JP5011181B2 - Oxide superconducting current lead - Google Patents

Oxide superconducting current lead Download PDF

Info

Publication number
JP5011181B2
JP5011181B2 JP2008072165A JP2008072165A JP5011181B2 JP 5011181 B2 JP5011181 B2 JP 5011181B2 JP 2008072165 A JP2008072165 A JP 2008072165A JP 2008072165 A JP2008072165 A JP 2008072165A JP 5011181 B2 JP5011181 B2 JP 5011181B2
Authority
JP
Japan
Prior art keywords
current lead
oxide superconducting
current
support
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008072165A
Other languages
Japanese (ja)
Other versions
JP2009230912A (en
Inventor
康雄 引地
淳一 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Cable Systems Co Ltd
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2008072165A priority Critical patent/JP5011181B2/en
Publication of JP2009230912A publication Critical patent/JP2009230912A/en
Application granted granted Critical
Publication of JP5011181B2 publication Critical patent/JP5011181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導を応用した低温機器、例えば、超電導マグネットに電源から電流を供給するための酸化物超電導線材を用いた電流リードに関する。   The present invention relates to a low-temperature device using superconductivity, for example, a current lead using an oxide superconducting wire for supplying current from a power source to a superconducting magnet.

超電導応用機器、例えば、超電導マグネットを運転する場合、マグネットを超電導状態とするために極低温に冷却する必要があり、この冷却方法として2つの方式が知られている。即ち、液体ヘリウムや液体窒素等の冷媒に浸漬する方式(浸漬冷却方式)と冷凍機や冷媒からの熱伝導を利用する方式(伝導冷却方式)である。この冷却したマグネットを励磁するためには、超電導コイルに電流を流さなければならず、電源から電流を供給するための電流リードが必要である。この場合、電流リードは導電体であることが必要であるが、電気抵抗が小さくかつ熱伝導率の大きいCuやAlなどの金属を使用すると、電流リード自体のジュール発熱に加え外部からの熱侵入により超電導マグネットの冷却効率が悪くなり、超電導状態を維持するためには冷却コストが膨大になるという問題があった。特に、冷凍機を用いた伝導冷却方式の場合にこの傾向は顕著であり、冷却が不可能となる場合も生ずる。   When operating a superconducting application device, for example, a superconducting magnet, it is necessary to cool the magnet to a cryogenic temperature in order to bring the magnet into a superconducting state, and two methods are known as this cooling method. That is, a method of immersing in a refrigerant such as liquid helium or liquid nitrogen (immersion cooling method) and a method of utilizing heat conduction from a refrigerator or a refrigerant (conduction cooling method). In order to excite the cooled magnet, a current must be passed through the superconducting coil, and a current lead for supplying current from the power source is required. In this case, the current lead needs to be a conductor, but if a metal such as Cu or Al with low electrical resistance and high thermal conductivity is used, in addition to Joule heating of the current lead itself, external heat penetration As a result, the cooling efficiency of the superconducting magnet deteriorates, and there is a problem that the cooling cost becomes enormous in order to maintain the superconducting state. In particular, this tendency is remarkable in the case of a conduction cooling system using a refrigerator, and cooling may be impossible.

この問題を解決するためには、超電導マグネットに用いる電流リードとして、導電性と低熱伝導性を両立させる必要があり、超電導マグネットでは電流リード部分も液体窒素温度以下に冷却されるため、電気抵抗及び熱伝導率の小さい酸化物超電導体を電流リードとして使用することにより、電流を供給しつつ、熱侵入量を低く抑えることが可能となる。   In order to solve this problem, it is necessary to achieve both conductivity and low thermal conductivity as the current lead used in the superconducting magnet. In the superconducting magnet, the current lead part is also cooled below the liquid nitrogen temperature. By using an oxide superconductor having a low thermal conductivity as a current lead, the amount of heat penetration can be suppressed while supplying current.

この場合、超電導電流リードに使用される超電導体として、Bi(2223)系あるいはBi(2212)系等のBi系とYBaCu(YBCO)に代表されるRe系酸化物超電導体のバルク体を棒状あるいは円筒状に成型したものや、銀あるいは銀合金により被覆された超電導体部分の臨界電流密度(Jc)の高い銀シース線材が用いられてきており、銀マトリックス中に超電導フィラメントの多数本を配置したテープ状の電流リードが知られている(例えば、特許文献1参照。)。 In this case, as a superconductor used for the superconducting current lead, Bi (2223) -based or Bi (2212) -based Bi-based and Re-based oxide superconductors typified by YBa 2 Cu 3 O y (YBCO) are used. Silver sheath wire with a high critical current density (Jc) of a superconductor portion coated with silver or a silver alloy has been used in which a bulk body is formed into a rod shape or a cylindrical shape, and a superconducting filament is contained in a silver matrix. A tape-shaped current lead in which a large number of wires are arranged is known (for example, see Patent Document 1).

