45mmの不織布が1/2ラップ巻きされている(つまり、テープ幅の半分ずつがオーバーラップして巻回されている)。   In the example of the present embodiment, ten superconducting tapes per layer are wound spirally at a predetermined interval. That is, each of the superconducting conductor layers 113 made of the superconducting tape 113a is composed of ten superconducting tapes 113a. In the superconducting cable 100, the number of superconducting tapes constituting the layer of the superconducting tape 113a may be any number, and may be composed of 10 or more such as 12, or at least one. As a layer made of the superconducting tape 113a, for example, ten superconducting tapes having a thickness of 0.1 mm and a width of 5 mm are wound at a twist pitch of 250 mm. As the presser tape 112, for example, a non-woven fabric having a thickness of 0.2 mm and a width of 45 mm is wound in half wrap (that is, half of the tape width is wound in an overlapping manner).

超電導テープ113aの材料としては、従来提案されている種々の超電導材料を用いることができる。ここでは、超電導テープ113aは、基板と、基板上に当該基板に沿って形成されたREBaCu系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2〜7である。)の高温超電導薄膜である超電導層と、を備える。 As a material of the superconducting tape 113a, various conventionally proposed superconducting materials can be used. Here, the superconducting tape 113a includes a substrate and, REBa y Cu 3 O z system formed along the substrate on the substrate (RE is Y, Nd, Sm, Eu, 1 kind selected from Gd and Ho A superconducting layer which is a high-temperature superconducting thin film of the above-mentioned elements, wherein y ≦ 2 and z = 6.2 to 7.).

超電導テープ(YBCO超電導線材)113aは、テープ状であり、テープ状の金属製の基板上に、中間層、テープ状の超電導層、安定化層が順に積層されることによって形成される。なお、超電導テープ113aでは、基板、中間層、超電導層及び安定化層からなる積層構造は、導電材料(銅)からなる被覆材によって被覆されていることが好ましい。   The superconducting tape (YBCO superconducting wire) 113a has a tape shape, and is formed by sequentially laminating an intermediate layer, a tape-shaped superconducting layer, and a stabilizing layer on a tape-shaped metal substrate. In the superconducting tape 113a, it is preferable that the laminated structure including the substrate, the intermediate layer, the superconducting layer, and the stabilizing layer is covered with a covering material made of a conductive material (copper).

基板は、例えば、Ni−Cr系(具体的には、Ni−Cr−Fe−Mo系のハステロイ(登録商標)B、C、X等)、W−Mo系、Fe−Cr系(例えば、オーステナイト系ステンレス)、又は、Fe−Ni系(例えば、非磁性の組成系のもの)等の材料に代表される低磁性の結晶粒無配向・耐熱高強度金属基板である。   The substrate may be, for example, Ni—Cr (specifically, Ni—Cr—Fe—Mo based Hastelloy (registered trademark) B, C, X, etc.), W—Mo, Fe—Cr (eg, austenite). Stainless steel) or Fe—Ni (for example, non-magnetic composition type) and other low magnetic crystal grain non-oriented / heat resistant high strength metal substrates.

中間層は、例えば基板からの元素の拡散が超電導層に及ぶのを防止するための拡散防止層、超電導層の結晶を一定の方向に配向させるための配向層等の複数の層を有する。例えば、中間層は、基板上に、スパッタリング法で成膜された第1中間層としてのAl層を有し、Al層上に、RFスパッタ法またはイオンビームスパッタ法等のスパッタリング法により第2中間層としての非晶質であるLaMnO層が成膜される。このLaMnO層上にIBAD法等により成膜された第3中間層としてのMgO層を有する。MgO層上には、スパッタリング法により成膜された第4中間層としてのLaMnO層を有し、LaMnO層上に、スパッタリング法等により成膜された第5中間層としてのCeO層を有する。なお、第1中間層は、Alに代えて、ReZrO(Re:Y、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbから選択される1又は2種以上の希土類元素)で、RF−スパッタリング法、或いは、MOD法などで成膜してもよい。この第1中間層は、耐熱性が高く、界面反応性を低減するための層であり、その上に配される膜の配向性を得るために用いられるベッド層としても機能する。 The intermediate layer has, for example, a plurality of layers such as a diffusion preventing layer for preventing element diffusion from the substrate from reaching the superconducting layer and an orientation layer for orienting the crystals of the superconducting layer in a certain direction. For example, the intermediate layer has an Al 2 O 3 layer as a first intermediate layer formed by sputtering on a substrate, and an RF sputtering method, an ion beam sputtering method, or the like is formed on the Al 2 O 3 layer. An amorphous LaMnO 3 layer is formed as the second intermediate layer by sputtering. On this LaMnO 3 layer, an MgO layer is formed as a third intermediate layer formed by the IBAD method or the like. On the MgO layer, there is a LaMnO 3 layer as a fourth intermediate layer formed by a sputtering method, and a CeO 2 layer as a fifth intermediate layer formed by a sputtering method or the like on the LaMnO 3 layer. Have. The first intermediate layer is replaced with Al 2 O 3 by using ReZrO (Re: Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, or one or more selected from them. May be formed by an RF-sputtering method or a MOD method. This first intermediate layer has high heat resistance and is a layer for reducing interfacial reactivity, and also functions as a bed layer used for obtaining the orientation of the film disposed thereon.

超電導層は、YBaCuで表されるイットリウム系超電導体(YBCO層)が代表的なものである。超電導テープ113aの超電導層には、Zr、Sn、Ce、Ti、Hf、Nbのうち少なくとも1つを含む酸化物粒子(粒径50[μm]以下)が磁束ピンニング点として分散していることが好ましい。この場合、高温超電導薄膜としての超電導層の成膜法としては、三フッ化酢酸塩(TFA)を用いたTFA−MOD法が好適である。例えば、TFAを含むBa溶液中に、Baと親和性の高いZr含有ナフテン酸塩等を混合することにより、RE系超電導体からなる高温超電導薄膜に、Zrを含む酸化物粒子(BaZrO)を磁束ピンニング点として分散させることができる。なお、高温超電導薄膜中に磁束ピンニング点を分散する手法は、公知の技術を適用することができる(例えば特開2012−059468号公報)。超電導テープの高温超電導薄膜中に磁束ピンニング点を分散させることにより、超電導テープ113aが湾曲した状態で用いられても、磁場の影響を受けにくく、安定した超電導特性が発揮される。 The superconducting layer is typically an yttrium superconductor (YBCO layer) represented by YBa 2 Cu 3 O 7 . In the superconducting layer of the superconducting tape 113a, oxide particles containing at least one of Zr, Sn, Ce, Ti, Hf, and Nb (particle size of 50 [μm] or less) are dispersed as magnetic flux pinning points. preferable. In this case, the TFA-MOD method using trifluoroacetate (TFA) is suitable as a method for forming the superconducting layer as the high-temperature superconducting thin film. For example, a Zr-containing oxide particle (BaZrO 3 ) is added to a high-temperature superconducting thin film made of a RE-based superconductor by mixing a Zr-containing naphthenate having a high affinity with Ba into a Ba solution containing TFA. It can be distributed as flux pinning points. A known technique can be applied to the method of dispersing the magnetic flux pinning points in the high-temperature superconducting thin film (for example, JP 2012-059468 A). By dispersing the magnetic flux pinning points in the high-temperature superconducting thin film of the superconducting tape, even if the superconducting tape 113a is used in a curved state, it is hardly affected by the magnetic field and exhibits stable superconducting characteristics.