前者の酸化物超電導体のバルク体を電流リードに使用した場合、バルク体が脆く、かつ機械的強度が小さいため、その製作及び使用上の間題を生ずる。即ち、バルク体自身には可撓性がなく一定以上の曲げ歪を与えると破損するという問題があり、そのため、電流リードの取り付け方向は直線方向に限られるほか、取り付け作業の際のハンドリングやマグネット運転時の振動による歪の印加を避けるために、平編み線を電極部分に設けるなど歪がバルク体に伝わらない構造とする必要があった。   When the former oxide superconductor bulk body is used for a current lead, the bulk body is brittle and its mechanical strength is low, which causes problems in its manufacture and use. That is, the bulk body itself is not flexible and has a problem that it is damaged when a bending strain of a certain level or more is applied. For this reason, the current lead is attached only in a linear direction, and handling and magnets during attachment work are also included. In order to avoid the application of strain due to vibration during operation, it has been necessary to provide a structure in which strain is not transmitted to the bulk body, such as by providing a flat knitted wire on the electrode portion.

また、後者の銀あるいは銀合金シース線材は、結晶の配向性を高めるためには圧延加工を施してテープ状に形成する必要があり、そのため、ある程度の厚さの銀あるいは銀合金シースが必要となり、シース材が熱伝導率の非常に高い銀あるいは銀合金であるため、電流リード自体の熱伝導率が大きくなる結果をもたらすという難点がある。   In addition, the latter silver or silver alloy sheath wire needs to be formed into a tape shape by rolling to increase the crystal orientation, and therefore a silver or silver alloy sheath with a certain thickness is required. Since the sheath material is made of silver or a silver alloy having a very high thermal conductivity, there is a drawback in that the thermal conductivity of the current lead itself is increased.

一方、電流リードとして、金属基板上に酸化物超電導層を設けたテープ状の超電導体を用いることが検討されており、酸化物超電導体と銀テープとを交互に積層したテープ状の超電導電流リードが知られている(例えば、特許文献2及び3参照。)。この場合においても、電流リード自体の熱伝導率が大きくなるという問題がある。   On the other hand, as a current lead, the use of a tape-shaped superconductor in which an oxide superconducting layer is provided on a metal substrate has been studied, and a tape-shaped superconducting current lead in which an oxide superconductor and a silver tape are alternately laminated. (For example, refer to Patent Documents 2 and 3). Even in this case, there is a problem that the thermal conductivity of the current lead itself increases.

さらに、金属基板上に形成された中間層と、中間層の上に形成された酸化物超電導層と、酸化物超電導層の上に形成された安定化層を有するテープ状の酸化物超電導線材が知られており(例えば、特許文献4参照。)、このテープ状の酸化物超電導線材は、高い臨界電流値を有する上、金属基板として通常使用されているNi基合金基板は、銀あるいは銀合金と比較すると、その熱伝導率は1/4程度と小さく、また、このNi基合金基板の機械的強度は非常に大きくその取り扱いも容易で、酸化物超電導電流リードへの適用に非常に適した線材であるといえる。   Further, there is provided a tape-shaped oxide superconducting wire having an intermediate layer formed on a metal substrate, an oxide superconducting layer formed on the intermediate layer, and a stabilization layer formed on the oxide superconducting layer. This tape-shaped oxide superconducting wire has a high critical current value, and a Ni-based alloy substrate usually used as a metal substrate is silver or a silver alloy. Compared with, the thermal conductivity is as small as about 1/4, and the mechanical strength of this Ni-based alloy substrate is very large and easy to handle, making it very suitable for application to oxide superconducting current leads. It can be said that it is a wire.

このテープ状の酸化物超電導線材は、電流リードへの適用に非常に適した線材であるが、酸化物超電導体のJcを向上させるためには結晶粒のc軸を膜面(テープ面)に垂直に配向させる必要があり、このため、金属基板上に中間層を介して酸化物超電導体の薄層が形成されており、また、超電導マグネットへ大電流を供給するためにはテープ状の酸化物超電導線材と補強テープとの積層構造やテープ状の酸化物超電導線材をフォーマー等の補強部材の外周に巻回した構造とする必要がある。この場合、前者の場合には製造工程が複雑となる上、電流リード自体の熱伝導率が大きくなり易いという問題があり、一方、後者の場合には、フォーマーの可撓性を向上させる必要がある上、フォーマー等の補強部材の外周に巻回されたテープ状酸化物超電導線材に印加される歪により超電導特性が低下し易いという問題がある。   This tape-shaped oxide superconducting wire is a wire that is very suitable for application to current leads, but in order to improve Jc of the oxide superconductor, the c-axis of the crystal grain is used as the film surface (tape surface). For this reason, a thin layer of oxide superconductor is formed on a metal substrate via an intermediate layer, and in order to supply a large current to the superconducting magnet, a tape-like oxidation It is necessary to have a laminated structure of a physical superconducting wire and a reinforcing tape or a structure in which a tape-like oxide superconducting wire is wound around the outer periphery of a reinforcing member such as a former. In this case, in the former case, there is a problem that the manufacturing process is complicated and the thermal conductivity of the current lead itself tends to increase. On the other hand, in the latter case, it is necessary to improve the flexibility of the former. In addition, there is a problem that the superconducting characteristics are likely to be deteriorated due to the strain applied to the tape-shaped oxide superconducting wire wound around the outer periphery of the reinforcing member such as a former.