安定化層は、銀、金、白金等の貴金属、あるいはそれらの合金であり低抵抗の金属により超電導層上に成膜される。なお、安定化層は、直下の超電導層が金、銀などの貴金属、あるいはそれらの合金以外の材料と直接的な接触によって反応によって引き起こす性能低下と、事故電流や交流通電により発生した熱を分散して発熱による破壊・性能低下とを防止する。   The stabilization layer is a noble metal such as silver, gold, platinum, or an alloy thereof, and is formed on the superconducting layer with a low-resistance metal. The stabilization layer disperses the performance degradation caused by the direct contact of the superconducting layer directly below with noble metals such as gold and silver, or materials other than their alloys, and the heat generated by accident currents and alternating currents. To prevent destruction and performance degradation due to heat generation.

上述のように複数の超電導テープ113aは、基板上に超電導層を備える。そして、複数の超電導テープ113aは、超電導ケーブル100において、超電導層側の面を外周側に向け、且つ、基板側の面を内周側に向くようにして、芯材111の周囲に同心円状に配置されている。すなわち、超電導テープ113aは、芯材111の周囲に押さえテープで構成される層状の絶縁部分間に、超電導層を外周側及び基板を内周側となるように巻き付けて配置されている。なお、超電導ケーブル100は超電導線材による層を複数有しても良い。複層の超電導線材本体を備える場合、超電導テープ113aの外周に、更に押えテープを押えテープ112と同様に巻回される。この巻回した押えテープの外周に、第2の超電導導体層を構成する複数の超電導テープ113aが、一層目の超電導テープ113aと同様に、周方向で所定間隔を空けて、それぞれスパイラル状に巻回される。なお、この構成の場合、第2の超電導テープの外周には、押さえテープが、押えテープ112と同様に、1本の不織布が間隔を空けずにスパイラル状に巻回される。   As described above, the plurality of superconducting tapes 113a include a superconducting layer on the substrate. Then, in the superconducting cable 100, the plurality of superconducting tapes 113a are concentrically around the core member 111 with the superconducting layer side surface facing the outer peripheral side and the substrate side surface facing the inner peripheral side. Has been placed. That is, the superconducting tape 113a is disposed between the layered insulating portions formed of the pressing tape around the core material 111 so that the superconducting layer is wound on the outer peripheral side and the substrate is on the inner peripheral side. Superconducting cable 100 may have a plurality of layers of superconducting wires. When a multi-layer superconducting wire main body is provided, a presser tape is wound around the outer periphery of the superconducting tape 113 a in the same manner as the presser tape 112. A plurality of superconducting tapes 113a constituting the second superconducting conductor layer are wound around the outer periphery of the wound holding tape in a spiral shape at predetermined intervals in the circumferential direction, like the first superconducting tape 113a. Turned. In the case of this configuration, a pressing tape is wound around the outer periphery of the second superconducting tape in the form of a spiral without a gap, similarly to the pressing tape 112.

なお、超電導ケーブル100は、実際には、超電導導体層113の外周に巻き付けられた押さえテープの外周側に、電気絶縁層や、超電導シールド層、外部安定化層、コルゲート管等が設けられている。しかしながら、これらの部材は、超電導テープ113aによる超電導導体層113が筒状電極210に接続される端末箇所では取り除かれるため、図1〜図3では、これらは省略して示している。   Note that the superconducting cable 100 is actually provided with an electrical insulating layer, a superconducting shield layer, an external stabilization layer, a corrugated tube, and the like on the outer peripheral side of the holding tape wound around the outer periphery of the superconducting conductor layer 113. . However, since these members are removed at the terminal portion where the superconducting conductor layer 113 by the superconducting tape 113a is connected to the cylindrical electrode 210, these members are not shown in FIGS.

超電導ケーブル100の超電導テープ113aは、超電導ケーブル100が挿入される筒状電極210の内面に、当該内面との間の半田部170を介して直接電気的に接続される。   The superconducting tape 113a of the superconducting cable 100 is directly electrically connected to the inner surface of the cylindrical electrode 210 into which the superconducting cable 100 is inserted via the solder part 170 between the inner surface.

超電導ケーブル100において、最外周の超電導テープ113aによる超電導導体層113の外周には、周方向に沿って周設用超電導線材120が巻き付けられている。
周設用超電導線材120は、具体的には、超電導ケーブル100のケーブル本体部110において最外周に配置される複数の超電導テープ113aによりなる超電導導体層113の外周に、ケーブル本体部110又は芯材111の延在方向(長手方向)と垂直に巻き付けられる。すなわち、周設用超電導線材120は、長手方向に垂直に巻き付けられているので、周方向で存在する全ての超電導テープ113aに接続される。本実施の形態では、超電導導体層113に巻き付けられる周設用超電導線材120は半田により超電導導体層113に接合される。
In the superconducting cable 100, a circumferential superconducting wire 120 is wound around the outer periphery of the superconducting conductor layer 113 by the outermost superconducting tape 113a along the circumferential direction.
Specifically, the peripheral superconducting wire 120 is formed on the outer periphery of the superconducting conductor layer 113 composed of a plurality of superconducting tapes 113a arranged on the outermost periphery of the cable main body 110 of the superconducting cable 100, and the cable main body 110 or the core material. 111 is wound perpendicularly to the extending direction (longitudinal direction). That is, since the circumferential superconducting wire 120 is wound perpendicularly to the longitudinal direction, it is connected to all the superconducting tapes 113a existing in the circumferential direction. In the present embodiment, peripheral superconducting wire 120 wound around superconducting conductor layer 113 is joined to superconducting conductor layer 113 by solder.

周設用超電導線材120は、超電導導体層113の超電導テープ113a毎に電気的に接続されている。これにより、超電導ケーブル100の運転時に、超電導導体層113を構成する超電導テープ113a毎に流れる電流は、均一に流れる。   The circumferential superconducting wire 120 is electrically connected to each superconducting tape 113a of the superconducting conductor layer 113. Thereby, during operation of the superconducting cable 100, the current flowing for each superconducting tape 113a constituting the superconducting conductor layer 113 flows uniformly.

周設用超電導線材120は、導電性を有する材料であればどのように構成されてもよいが、本実施の形態では、超電導テープ113aと同様に構成させる超電導テープ121が周設用超電導線材120を形成している。これにより、周設用超電導線材120として、超電導ケーブルを構成する超電導テープ113aを用いることで、周設用超電導線材120自体を別途製造する必要がなく、製造コストの削減を図ることができる。   The circumferential superconducting wire 120 may be configured in any manner as long as it is a conductive material, but in this embodiment, the superconducting tape 121 configured in the same manner as the superconducting tape 113a is the circumferential superconducting wire 120. Is forming. Thus, by using the superconducting tape 113a constituting the superconducting cable as the superconducting wire 120 for peripheral installation, it is not necessary to separately manufacture the superconducting wire 120 itself for peripheral installation, and the manufacturing cost can be reduced.

周設用超電導線材120は、超電導導体層113側(芯材111側)に超電導層側を向けて、つまり、周設用超電導線材120の超電導層を超電導ケーブル100の内周側にし、基板を外周側に向けて、超電導導体層113に巻き付けられている。   The superconducting wire 120 for surroundings is directed to the superconducting conductor layer 113 side (core 111 side), that is, the superconducting layer of the superconducting wire 120 for surroundings is set to the inner peripheral side of the superconducting cable 100, and the substrate is It is wound around the superconducting conductor layer 113 toward the outer peripheral side.

これにより、ケーブル本体部110の超電導テープ113aの超電導層と、周設用超電導線材120の超電導層とが近接する位置に配置され、超電導導体層113と周設用超電導線材120との導電特性の向上を図ることができる。   As a result, the superconducting layer of the superconducting tape 113a of the cable main body 110 and the superconducting layer of the surrounding superconducting wire 120 are arranged close to each other, and the conductive characteristics of the superconducting conductor layer 113 and the surrounding superconducting wire 120 are reduced. Improvements can be made.

本実施の形態では、超電導導体層113に巻回された周設用超電導線材120は、超電導導体層113とともに筒状電極210内に配置され、半田部170で筒状電極に接合されている。なお、周設用超電導線材120は、図2の符号1200で示すように、超電導導体層113において、接続する筒状電極210の近傍の位置で、超電導導体層113に巻回して半田接合して、超電導導体層113の超電導線材を流れる電流を均一化するようにしてもよい。   In the present embodiment, the circumferential superconducting wire 120 wound around the superconducting conductor layer 113 is disposed in the cylindrical electrode 210 together with the superconducting conductor layer 113, and is joined to the cylindrical electrode by the solder portion 170. The superconducting wire 120 for peripheral installation is wound around the superconducting conductor layer 113 and soldered at the position near the cylindrical electrode 210 to be connected in the superconducting conductor layer 113, as indicated by reference numeral 1200 in FIG. The current flowing through the superconducting wire of the superconducting conductor layer 113 may be made uniform.

筒状電極210は、全体として筒状であり、Cu(銅)等の導電性を有する金属材料により形成される。筒状電極210は、内部に配置される超電導ケーブル100の外周面と電気的に接続する。   The tubular electrode 210 has a tubular shape as a whole and is formed of a conductive metal material such as Cu (copper). The cylindrical electrode 210 is electrically connected to the outer peripheral surface of the superconducting cable 100 disposed inside.

筒状電極210は、図2から明らかなように、超電導ケーブル100が内部を貫通できる筒状構造となっている。なお、筒状電極210は、超電導ケーブル100の延在方向に沿って分割された複数の断面半円弧状の分割体により筒状に構成されてもよい。分割体である場合には、分割体を、超電導ケーブル100の所定の位置に、被せて互いを周方向で気密的に固定することで円筒状に形成するようにする。   As apparent from FIG. 2, the cylindrical electrode 210 has a cylindrical structure through which the superconducting cable 100 can penetrate. In addition, the cylindrical electrode 210 may be configured in a cylindrical shape by a plurality of divided sections having a semicircular cross-sectional shape divided along the extending direction of the superconducting cable 100. In the case of the divided body, the divided body is covered with a predetermined position of the superconducting cable 100 and is formed in a cylindrical shape by airtightly fixing each other in the circumferential direction.

本実施の形態の筒状電極210では、超電導ケーブル100として、ケーブル本体部110とともに周設用超電導線材120が挿入されて接合される。   In cylindrical electrode 210 of the present embodiment, peripheral superconducting wire 120 is inserted and joined together with cable body 110 as superconducting cable 100.

図4は、図1のA―A線矢視断面図である。図2及び図4に示すように、筒状電極210には、内部と外部とが連通するように周壁部分を貫通して半田用長穴221、空気孔223が形成されている。   FIG. 4 is a cross-sectional view taken along line AA in FIG. As shown in FIGS. 2 and 4, the cylindrical electrode 210 has a solder hole 221 and an air hole 223 formed through the peripheral wall portion so that the inside and the outside communicate with each other.

半田用長穴221は、筒状電極210に、外周側と内周側半径方向に貫通して形成され、筒状電極210の外周側から内周に半田を注入する。   The long hole 221 for solder is formed in the cylindrical electrode 210 so as to penetrate the outer peripheral side and the inner peripheral side in the radial direction, and injects solder from the outer peripheral side of the cylindrical electrode 210 to the inner periphery.

半田用長穴221は、筒状電極210の上面部分の中央部分に、長手方向に沿って形成されている。半田用長穴221は、筒状電極210において、リードケーブル230接続部分を挟み両端側に、長手方向(軸方向)に沿ってそれぞれ形成されている。   The solder long hole 221 is formed in the central portion of the upper surface portion of the cylindrical electrode 210 along the longitudinal direction. The solder elongated holes 221 are formed in the cylindrical electrode 210 along the longitudinal direction (axial direction) on both ends of the lead cable 230 connecting portion.

これにより、半田用長穴221は、筒状電極210の略全長に渡り配置されているため、半田用長穴221を介して注入する半田を両端部の隅々まで確実に注入させることができる。   Thereby, since the solder long hole 221 is arranged over substantially the entire length of the cylindrical electrode 210, the solder to be injected through the solder long hole 221 can be surely injected to every corner of both ends. .

また、筒状電極210には、半田用長穴221の両端側に、半田用長穴221に並んで、半田用長穴221を介して筒状電極210内に注入される半田の注入時のエアを抜く空気孔223がそれぞれ形成されている。   Further, the cylindrical electrode 210 is aligned with the solder elongated holes 221 on both ends of the solder elongated holes 221 and is injected at the time of injection of solder injected into the cylindrical electrodes 210 via the solder elongated holes 221. Air holes 223 for extracting air are respectively formed.

筒状電極210では、両端部のそれぞれに、空気孔223に挟まれた半田用長穴221が形成されている。このように半田を注入する孔が長穴であるので、断面積の小さい半田注入孔を介して半田を注入する場合と比較して、溶融半田に巻き込まれた気泡が抜けやすく、半田硬化後に空隙として残りにくくなる。よって空隙により半田の接触面積が小さくならないので、接続抵抗を大きくできる。   In the cylindrical electrode 210, a long slot 221 for solder sandwiched between air holes 223 is formed at each of both ends. Since the hole for injecting the solder is a long hole in this way, bubbles entrained in the molten solder can be easily removed compared to the case of injecting the solder through the solder injection hole having a small cross-sectional area. As it becomes difficult to remain. Therefore, the contact area of the solder is not reduced by the gap, so that the connection resistance can be increased.

このように、半田用長穴221を介して半田を注入する際に巻き込まれた気泡を抜きつつ、筒状電極210の内部の全域に渡って半田を注入して隙間なく充填させることにより、超電導テープ113aと筒状電極210との接続抵抗のバラツキを好適に低減することができる。   In this way, the superconductivity is obtained by injecting the solder over the entire area inside the cylindrical electrode 210 and filling it without any gaps while removing the bubbles entrained when injecting the solder through the long hole 221 for solder. Variations in connection resistance between the tape 113a and the cylindrical electrode 210 can be suitably reduced.

また、半田用長穴221を介して注入され、筒状電極210と超電導ケーブル100の超電導導体層113(複数の超電導テープ113a)とを接合する半田は、周設用超電導線材120と超電導導体層113とを接合する半田よりも低融点の半田であることが好ましい。本実施の形態では、超電導導体層113と周設用超電導線材120との接合には、所謂、高温融点半田を用い、筒状電極210と超電導テープ113aとの接合であり半田部170の形成には、いわゆる、低融点半田を用いている。   Also, the solder that is injected through the long hole 221 for soldering and joins the cylindrical electrode 210 and the superconducting conductor layer 113 (a plurality of superconducting tapes 113a) of the superconducting cable 100 is the superconducting wire 120 and the superconducting conductor layer. It is preferable that the solder has a melting point lower than that of the solder that joins 113. In the present embodiment, so-called high-temperature melting point solder is used for joining the superconducting conductor layer 113 and the surrounding superconducting wire 120, and joining of the cylindrical electrode 210 and the superconducting tape 113a is used to form the solder portion 170. Uses so-called low melting point solder.