このような問題点を解決するために、本出願人は先に可撓性及び機械的特性に優れ、熱伝導量を低減させるとともに超電導特性に優れた酸化物超電導電流リードを出願している(特願2007−154372参照)。   In order to solve such problems, the present applicant has previously filed an oxide superconducting current lead that has excellent flexibility and mechanical properties, reduces heat conduction, and has excellent superconducting properties ( (See Japanese Patent Application No. 2007-154372).

この発明による酸化物超電導電流リードは、超電導機器と電力供給源とを接続するための電流リードであって、可撓性を有するパイプ状の支持部材の両側に、それぞれ電気的絶縁材料からなる低熱伝導部材を介して接続された電極と、支持部材の外周に絶縁材を介して移動可能に巻回され、両電極に電気的に接続されたテープ状の酸化物超電導線材とを備え、テープ状の酸化物超電導線材のスパイラルピッチが支持部材の軸方向長さよりも小さくしたものである。   The oxide superconducting current lead according to the present invention is a current lead for connecting a superconducting device and a power supply source, and has low heat composed of an electrically insulating material on both sides of a flexible pipe-shaped support member. An electrode connected via a conductive member, and a tape-shaped oxide superconducting wire wound around an outer periphery of the support member via an insulating material and electrically connected to both electrodes. The spiral pitch of the oxide superconducting wire is made smaller than the axial length of the support member.

特開平9−115356号公報JP-A-9-115356 特開平5−243044号公報Japanese Patent Laid-Open No. 5-243044 特開平6−28930号公報JP-A-6-28930 特開2004−171841号公報JP 2004-171841 A

上記の酸化物超電導電流リードは、曲げ歪が印加されたときに超電導体の臨界電流値の低下が抑制されるが、熱伝導率の非常に大きい銀を安定化層として使用するため、酸化物超電導体のバルク体よりもその長さを大きくして熱侵入量を低減させる必要がある。上記の支持部材の外周にテープ状の酸化物超電導線材を巻回することにより、長さによる問題は解決されるが、超電導機器へ電流を供給するためには2本の電流リードを必要とするため、電力供給源と超電導機器との間の電流リードの配置に必要な空間を確保する必要があり、冷却空間を大きくしなければならないという問題がある。また、各電流リードの巻線部分で発生する自己磁界により電流リードの特性が低下するという問題がある。   The above oxide superconducting current lead suppresses a decrease in the critical current value of the superconductor when a bending strain is applied, but uses silver having a very high thermal conductivity as a stabilizing layer. It is necessary to reduce the amount of heat penetration by making the length larger than the bulk of the superconductor. By winding a tape-shaped oxide superconducting wire around the support member, the length problem can be solved, but two current leads are required to supply current to the superconducting device. Therefore, it is necessary to secure a space necessary for arranging the current leads between the power supply source and the superconducting device, and there is a problem that the cooling space must be enlarged. Further, there is a problem that the characteristics of the current lead are deteriorated by the self magnetic field generated in the winding portion of each current lead.

本発明は、以上の問題を解決するためになされたもので、可撓性及び機械的特性に優れ、熱伝導量を低減させるとともに、電流リードの長さを小さくして、コンパクトで、かつ超電導特性に優れた酸化物超電導電流リードを提供することをその目的としている。   The present invention has been made to solve the above problems, and is excellent in flexibility and mechanical characteristics, reduces the amount of heat conduction, reduces the length of the current lead, is compact and superconducting. An object of the present invention is to provide an oxide superconducting current lead having excellent characteristics.

上記の問題を解決するために、本発明の酸化物超電導電流リードは、超電導機器に電力供給源から電力を供給するための電流リードであって、この電流リードは、電気的絶縁性材料を介してその両側に配置された支持部材からなる電流リード支持体と、この各支持部材の両端にそれぞれ接合された導電性材料からなる電流端子と、各支持部材の両端の電流端子間にそれぞれ接続され、電流リード支持体の外周に巻回された2本のテープ状の酸化物超電導線材とからなり、各テープ状の酸化物超電導線材は、電流リード支持体の外周に同方向に無誘導巻きされているように構成したものである。   In order to solve the above problem, the oxide superconducting current lead of the present invention is a current lead for supplying power from a power supply source to a superconducting device, and the current lead is interposed through an electrically insulating material. Current lead supports made of support members disposed on both sides of the support member, current terminals made of a conductive material joined to both ends of each support member, and current terminals at both ends of each support member, respectively. And two tape-shaped oxide superconducting wires wound around the outer periphery of the current lead support, and each tape-shaped oxide superconducting wire is non-inductively wound around the outer periphery of the current lead support in the same direction. It is configured as follows.