なお、半田用長穴221及び空気孔223は、筒状電極210の内部に注入される半田の充填具合を視認や小型化カメラ等を挿入して確認するための確認孔として使用できる。なお、半田用長穴221、空気孔223は、充填時に半田の漏れが発生しなければ、空気孔223で半田用長穴221を挟む配列であれば、どこに設けてもよい。   The solder elongated holes 221 and the air holes 223 can be used as confirmation holes for confirming the filling state of the solder injected into the cylindrical electrode 210 by visually recognizing or inserting a miniaturized camera or the like. The long solder holes 221 and the air holes 223 may be provided anywhere as long as the solder long holes 221 are sandwiched between the air holes 223 as long as no solder leakage occurs during filling.

筒状電極210の内側では、筒状電極210の内周面と、筒状電極210内で最外層に位置する超電導導体層(超電導テープ113aによる層)113とが、半田部170を介して通電可能に接合(所謂、直付け)されている。   Inside the cylindrical electrode 210, the inner peripheral surface of the cylindrical electrode 210 and the superconducting conductor layer (layer formed by the superconducting tape 113 a) 113 located in the outermost layer in the cylindrical electrode 210 are energized through the solder part 170. It is possible to join (so-called direct attachment).

筒状電極210の内径は、内部に配置される超電導ケーブル100における周設用超電導線材120の外径と略同じであるか、或いは、内部に配置される超電導ケーブル100における周設用超電導線材120の外径との間に隙間が形成される寸法に形成される。   The inner diameter of the cylindrical electrode 210 is substantially the same as the outer diameter of the circumferential superconducting wire 120 in the superconducting cable 100 disposed inside, or the circumferential superconducting wire 120 in the superconducting cable 100 disposed inside. It is formed in such a dimension that a gap is formed between the outer diameter and the outer diameter.

なお、半田部170を形成する際には、筒状電極210の両端部の内周面と、超電導ケーブル100の超電導導体層113との間の隙間には、半田漏れ防止のためのパッキン材を挿入して、筒状電極210の内周面と超電導導体層113の外周面との空間を密閉してから半田用長穴221を介して半田を注入する。なお、パッキン材(図示省略)は、ポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE)、銀、或いは、インジウム等の柔らかい材料により構成されるシート、環状体或いは紐状体を用いてもよい。   When forming the solder part 170, a packing material for preventing solder leakage is provided in the gap between the inner peripheral surface of both ends of the cylindrical electrode 210 and the superconducting conductor layer 113 of the superconducting cable 100. After inserting, the space between the inner peripheral surface of the cylindrical electrode 210 and the outer peripheral surface of the superconducting conductor layer 113 is sealed, and then solder is injected through the solder elongated hole 221. The packing material (not shown) may be a sheet, an annular body, or a string-like body made of a soft material such as polytetrafluoroethylene (PTFE), silver, or indium.

本実施の形態の超電導ケーブル100は、芯材111の周囲に円状に複数の超電導線材である超電導テープ113aが巻き付けてなる超電導導体層113と、超電導導体層113の外周に周方向で巻き付けられ、超電導導体層113の複数の超電導テープ113aのそれぞれに電気的に接続された周設用超電導線材120とを有する。この構成により、超電導導体層113において複数の超電導テープ113aを流れる電流値が、超電導ケーブルの両端側の一方で接続抵抗値にバラツキがある等して、それぞれ異なる場合でも、周設用超電導線材120により均一化して流すことができる。   Superconducting cable 100 of the present embodiment is wound in the circumferential direction around superconductor layer 113 in which superconducting tape 113a, which is a plurality of superconducting wires, is wound around core material 111 in a circular shape, and on the outer periphery of superconducting conductor layer 113. And a superconducting wire 120 for peripheral installation electrically connected to each of the plurality of superconducting tapes 113a of the superconducting conductor layer 113. With this configuration, even if the values of current flowing through the plurality of superconducting tapes 113a in the superconducting conductor layer 113 are different due to variations in connection resistance values at one end of the superconducting cable, the superconducting wire 120 for peripheral installation is different. Can be made to flow more uniformly.

すなわち、本実施の形態では、筒状電極(端子)210の近傍で、超電導ケーブルの全超電導テープ(超電導線材)113aを同一の超電導線材である周設用超電導線材120(121)で一体に接続しているため、銅端子である筒状電極210と超電導テープ(超電導線材)113a間に流れ込む電流が均一にすることができる。特に筒状電極210側から超電導ケーブル100の超電導テープ113aに流れる電流値が、筒状電極210接触抵抗によりバラツキがあっても、周設用超電導線材120により均一化して外部(超電導ケーブル100の他端側)に流すことができる。   In other words, in the present embodiment, all superconducting tapes (superconducting wires) 113a of the superconducting cable are integrally connected with the peripheral superconducting wires 120 (121), which are the same superconducting wires, in the vicinity of the cylindrical electrode (terminal) 210. Therefore, the current flowing between the cylindrical electrode 210, which is a copper terminal, and the superconducting tape (superconducting wire) 113a can be made uniform. In particular, even if the current value flowing from the cylindrical electrode 210 side to the superconducting tape 113a of the superconducting cable 100 varies due to the contact resistance of the cylindrical electrode 210, it is made uniform by the surrounding superconducting wire 120 and externally (other than the superconducting cable 100). Flow to the end side).

本実施の形態によれば、電極に接続される複数の超電導線材の接続抵抗のバラツキを低減して電流を均一化して好適に流すことができる。   According to the present embodiment, it is possible to reduce the variation in the connection resistance of the plurality of superconducting wires connected to the electrodes, to make the current uniform and to flow appropriately.

(実施の形態2)
図5は、本発明に係る実施の形態2の超電導ケーブルの接続部の変形例1の要部構成を示す縦断面図である。
(Embodiment 2)
FIG. 5 is a longitudinal cross-sectional view showing the main configuration of Modification 1 of the connecting portion of the superconducting cable according to Embodiment 2 of the present invention.

図5に示す超電導ケーブル100Aの接続部10Aでは、実施の形態1の接続部10と比較して、超電導ケーブル100Aの構成のみ異なり、その他の構成は同様である。   In the connecting portion 10A of the superconducting cable 100A shown in FIG. 5, the configuration of the superconducting cable 100A is different from that of the connecting portion 10 of the first embodiment, and the other configurations are the same.

図5に示す超電導ケーブル100Aの接続部10Aは、超電導ケーブル100Aと、筒状の引出用電極(以下、筒状電極と呼ぶ)210とを有する。   A connecting portion 10A of the superconducting cable 100A shown in FIG. 5 includes a superconducting cable 100A and a cylindrical extraction electrode (hereinafter referred to as a cylindrical electrode) 210.