この電流リードは、電気的絶縁性材料を介してその両側に配置された電気的絶縁性及び低熱伝導性で、かつ非磁性の材料からなる半円筒状または半円柱状の形状を有する支持部材からなる電流リード支持体と、各支持部材の両端にそれぞれ接合された導電性材料からなる電流端子と、各支持部材の両端の電流端子間にそれぞれ接続され、電流リード支持体の外周に巻回された2本のテープ状のReBaCu系酸化物超電導線材(ここでReは、Y、Gd、Sm、Nd、Ho、Dy、Eu、Tb、Er、Ybから選択されたいずれか1種又は2種以上の元素を示し、x≦2、y=6.2〜7の範囲を示す。以下同じ。)とからなり、各テープ状の酸化物超電導線材は、その基板面を外側にして電流リード支持体の外周に同方向に無誘導巻きされているように構成することもできる。 This current lead is formed from a support member having a semi-cylindrical or semi-cylindrical shape made of a non-magnetic material and electrically insulating and low thermal conductivity disposed on both sides of the current lead. Current lead support, a current terminal made of a conductive material bonded to both ends of each support member, and a current terminal connected to both ends of each support member, respectively, and wound around the outer periphery of the current lead support Two tape-shaped ReBa x Cu 3 O y- based oxide superconducting wires (where Re is any one selected from Y, Gd, Sm, Nd, Ho, Dy, Eu, Tb, Er, and Yb) Each of the tape-shaped oxide superconducting wires has a substrate surface on the outer side, which represents a seed or two or more elements, and represents a range of x ≦ 2, y = 6.2 to 7. In the same direction on the outer periphery of the current lead support It may be configured to be electrically wound.

以上の発明における無誘導巻きとは、電流リード支持体の両端の電流端子間にそれぞれ接続されたテープ状の酸化物超電導線材が、使用状態において逆向きに通電されることにより、互いの線材から発生する磁界が打消し合うように同方向に電流リード支持体の外周に巻回されていることを示し、この場合には、単一の電流リードで超電導機器に電力供給源から電力を供給することができる。   The non-inductive winding in the above invention means that the tape-like oxide superconducting wire connected between the current terminals at both ends of the current lead support is energized in the opposite direction in the use state, thereby Indicates that the generated magnetic field is wound around the outer periphery of the current lead support in the same direction so as to cancel each other. In this case, power is supplied from the power supply source to the superconducting device with a single current lead. be able to.

また、以上述べた発明におけるテープ状の酸化物超電導線材としては、ハステロイ(登録商標)等のNi系合金基板上に中間層を介して積層された超電導層及び安定化層を備えたReBa Cu 系酸化物超電導線材を用いることができ、特にYBaCu(YBCO)超電導線材を用いることが好適する。 Further, the tape-shaped oxide superconducting wire in the invention described above includes a ReBa x Cu including a superconducting layer and a stabilizing layer laminated on an Ni-based alloy substrate such as Hastelloy (registered trademark) via an intermediate layer. A 3 O y- based oxide superconducting wire can be used, and it is particularly preferable to use a YBa x Cu 3 O y (YBCO) superconducting wire.

本発明によれば、電流リード支持体の両端部に接合された各電流端子間に接続されたテープ状の酸化物超電導線材が電流リード支持体の外周に同方向に無誘導巻きされているため、単一の電流リードで超電導機器に電力供給源から電力を供給することができ、これにより、可撓性及び機械的特性に優れ、熱伝導量を低減させることができる上、コンパクトで、かつ電流リードの巻線部分で発生する自己磁界による超電導特性の低下を抑制することができる。   According to the present invention, the tape-like oxide superconducting wire connected between the current terminals joined to both ends of the current lead support is non-inductively wound around the outer periphery of the current lead support in the same direction. A single current lead can supply power to a superconducting device from a power supply source, thereby providing excellent flexibility and mechanical properties, reducing heat conduction, and being compact and It is possible to suppress a decrease in superconducting characteristics due to a self magnetic field generated in the winding portion of the current lead.

図2は、本発明の酸化物超電導電流リードに用いられる電流リード支持体10及びこの両端に接合された電流端子11a、11b、11c及び11dを示したもので、同図(a)、(b)及び(c)は、それぞれその平面図、正面図及び右側面図(左側面図も対称)を示している。   FIG. 2 shows the current lead support 10 used in the oxide superconducting current lead of the present invention and the current terminals 11a, 11b, 11c and 11d joined to both ends thereof. ) And (c) respectively show a plan view, a front view, and a right side view (the left side view is also symmetric).

図2において、電流リード支持体10は、GFRP(ガラス繊維強化プラスチック)等の電気的絶縁性材料12を介してその両側に配置された支持部材13a及び13bからなり、電流端子11a及び11bは、支持部材13aの両端に接合され、電流端子11c及び11dは、支持部材13bの両端に接合されている。   In FIG. 2, the current lead support 10 is composed of support members 13a and 13b arranged on both sides of an electrically insulating material 12 such as GFRP (glass fiber reinforced plastic), and the current terminals 11a and 11b are The current terminals 11c and 11d are joined to both ends of the support member 13b.

支持部材13a及び13bは、低熱伝導性で、かつ非磁性の材料からなる半円筒状(または半円柱状)の形状を有し、一方、電流端子11a、11b、11c及び11dは、無酸素銅等の導電性材料からなる半円板状の一側にそれぞれ矩形状の接続部材14a、14b、14c及び14dを形成した形状を有し、各支持部材13a及び13bの両端にそれぞれ接合されている。   The support members 13a and 13b have a semi-cylindrical shape (or semi-columnar shape) made of a non-magnetic material with low thermal conductivity, while the current terminals 11a, 11b, 11c and 11d are made of oxygen-free copper. Each of the support members 13a and 13b has a shape in which rectangular connection members 14a, 14b, 14c and 14d are formed on one side of a semicircular plate made of a conductive material such as .

電流端子11a、11c及び11b、11dは、それぞれGFRP等の電気的絶縁性材料を介して接合され、半円板状の部分の接合により、電流リード支持体10と同一外径を有し、電流リード支持体10の表面と同一表面をなすように電流リード支持体10の両側に接合されている。この電気的絶縁性材料を介して接合された電流端子11a、11c及び11b、11dは、図2(a)に示すように、各支持部材13a及び13bの両端に延長して伸びる電気的絶縁性材料12を介して、電流リード支持体10の両側に接合することもでき、あるいは、電流端子11a、11c及び11b、11dを、それぞれ離間して配置することもできる。   The current terminals 11a, 11c and 11b, 11d are joined through an electrically insulating material such as GFRP, and have the same outer diameter as that of the current lead support 10 by joining the semicircular parts. It is joined to both sides of the current lead support 10 so as to form the same surface as the surface of the lead support 10. As shown in FIG. 2A, the current terminals 11a, 11c, 11b, and 11d joined through the electrically insulating material extend to both ends of the support members 13a and 13b and extend electrically. It can be bonded to both sides of the current lead support 10 via the material 12, or the current terminals 11a, 11c and 11b, 11d can be spaced apart from each other.

上記の電流リード支持体10を形成する低熱伝導性で、かつ非磁性の材料からなる支持部材13a及び13bとしては、GFRPの他、ステンレス合金、Ni基合金またはチタン合金のいずれか1種よりなるものを用いることができる。この場合、電流リード支持体10が電気的絶縁性を有しないステンレス合金等であるときは、図2(a)に示すように、電流端子11a、11c及び11b、11dは、それぞれGFRP等の電気的絶縁性で、かつ低熱伝導性の中間部材15a、15b、15c及び15dを介して電流リード支持体10の両側に接合される。   The supporting members 13a and 13b made of a non-magnetic material with low thermal conductivity forming the current lead support 10 are made of any one of stainless steel alloy, Ni-base alloy, and titanium alloy in addition to GFRP. Things can be used. In this case, when the current lead support 10 is a stainless alloy or the like that does not have electrical insulation, the current terminals 11a, 11c and 11b, 11d are electrically connected to GFRP or the like as shown in FIG. It is joined to both sides of the current lead support 10 via intermediate members 15a, 15b, 15c and 15d which are electrically insulating and have low thermal conductivity.

図1は、上記の電流リード支持体10の両端に接合された電流端子11a及び11b、11c及び11d間にテープ状の超電導線が接続された酸化物超電導電流リード20を示している。尚、同図において図2と同一部分は同符号で示した
図1において、模式的に示したテープ状のReBaCu系酸化物超電導線材A(太い実線)及びB(太い点線)は、ハステロイ等のNi系合金基板上に中間層を介して積層された超電導層及び安定化層を備えたReBaCu系酸化物超電導線材からなり、電流リード支持体の外周にカプトンテープ(登録商標)等の電気的絶縁テープを介して、その基板面を外側にして電流リード支持体10の外周に同方向に無誘導巻きされるように巻回されており、それぞれの超電導線材A及びBは、絶縁されるとともに、超電導線材Aは、電流端子11a及び11bの半円板状の部分にその超電導層が半田接続され、同様に超電導線材Bは、電流端子11c及び11dの半円板状の部分にその超電導層が半田接続されている。この場合、電流リード支持体10が電気的絶縁性材料により形成されているときは、電流リード支持体の外周の電気的絶縁テープあるいは超電導線材A及びBの絶縁を省略することも可能である。
FIG. 1 shows an oxide superconducting current lead 20 in which a tape-shaped superconducting wire is connected between current terminals 11a and 11b, 11c and 11d joined to both ends of the current lead support 10 described above. 2, the same parts as those in FIG. 2 are indicated by the same reference numerals. In FIG. 1, the tape-shaped ReBa x Cu 3 O y- based oxide superconducting wire A (thick solid line) and B (thick dotted line) schematically shown. Is composed of a ReBa x Cu 3 O y oxide superconducting wire having a superconducting layer and a stabilizing layer laminated on a Ni-based alloy substrate such as Hastelloy via an intermediate layer, and Kapton is formed on the outer periphery of the current lead support. Each superconducting wire is wound so as to be non-inductively wound around the outer periphery of the current lead support 10 in the same direction through an electrically insulating tape such as a tape (registered trademark) with the substrate surface facing outward. A and B are insulated, and the superconducting wire A has a superconducting layer solder-connected to the semicircular plate-like portions of the current terminals 11a and 11b. Similarly, the superconducting wire B is a half of the current terminals 11c and 11d. Disc The superconducting layer is soldered to the parts. In this case, when the current lead support 10 is made of an electrically insulating material, it is possible to omit insulation of the electrical insulating tape or the superconducting wires A and B on the outer periphery of the current lead support.