本実施の形態の例では、筒状電極210は、超電導ケーブル100において、複数の超電導テープ113aによりそれぞれ構成される超電導導体層(113−1、113−2)のそれぞれに接続される。なお、各筒状電極210には、リードケーブル230が電気的に接続されており、筒状電極210は、リードケーブル230を介して常電導体である常温部と,超電導ケーブル100の一方の端末とを接続する。実際の使用時には、超電導ケーブル100Aおよび筒状電極210は、液体窒素等の極低温の液体に浸される。そして、超電導ケーブル100Aの電流が、筒状電極210を介してリードケーブル230によって常温部に引き出されるようになっている。例えば、リードケーブル230は、上述のように、ポリマー套管(図示せず)等を介して気中に導出される。なお、超電導ケーブル100Aの他方の端末は、筒状電極210と同様に形成された筒状電極を介して、他の常温部等に接続される。   In the example of the present embodiment, the cylindrical electrode 210 is connected to each of the superconducting conductor layers (113-1, 113-2) each constituted by a plurality of superconducting tapes 113a in the superconducting cable 100. In addition, a lead cable 230 is electrically connected to each cylindrical electrode 210, and the cylindrical electrode 210 is connected to the normal temperature part which is a normal conductor via the lead cable 230 and one terminal of the superconducting cable 100. And connect. In actual use, the superconducting cable 100A and the cylindrical electrode 210 are immersed in a cryogenic liquid such as liquid nitrogen. Then, the current of the superconducting cable 100A is drawn out to the normal temperature part by the lead cable 230 via the cylindrical electrode 210. For example, the lead cable 230 is led into the air through a polymer sleeve (not shown) or the like as described above. The other end of the superconducting cable 100A is connected to another room temperature portion or the like via a cylindrical electrode formed in the same manner as the cylindrical electrode 210.

接続部10Aでは、超電導ケーブル100Aが、筒状電極210内に挿入され、筒状電極210の内側で半田部170Aを介して電気的に接続される。   In the connection portion 10A, the superconducting cable 100A is inserted into the cylindrical electrode 210 and is electrically connected to the inside of the cylindrical electrode 210 via the solder portion 170A.

本実施の形態の超電導ケーブル100Aは、実施の形態1のケーブル本体部110において、芯材111の外周に、複数の超電導導体層113−1、113−2を有するケーブル本体部110Aと、周設用超電導線材120−1、120−2と、を有する。   The superconducting cable 100A of the present embodiment includes a cable main body 110A having a plurality of superconducting conductor layers 113-1 and 113-2 on the outer periphery of the core 111 in the cable main body 110 of the first embodiment. Superconducting wires 120-1 and 120-2.

ケーブル本体部110Aは、ケーブル本体部110において超電導導体層113の外周に、不織布からなる押えテープを介して、第1の超電導導体層113−1を構成する超電導テープ113aと同様の超電導テープがスパイラル状に巻回されている。これら超電導テープは、周方向で各テープ間に若干の所定間隔(第1の超電導導体層と同様の所定間隔G)を空けて配置されており、第2の超電導導体層113−2を構成する。なお、第1の超電導導体層113−1と、第2の113−2との間の押えテープ112は、1本の不織布が間隔を空けずにスパイラル状に巻回されることにより層状の絶縁部分として構成されている。なお、第2の超電導テープによる第2の超電導導体層113−2の外周には、押さえテープが、押えテープ112と同様に、1本の不織布が間隔を空けずにスパイラル状に巻回されている。第1の超電導導体層113−1は、実施の形態1の超電導導体層113と同様のものであり、第2の超電導導体層113−2は、第1の超電導導体層113と同様に形成される。   In the cable body 110A, a superconducting tape similar to the superconducting tape 113a constituting the first superconducting conductor layer 113-1 is spiraled on the outer periphery of the superconducting conductor layer 113 in the cable body 110 via a pressing tape made of a nonwoven fabric. It is wound in a shape. These superconducting tapes are arranged with a certain predetermined gap (a predetermined gap G similar to the first superconducting conductor layer) between the tapes in the circumferential direction, and constitute the second superconducting conductor layer 113-2. . Note that the presser tape 112 between the first superconducting conductor layer 113-1 and the second 113-2 is layered by winding one non-woven fabric in a spiral shape without a gap. Configured as part. In addition, a pressing tape is wound around the outer periphery of the second superconducting conductor layer 113-2 by the second superconducting tape in the same manner as the pressing tape 112, and a single non-woven fabric is spirally wound with no gap. Yes. The first superconducting conductor layer 113-1 is the same as the superconducting conductor layer 113 of the first embodiment, and the second superconducting conductor layer 113-2 is formed in the same manner as the first superconducting conductor layer 113. The

超電導ケーブル100Aは、筒状電極210に接続されるケーブル端部を段剥ぎして、端末側から順に第1の超電導導体層113−1、第2の超電導導体層113−2が外周面として露出している。   In the superconducting cable 100A, the end of the cable connected to the cylindrical electrode 210 is stepped, and the first superconducting conductor layer 113-1 and the second superconducting conductor layer 113-2 are exposed as outer peripheral surfaces in order from the terminal side. doing.

超電導ケーブル100Aは、露出している超電導導体層113−1、113−2と、超電導導体層113−1、113−2のそれぞれの外周に、周方向で巻き付けられ、前記超電導導体層の前記複数の超電導線材のそれぞれに電気的に接続された周設用超電導線材120−1、120−2を有する。   The superconducting cable 100A is wound in the circumferential direction on the outer circumferences of the exposed superconducting conductor layers 113-1 and 113-2 and the superconducting conductor layers 113-1 and 113-2, and the plurality of superconducting conductor layers. Peripheral superconducting wires 120-1 and 120-2 electrically connected to the respective superconducting wires.

周設用超電導線材120−1、120−2は、本実施の形態では、それぞれ、超電導導体層113−1、113−2の外周に周方向に沿って芯材の延在方向(超電導ケーブルの長手方向)と垂直に巻回されている。周設用超電導線材120−1、120−2は、各超電導導体層113−1、113−2を構成する複数の超電導テープのそれぞれに半田により電気的に接続されている。   In the present embodiment, the superconducting wires 120-1 and 120-2 for peripheral installation are respectively extended along the circumferential direction of the superconducting conductor layers 113-1 and 113-2 (in the direction of the superconducting cable). It is wound perpendicularly to the (longitudinal direction). The circumferential superconducting wires 120-1 and 120-2 are electrically connected to the respective superconducting tapes constituting the superconducting conductor layers 113-1 and 113-2 by soldering.

また、これら周設用超電導線材120−1、120−2は、実施の形態1と同様に、超電導テープ113aにより形成され、各超電導導体層113−1、113−2側(内径側に相当)に、超電導層側を向けて巻回されている。   Also, these superconducting wires 120-1 and 120-2 for peripheral installation are formed by the superconducting tape 113a as in the first embodiment, and are on the respective superconducting conductor layers 113-1 and 113-2 (corresponding to the inner diameter side). Are wound with the superconducting layer side facing.

筒状電極210内では、超電導ケーブル100Aにおいて複数の層状に形成された超電導導体層113−1、113−2と、超電導導体層113−1、113−2の外周の周設用超電導線材120−1、120−2とが配置されている。筒状電極210と、超電導導体層113−1、113−2及び周設用超電導線材120−1、120−2とは半田による半田部170Aを介して電気的に接続されている。なお、半田部170Aは、実施の形態1と同様に、半田用長穴221から半田を注入することで形成される。   In the cylindrical electrode 210, superconducting conductor layers 113-1 and 113-2 formed in a plurality of layers in the superconducting cable 100A, and a superconducting wire 120- around the outer periphery of the superconducting conductor layers 113-1 and 113-2. 1 and 120-2 are arranged. The cylindrical electrode 210, the superconducting conductor layers 113-1 and 113-2, and the surrounding superconducting wires 120-1 and 120-2 are electrically connected via a solder portion 170A made of solder. Note that the solder portion 170A is formed by injecting solder from the elongated solder hole 221 as in the first embodiment.