また、ReBaCu系酸化物超電導線材A及びBは、通常その幅が1.0〜5.0mm、超電導層の厚さが0.5〜3.0μm、安定化層の厚さが0.01〜0.2mmの範囲内のものが用いられる。超電導線材の幅が1.0mm未満であると、電流リードとしての通電容量を確保することが困難となり、一方、その幅が5.0mmを超えると通常使用される小径の円柱状または円筒状の電流リード支持体の外周に巻回することが困難となる。また、超電導層の厚さが0.5μm未満であると電流リードとしての通電容量を確保することが困難となり、一方、その厚さが3.0μmを超えると、超電導層の密度の低下やクラックの発生により超電導特性が低下する。さらに、安定化層の厚さが0.01mm未満であると安定化層としての役割、即ち、過電流や温度上昇等により超電導状態から常電導状態に転移したときに安定化層に分流させて超電導層の焼損を防止することが困難となり、一方、その厚さが0.2mmを超えると熱侵入量が大きくなり、電流リードの性能を低下させる。 In addition, the ReBa x Cu 3 O y- based oxide superconducting wires A and B usually have a width of 1.0 to 5.0 mm, a superconducting layer thickness of 0.5 to 3.0 μm, and a stabilization layer thickness. In the range of 0.01 to 0.2 mm is used. If the width of the superconducting wire is less than 1.0 mm, it will be difficult to ensure a current carrying capacity as a current lead. On the other hand, if the width exceeds 5.0 mm, a generally used small diameter columnar or cylindrical shape will be used. It becomes difficult to wind around the outer periphery of the current lead support. On the other hand, if the thickness of the superconducting layer is less than 0.5 μm, it is difficult to secure a current carrying capacity as a current lead. On the other hand, if the thickness exceeds 3.0 μm, the density of the superconducting layer is reduced or cracks are generated. The superconducting properties deteriorate due to the occurrence of. Furthermore, if the thickness of the stabilization layer is less than 0.01 mm, the role as the stabilization layer, that is, when the transition from the superconducting state to the normal conducting state due to overcurrent, temperature rise, etc. is made to split into the stabilizing layer. It becomes difficult to prevent the superconducting layer from being burned out. On the other hand, when the thickness exceeds 0.2 mm, the amount of heat penetration increases and the performance of the current lead is deteriorated.

このReBaCu系酸化物超電導線材A及びBは、それぞれテープ状のReBaCu系酸化物超電導線材の複数枚を積層した積層体より構成することもでき、またはその複数枚を並列配置して構成することもできる。 The ReBa x Cu 3 O y- based oxide superconducting wires A and B can be constituted by a laminate in which a plurality of tape-shaped ReBa x Cu 3 O y- based oxide superconducting wires are laminated, or a plurality of them. It can also be configured by arranging the sheets in parallel.

超電導線材A及びBは、その基板面を外側にして電流リード支持体10の外周に巻回することにより、曲げ歪が印加されたときの超電導特性の低下を抑制することができる。即ち、超電導線材A及びBを、そのスパイラルピッチが電流リード支持体の軸方向長さよりも小さく、かつ電流リード支持体の外周に移動可能に巻回することにより、電流リード20に曲げ歪が印加された場合に、超電導線材A及びBが絶縁テープ上を滑ってスパイラルピッチP内で圧縮及び引張歪を相殺して吸収することができ、これにより、電流リード20に曲げ歪が印加されたときの超電導層に付加される歪量を軽減することが可能となる。   The superconducting wires A and B can be wound around the outer periphery of the current lead support 10 with the substrate surface facing outward, thereby suppressing degradation of superconducting characteristics when bending strain is applied. That is, when the superconducting wires A and B are wound so that the spiral pitch is smaller than the axial length of the current lead support and can be moved around the current lead support, bending strain is applied to the current lead 20. In this case, the superconducting wires A and B can slide on the insulating tape to offset and absorb the compression and tensile strain within the spiral pitch P, and thus when the bending strain is applied to the current lead 20. It is possible to reduce the amount of strain added to the superconducting layer.