本実施の形態によれば、超電導ケーブル100Aは、複数の周設用超電導線材120−1、120−2を有する。超電導導体層113−1、113−2は、芯材111の外周に積層される。積層される複数の超電導導体層113−1、113−2のうちの外側の超電導導体層113−2の外周と、当該外側の超電導導体層113−2が段剥ぎされて露出する下側の超電導導体層113−1の外周には、それぞれ周設用超電導線材120−1、120−2がそれぞれ巻き付けられている。複数の周設用超電導線材120−1、120−2は筒状電極210内に配置され、筒状電極210は、半田部170Aを介して、複数の超電導導体層113−1、113−2の超電導テープ(超電導線材)113aとともに気密的に接合される。   According to the present embodiment, superconducting cable 100A has a plurality of peripheral superconducting wires 120-1 and 120-2. Superconducting conductor layers 113-1 and 113-2 are laminated on the outer periphery of core material 111. The outer periphery of the outer superconducting conductor layer 113-2 of the superconducting conductor layers 113-1 and 113-2 to be stacked, and the lower superconducting conductor exposed by stepping off the outer superconducting conductor layer 113-2. Circumferential superconducting wires 120-1 and 120-2 are respectively wound around the outer periphery of the conductor layer 113-1. The plurality of circumferential superconducting wires 120-1 and 120-2 are disposed in the cylindrical electrode 210, and the cylindrical electrode 210 is connected to the plurality of superconducting conductor layers 113-1 and 113-2 via the solder portion 170A. It is airtightly bonded together with the superconducting tape (superconducting wire) 113a.

これにより上述した実施の形態1の超電導ケーブル100と同様の効果を、超電導導体層113−1、113−3毎に得ることができ、超電導導体層113−1、113−2のそれぞれを一つの筒状電極210にそれぞれ接触抵抗を低減した状態で好適に接続できる。   As a result, the same effect as that of superconducting cable 100 of the first embodiment described above can be obtained for each of superconducting conductor layers 113-1 and 113-3, and each of superconducting conductor layers 113-1 and 113-2 is provided as one. It can connect suitably to the cylindrical electrode 210 in the state which reduced contact resistance, respectively.

(実施の形態3)
図6は、本発明に係る実施の形態3の超電導ケーブルの接続部の変形例2の要部構成を示す縦断面図である。
(Embodiment 3)
FIG. 6 is a longitudinal sectional view showing a main part configuration of Modification 2 of the connection part of the superconducting cable according to Embodiment 3 of the present invention.

図6に示す超電導ケーブル100Bの接続部10Bでは、実施の形態1の接続部10と比較して、超電導ケーブル100Bの構成のみ異なり、その他の構成は同様である。   In connection portion 10B of superconducting cable 100B shown in FIG. 6, only the configuration of superconducting cable 100B is different from that of connection portion 10 in the first embodiment, and the other configurations are the same.

図6に示す超電導ケーブル100Bの接続部10Bは、超電導ケーブル100Aと、筒状の引出用電極(以下、筒状電極と呼ぶ)210とを有する。   A connecting portion 10B of the superconducting cable 100B shown in FIG. 6 has a superconducting cable 100A and a cylindrical lead-out electrode (hereinafter referred to as a cylindrical electrode) 210.

筒状電極210に挿入される超電導ケーブル100Bは、ケーブル本体部101Aと同様に構成されるケーブル本体部110Bを有する。ケーブル本体110Bでは、芯材111の外周に積層され、それぞれが超電導ケーブル100Bの外周面として露出する複数の超電導導体層113−3、113−4を有する。ケーブル本体部110Bは、ケーブル本体部110Aと比較して、超電導導体層113−3、113−4の段剥ぎ位置が異なる。すなわち、ケーブル本体部110Bでは、内側の超電導導体層113−3の外周は、外側の超電導導体層113−4が段剥ぎされることで露出し、ここでは、筒状電極210の一端部の内側から筒状電極210の内部を通り他端部に向かって延在する。超電導導体層113−4は、筒状電極210の一端部の外側で露出して配置されている。そしてこれら超電導導体層113−3、113−4の段差部分を挟む外面のそれぞれに、周設用超電導線材120−3、120−4である超電導テープ121がそれぞれ巻き付けられている。   The superconducting cable 100B inserted into the cylindrical electrode 210 has a cable body 110B configured similarly to the cable body 101A. The cable body 110B has a plurality of superconducting conductor layers 113-3 and 113-4 that are stacked on the outer periphery of the core material 111 and are exposed as outer peripheral surfaces of the superconducting cable 100B. The cable main body part 110B is different from the cable main body part 110A in the step peeling position of the superconducting conductor layers 113-3 and 113-4. That is, in the cable main body 110B, the outer periphery of the inner superconducting conductor layer 113-3 is exposed by stepping off the outer superconducting conductor layer 113-4. Here, the inner periphery of one end of the cylindrical electrode 210 is exposed. To the other end through the inside of the cylindrical electrode 210. Superconducting conductor layer 113-4 is exposed and disposed outside one end of cylindrical electrode 210. Then, superconducting tapes 121, which are circumferential superconducting wires 120-3 and 120-4, are respectively wound around outer surfaces sandwiching the stepped portions of the superconducting conductor layers 113-3 and 113-4.

そして、筒状電極210内に充填される半田部170Bにより、段剥ぎ部分で周設用超電導線材120−3、120−4及びケーブル本体部110Bの超電導導体層113−3、113−4を接続している。この構成によれば、実施の形態2と同様の作用効果を得ることができる。すなわち、複数の超電導導体層を形成する超電導テープ113aと、筒状電極210とを半田を介して、接触抵抗を低減した状態で容易に好適に接続でき、確実で好適な通電容量を確保できる。   Then, the superconducting conductor layers 113-3 and 113-4 of the peripheral superconducting wires 120-3 and 120-4 and the cable main body 110B are connected at the stepped portion by the solder portion 170B filled in the cylindrical electrode 210. doing. According to this configuration, it is possible to obtain the same effects as those of the second embodiment. That is, the superconducting tape 113a forming a plurality of superconducting conductor layers and the cylindrical electrode 210 can be easily and suitably connected with reduced contact resistance via solder, and a reliable and suitable current carrying capacity can be ensured.

なお、周設用超電導線材120で使用される超電導テープ121は、本数の多い方が均流化(電流の均一化)の効果は大きい。超電導テープ121を2本以上用いて周設用超電導線材120、120−1、120−2を構成しても良い。   In addition, the superconducting tape 121 used with the superconducting wire 120 for circumference | surroundings has a large effect of equalization (equalization of an electric current), so that there are many numbers. The superconducting wires 120, 120-1, and 120-2 for peripheral installation may be configured by using two or more superconducting tapes 121.