以上から明らかなように、本発明による酸化物超電導電流リードは、単一の電流リードで酸化物超電導機器に電力供給源から電力を供給することができ、電流リードの巻線部分で発生する自己磁界による超電導特性の低下を抑制することができるため、従来の比較例1の電流リード本体の外側にテープ状の超電導線材を巻回した電流リードを2本用いた場合と比較してその熱侵入量を著しく低減することができる。 As is apparent from the above, the oxide superconducting current lead according to the present invention can supply power from the power supply source to the oxide superconducting device with a single current lead, and self-generated in the winding portion of the current lead. Since the deterioration of the superconducting characteristics due to the magnetic field can be suppressed, the heat intrusion is compared with the case where two current leads each having a tape-like superconducting wire wound around the current lead body of the conventional comparative example 1 are used. The amount can be significantly reduced.

本発明による酸化物超電導電流リードは、超電導機器に電力供給源電源から電流を供給するための電流リードに使用することができる。   The oxide superconducting current lead according to the present invention can be used as a current lead for supplying current from a power supply source to a superconducting device.

本発明の酸化物超電導電流リードの一実施例を示す正面図である。It is a front view which shows one Example of the oxide superconducting current | flow lead of this invention. 本発明の酸化物超電導電流リードに用いられる電流リード支持体及びその両端に接合された電流端子の一実施例を示す平面図(a)、正面図(b)及び右側面図(c)である。It is the top view (a), front view (b), and right view (c) which show one Example of the current lead support body used for the oxide superconducting current lead of this invention, and the current terminal joined to the both ends. .

10 電流リード支持体
11a、11b、11c、11d 電流端子
12、12´ 電気的絶縁性材料
13a、13b 支持部材
14a、14b、14c、14d 接続部材
15a、15b、15c、15d 中間部材
20 酸化物超電導電流リード
A、B ReBaCu系酸化物超電導線材
10 Current lead support 11a, 11b, 11c, 11d Current terminal 12, 12 'Electrical insulating material 13a, 13b Support member 14a, 14b, 14c, 14d Connection member 15a, 15b, 15c, 15d Intermediate member 20 Oxide superconductivity Current lead A, B ReBa x Cu 3 O y- based oxide superconducting wire

Claims (9)