<実施例1>
まず、超電導線材(超電導テープ)として、ハステロイ(登録商標)の基板上に、Al層、LaMnO層、MgO層、LaMnO層、CeO層を順に成膜してなる中間層を有し、この中間層上に、YBaCuで表されるイットリウム系超電導体(YBCO層)からなる超電導層、銀の安定化層を順に成膜したREBaCu系超電導線材を、厚さ0.12mm×幅5mmで形成した。これを30本、銅製の外径19mmの芯材111に巻き付けて超電導線材の層(例えば、超電導導体層113)を構成し、これを備えるケーブル本体部110を形成した。このケーブル本体部110の外面に、1本の周設用超電導線材を長手方向と垂直に巻き付けて半田付けし、銅製であり厚み3mmの図2で示す筒状電極210に挿入した。その際の周設用超電導線材の位置は、筒状電極210において、挿入されたケーブル本体部110が導出される側で開口する端部(超電導ケーブル100の基端側の端部)210aの内周面に対向し、周設用超電導線材の基端側の縁部が開口縁と重なる位置とした。この位置で、周設用超電導線材及び超電導ケーブル本体部110と、筒状電極210とを半田付けして、一本の周設用超電導線材を用いて均流化(5mm)とした実施例1の接続部を組み立てた。このように組み立てた接続部において、筒状電極と各超電導線材との接続抵抗を直流四端子法にて測定した(at77K)。具体的には、筒状電極外周と筒状電極近傍の超電導線材に電圧端子に取り付け、液体窒素中で、筒状電極と超電導線材間に電流を流し、電圧端子間の発生電圧を測定することにより抵抗値を算出した。30本の超電導線材毎の接続抵抗の最大値と、最小値と、平均値と、標準偏差を算出した。これらを表1に示す。
<Example 1>
First, as a superconducting wire (superconducting tape), an intermediate layer formed by sequentially forming an Al 2 O 3 layer, a LaMnO 3 layer, a MgO layer, a LaMnO 3 layer, and a CeO 2 layer on a Hastelloy (registered trademark) substrate. A REBa y Cu 3 O z- based superconductor in which a superconducting layer composed of an yttrium-based superconductor (YBCO layer) represented by YBa 2 Cu 3 O 7 and a silver stabilizing layer are sequentially formed on the intermediate layer The wire was formed with a thickness of 0.12 mm and a width of 5 mm. 30 of these were wound around a copper core material 111 having an outer diameter of 19 mm to form a superconducting wire layer (for example, a superconducting conductor layer 113), and a cable main body 110 including this was formed. One peripheral superconducting wire was wound around the outer surface of the cable body 110 perpendicularly to the longitudinal direction and soldered, and inserted into the cylindrical electrode 210 shown in FIG. 2 made of copper and having a thickness of 3 mm. The position of the superconducting wire for peripheral installation at that time is within the end portion 210a (the end portion on the base end side of the superconducting cable 100) 210a that opens on the side where the inserted cable body 110 is led out. Opposite to the peripheral surface, the edge on the base end side of the superconducting wire for peripheral installation was positioned so as to overlap the opening edge. In this position, the superconducting wire for superconducting wire and superconducting cable main body 110 and the cylindrical electrode 210 are soldered, and the current is equalized (5 mm) using a single superconducting wire for peripheral installation. Assemble the connection. In the connection part thus assembled, the connection resistance between the cylindrical electrode and each superconducting wire was measured by the DC four-terminal method (at 77K). Specifically, a voltage terminal is attached to a superconducting wire around the cylindrical electrode and in the vicinity of the cylindrical electrode, a current is passed between the cylindrical electrode and the superconducting wire in liquid nitrogen, and a generated voltage between the voltage terminals is measured. Was used to calculate the resistance value. The maximum value, the minimum value, the average value, and the standard deviation of the connection resistance for every 30 superconducting wires were calculated. These are shown in Table 1.

<実施例2>
実施例1と同様の超電導線材(超電導テープ)を用いて、実施例1と同様のケーブル本体部110を形成し、このケーブル本体部110の外面に、実施例1の周設用超電導線材を2本、長手方向と垂直に巻き付けて半田付けした。これを、実施例1と同様に、図2で示す筒状電極210に挿入して、図2に示す位置に位置させた。すなわち、2本の周設用超電導線材の位置は、筒状電極210の端部210a側で、実施例1と同様に1本を位置させ、これに隣接してもう1本を筒状電極210内に位置させた。この位置で、2本の周設用超電導線材及び超電導ケーブル本体部110と、筒状電極210とを半田付けして、一本の周設用超電導線材を用いて均流化(10mm)とした実施例2の接続部を組み立てた。このように組み立てた実施例2の接続部において、実施例1と同様に、筒状電極と各超電導線材との接続抵抗を実施例1と同様、直流四端子法にて測定した(at77K)。30本の超電導線材毎の接続抵抗の最大値と、最小値と、平均値と、標準偏差を算出した。これらを表1に示す。
<Example 2>
Using the same superconducting wire (superconducting tape) as in Example 1, the same cable body 110 as in Example 1 is formed, and the peripheral superconducting wire of Example 1 is formed on the outer surface of this cable body 110. The book was wound in a direction perpendicular to the longitudinal direction and soldered. As in Example 1, this was inserted into the cylindrical electrode 210 shown in FIG. 2 and positioned at the position shown in FIG. That is, the two superconducting wires for peripheral installation are positioned on the end portion 210a side of the cylindrical electrode 210 as in the first embodiment, and the other one is adjacent to the cylindrical electrode 210. Located within. At this position, two circumferential superconducting wires and superconducting cable main body 110 and the cylindrical electrode 210 are soldered to equalize (10 mm) using one circumferential superconducting wire. The connection part of Example 2 was assembled. In the connection part of Example 2 assembled in this way, as in Example 1, the connection resistance between the cylindrical electrode and each superconducting wire was measured by the DC four-terminal method as in Example 1 (at 77K). The maximum value, the minimum value, the average value, and the standard deviation of the connection resistance for every 30 superconducting wires were calculated. These are shown in Table 1.

<比較例1>
実施例1の超電導ケーブルの接続部の構造において、周設用超電導線材を用いずに、筒状電極210に、周設用超電導線材を有しないケーブル本体部110を挿入して、筒状電極を加熱して半田付けを行い超電導ケーブルと筒状電極とを接続して比較例1の接続を組み立てた。この比較例1の接続部において、実施例1と同様に、筒状電極と各超電導テープとの接続抵抗を測定した。30本の超電導線材毎の接続抵抗の最大値と、最小値と、平均値と、標準偏差を算出した。これらを表1に示す。
<Comparative Example 1>
In the structure of the connection part of the superconducting cable of Example 1, the cable body 110 without the surrounding superconducting wire is inserted into the cylindrical electrode 210 without using the surrounding superconducting wire, and the cylindrical electrode is attached. The connection of Comparative Example 1 was assembled by heating and soldering to connect the superconducting cable and the cylindrical electrode. In the connection portion of Comparative Example 1, the connection resistance between the cylindrical electrode and each superconducting tape was measured in the same manner as in Example 1. The maximum value, the minimum value, the average value, and the standard deviation of the connection resistance for every 30 superconducting wires were calculated. These are shown in Table 1.

Figure 2018129128
Figure 2018129128

実施例1、2及び比較例1を比較すると、実施例1,2の方が比較例1よりも、接続抵抗の平均値、標準偏差がともに低くなっており、超電導ケーブルと筒状電極との接続部に周設用超電導線材を設けることで均流化の効果があることがわかった。   When Examples 1 and 2 and Comparative Example 1 are compared, Examples 1 and 2 have lower average values and standard deviations of connection resistance than Comparative Example 1, and there is a difference between the superconducting cable and the cylindrical electrode. It was found that providing a superconducting wire for peripheral installation at the connecting portion has the effect of leveling.

本発明に係る超電導ケーブルの接続部は、基板上に超電導層を備える超電導線材を、芯材の周囲に、前記超電導層を内周側及び前記基板を外周側となるように巻き付けた超電導ケーブルと電極とを接触抵抗を低減した状態で容易に好適に接続できる効果を有し、多層の超電導ケーブルの接続部として有用である。   The connection part of the superconducting cable according to the present invention includes a superconducting cable having a superconducting layer on a substrate, and a superconducting cable wound around the core so that the superconducting layer is on the inner peripheral side and the substrate is on the outer peripheral side. It has the effect of being able to be easily and suitably connected to an electrode with reduced contact resistance, and is useful as a connection part for a multilayer superconducting cable.

10、10A、10B 接続部
100、100A、100B 超電導ケーブル
110、110A、110B ケーブル本体部
111 芯材
112 押えテープ
113a、121 超電導テープ
113、113−1、113−2、113−3、113−4 超電導導体層
120、120−1、120−2、120−3、120−4、1200 周設用超電導線材
170、170A、170B 半田部
210 筒状電極
221 半田用長穴
223 空気孔
10, 10A, 10B Connection part 100, 100A, 100B Superconducting cable 110, 110A, 110B Cable body part 111 Core material 112 Pressing tape 113a, 121 Superconducting tape 113, 113-1, 113-2, 113-3, 113-4 Superconducting conductor layer 120, 120-1, 120-2, 120-3, 120-4, 1200 Circumferential superconducting wire 170, 170A, 170B Solder part 210 Cylindrical electrode 221 Solder slot 223 Air hole

Claims (6)

芯材の周囲に円状に複数の超電導線材が巻き付けてなる超電導導体層と、
前記超電導導体層の外周に周方向で巻き付けられ、前記超電導導体層の前記複数の超電導線材のそれぞれに電気的に接続された周設用超電導線材と、
を有する、
超電導ケーブル。
A superconducting conductor layer in which a plurality of superconducting wires are wound in a circle around the core; and
A circumferential superconducting wire wound around an outer periphery of the superconducting conductor layer in a circumferential direction and electrically connected to each of the plurality of superconducting wires of the superconducting conductor layer;
Having
Superconducting cable.
前記複数の超電導線材及び前記周設用超電導線材は、それぞれテープ状の基板上に中間層を介して超電導層が形成され、
前記超電導導体層は、前記複数の超電導線材を、前記芯材に対して、前記基板を内周側にし、且つ、前記超電導層を外周側に向けて、前記芯材の外周に巻回して構成され、
前記周設用超電導線材は、前記超電導導体層に対して、前記超電導層を内周側にして前記基板を外周側に向けて巻き付けられている、
請求項1記載の超電導ケーブル。
The superconducting wires and the peripheral superconducting wires are each formed on a tape-like substrate, with a superconducting layer formed through an intermediate layer,
The superconducting conductor layer is formed by winding the plurality of superconducting wires around the outer periphery of the core member with the substrate facing the inner peripheral side and the superconducting layer facing the outer peripheral side with respect to the core member. And
The peripheral superconducting wire is wound around the superconducting conductor layer with the superconducting layer on the inner peripheral side and the substrate facing the outer peripheral side,
The superconducting cable according to claim 1.
請求項1または2に記載の超電導ケーブルと、
前記超電導ケーブルの前記超電導導体層を囲むように配設され、前記周設用超電導線材が半田部を介して電気的に接合される筒状電極と、
を有する、
超電導ケーブルの接続部。
The superconducting cable according to claim 1 or 2,
A cylindrical electrode disposed so as to surround the superconducting conductor layer of the superconducting cable, and the circumferential superconducting wire is electrically joined via a solder portion;
Having
Superconducting cable connection.
前記周設用超電導線材を複数有し、
前記超電導導体層は、前記芯材の外周に積層され、積層される複数の前記超電導導体層のうちの外側の超電導導体層の外周と、当該外側の超電導導体層が段剥ぎされて露出する下側の前記超電導導体層の外周のそれぞれに、前記周設用超電導線材がそれぞれ巻き付けられ、
複数の前記周設用超電導線材は、前記筒状電極内に配置され、前記筒状電極に、前記半田部を介して、複数の前記超電導導体層とともに電気的に接合される、
請求項3記載の超電導ケーブルの接続部。
Having a plurality of the superconducting wires for circumferential installation,
The superconducting conductor layer is stacked on the outer periphery of the core member, and the outer periphery of the outer superconducting conductor layer of the plurality of stacked superconducting conductor layers and the outer superconducting conductor layer are exposed by stepping off. The peripheral superconducting wire is wound around each of the outer peripheries of the superconducting conductor layers on the side,
A plurality of the circumferential superconducting wires are disposed in the cylindrical electrode, and are electrically joined to the cylindrical electrode together with the plurality of superconducting conductor layers via the solder portion.
The connection part of the superconducting cable according to claim 3.
前記筒状電極は、外周側と内周側半径方向に貫通して設けられ、前記筒状電極の外周側から内周に半田を注入する半田用長穴を有する、
請求項3または4記載の超電導ケーブルの接続部。
The cylindrical electrode is provided penetrating in an outer peripheral side and an inner peripheral radial direction, and has a long hole for solder for injecting solder from the outer peripheral side of the cylindrical electrode to the inner periphery.
The connection part of the superconducting cable according to claim 3 or 4.
前記筒状電極には、前記半田用長穴の両端側に当該半田用長穴に並んで空気孔がそれぞれ形成されている、
請求項5記載の超電導ケーブルの接続部。
In the cylindrical electrode, air holes are respectively formed on both end sides of the solder elongated hole in line with the solder elongated hole.
The connection part of the superconducting cable according to claim 5.
JP2017019803A 2017-02-06 2017-02-06 Superconducting cable connection Active JP6818578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019803A JP6818578B2 (en) 2017-02-06 2017-02-06 Superconducting cable connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019803A JP6818578B2 (en) 2017-02-06 2017-02-06 Superconducting cable connection

Publications (2)

Publication Number Publication Date
JP2018129128A true JP2018129128A (en) 2018-08-16
JP6818578B2 JP6818578B2 (en) 2021-01-20

Family

ID=63172972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019803A Active JP6818578B2 (en) 2017-02-06 2017-02-06 Superconducting cable connection

Country Status (1)

Country Link
JP (1) JP6818578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161873A (en) * 2018-03-14 2019-09-19 古河電気工業株式会社 Superconducting cable terminal structure
CN113689990A (en) * 2021-08-27 2021-11-23 深圳供电局有限公司 High-temperature superconducting strip connection annular electrode device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161873A (en) * 2018-03-14 2019-09-19 古河電気工業株式会社 Superconducting cable terminal structure
CN113689990A (en) * 2021-08-27 2021-11-23 深圳供电局有限公司 High-temperature superconducting strip connection annular electrode device

Also Published As

Publication number Publication date
JP6818578B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP5123604B2 (en) Superconducting coil
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP4845040B2 (en) Thin film superconducting wire connection method and connection structure thereof
JP3521612B2 (en) Connection structure of superconducting conductor
JP5619731B2 (en) Superconducting wire current terminal structure and superconducting cable having this current terminal structure
JP5115778B2 (en) Superconducting cable
JP6873848B2 (en) Superconducting coil
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP6818578B2 (en) Superconducting cable connection
JP2012256744A (en) Superconductive coil
JP6738720B2 (en) Superconducting wire connection structure
JP2011018536A (en) Connection structure of superconducting wire rod and superconducting coil device
JP2015065116A (en) Oxide superconductive wire rod, connection structure of oxide superconductive wire rod, connection structure between oxide superconductive wire rod and electrode terminal, superconductive apparatus provided therewith, and method of producing them
JP2008305765A (en) Oxide superconductive current lead
WO2015092996A1 (en) Super-conducting cable terminal structure production method and super-conducting cable terminal structure
JP4634954B2 (en) Superconducting device
JP2018125147A (en) Connection part of superconductive cable and assembly method therefor
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2008124042A (en) Superconductor
JP7438830B2 (en) Bundle-wound high-temperature superconducting coil device
JPH06163255A (en) Superconducting current connection part
JPH04188706A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190917

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200428

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201117

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201222

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6818578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350