超電導機器に電力供給源から電力を供給するための電流リードであって、前記電流リードは、電気的絶縁性材料を介してその両側に配置された支持部材からなる電流リード支持体と、前記各支持部材の両端にそれぞれ接合された導電性材料からなる電流端子と、前記各支持部材の両端の電流端子間にそれぞれ接続され、前記電流リード支持体の外周に巻回された2本のテープ状の酸化物超電導線材とからなり、前記各テープ状の酸化物超電導線材は、前記電流リード支持体の外周に同方向に無誘導巻きされていることを特徴とする酸化物超電導電流リード。   A current lead for supplying electric power from a power supply source to a superconducting device, wherein the current lead includes a current lead support body including support members disposed on both sides of the current lead, and each of the current leads. Two tape-shaped current terminals made of a conductive material respectively joined to both ends of the support member, and two tapes connected between the current terminals at both ends of each support member and wound around the outer periphery of the current lead support An oxide superconducting current lead, wherein each of the tape-shaped oxide superconducting wires is non-inductively wound around the outer periphery of the current lead support in the same direction. 電流リード支持体の両側にそれぞれ接合された一対の電流端子は、互いに離間して配置されていることを特徴とする請求項1記載の酸化物超電導電流リード。   2. The oxide superconducting current lead according to claim 1, wherein the pair of current terminals respectively joined to both sides of the current lead support are disposed apart from each other. 電流リード支持体の両側にそれぞれ接合された一対の電流端子は、互いに電気的絶縁性材料を介して配置されていることを特徴とする請求項1記載の酸化物超電導電流リード。   2. The oxide superconducting current lead according to claim 1, wherein a pair of current terminals respectively joined to both sides of the current lead support are disposed with an electrically insulating material therebetween. テープ状の酸化物超電導線材は、電流リード支持体の外周に電気的絶縁性材料を介して巻回されていることを特徴とする請求項1乃至いずれか1項記載の酸化物超電導電流リード。 The oxide superconducting current lead according to any one of claims 1 to 3 , wherein the tape-shaped oxide superconducting wire is wound around the outer periphery of the current lead support via an electrically insulating material. . テープ状の酸化物超電導線材は、その複数枚を積層した積層体よりなることを特徴とする請求項記載の酸化物超電導電流リード。 5. The oxide superconducting current lead according to claim 4 , wherein the tape-shaped oxide superconducting wire comprises a laminate in which a plurality of the oxide superconducting wires are laminated. テープ状の酸化物超電導線材は、その複数枚を並列配置したことを特徴とする請求項記載の酸化物超電導電流リード。 5. The oxide superconducting current lead according to claim 4 , wherein a plurality of tape-shaped oxide superconducting wires are arranged in parallel. テープ状の酸化物超電導線材は、基板上に中間層を介して積層された超電導層及び安定化層を備えたReBaCu系酸化物超電導線材(ここでReは、Y、Gd、Sm、Nd、Ho、Dy、Eu、Tb、Er、Ybから選択されたいずれか1種又は2種以上の元素を示し、x≦2、y=6.2〜7の範囲を示す。)であることを特徴とする請求項1または4乃至6いずれか1項記載の酸化物超電導電流リード。 The tape-shaped oxide superconducting wire is a ReBa x Cu 3 O y- based oxide superconducting wire comprising a superconducting layer and a stabilization layer laminated on a substrate via an intermediate layer (where Re is Y, Gd, Any one or two or more elements selected from Sm, Nd, Ho, Dy, Eu, Tb, Er, and Yb are shown, and a range of x ≦ 2, y = 6.2 to 7 is shown. oxide superconducting current lead according to claim 1 or 4 to 6 any one of claims, characterized in that there. テープ状の酸化物超電導線材は、基板面を外側にして前記電流リード支持体の外周に巻回されていることを特徴とする請求項記載の酸化物超電導電流リード。 8. The oxide superconducting current lead according to claim 7, wherein the tape-shaped oxide superconducting wire is wound around the outer periphery of the current lead support with the substrate surface facing outward. 超電導機器に電力供給源から電力を供給するための電流リードであって、前記電流リードは、電気的絶縁性材料を介してその両側に配置された非磁性のGFRP(ガラス繊維強化プラスチック)、ステンレス合金、Ni基合金またはチタン合金のいずれか1種よりなる半円筒状または半円柱状の形状を有する支持部材からなる電流リード支持体と、前記各支持部材の両端にそれぞれ接合された導電性材料からなる電流端子と、前記各支持部材の両端の電流端子間にそれぞれ接続され、前記電流リード支持体の外周に巻回された2本のテープ状のReBaCu系酸化物超電導線材(ここでReは、Y、Gd、Sm、Nd、Ho、Dy、Eu、Tb、Er、Ybから選択されたいずれか1種又は2種以上の元素を示し、x≦2、y=6.2〜7の範囲を示す。)とからなり、前記各テープ状の酸化物超電導線材は、その基板面を外側にして前記電流リード支持体の外周に同方向に無誘導巻きされていることを特徴とする酸化物超電導電流リード。 A current lead for supplying power from a power supply source to a superconducting device, wherein the current lead is a nonmagnetic GFRP (glass fiber reinforced plastic), stainless steel disposed on both sides of the current lead via an electrically insulating material A current lead support made of a support member having a semi-cylindrical or semi-columnar shape made of any one of an alloy, a Ni-based alloy and a titanium alloy, and a conductive material bonded to both ends of each of the support members And two tape-shaped ReBa x Cu 3 O y oxide superconducting wires connected between current terminals at both ends of each support member and wound around the outer periphery of the current lead support (Here, Re represents one or more elements selected from Y, Gd, Sm, Nd, Ho, Dy, Eu, Tb, Er, and Yb, and x ≦ 2, y = Shows the range of .2~7.) Becomes from the said each tape-shaped oxide superconducting wire, it is unguided wound in the same direction on the outer circumference of the current lead support to the substrate surface to the outside Oxide superconducting current lead characterized by.
JP2008072165A 2008-03-19 2008-03-19 Oxide superconducting current lead Expired - Fee Related JP5011181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072165A JP5011181B2 (en) 2008-03-19 2008-03-19 Oxide superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072165A JP5011181B2 (en) 2008-03-19 2008-03-19 Oxide superconducting current lead

Publications (2)

Publication Number Publication Date
JP2009230912A JP2009230912A (en) 2009-10-08
JP5011181B2 true JP5011181B2 (en) 2012-08-29

Family

ID=41246101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072165A Expired - Fee Related JP5011181B2 (en) 2008-03-19 2008-03-19 Oxide superconducting current lead

Country Status (1)

Country Link
JP (1) JP5011181B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266852B2 (en) * 2008-04-15 2013-08-21 富士電機株式会社 Superconducting current lead
JP5724029B2 (en) 2012-02-23 2015-05-27 株式会社フジクラ Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP5940361B2 (en) * 2012-04-26 2016-06-29 住友重機械工業株式会社 Superconducting current lead manufacturing method, superconducting current lead, and superconducting magnet device
KR101934078B1 (en) * 2017-12-15 2018-12-31 심기덕 Annular flexible high temperature superconducting current lead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283609A (en) * 1986-05-31 1987-12-09 Toshiba Corp Gas cooled current supplying lead
JPH03283678A (en) * 1990-03-30 1991-12-13 Fuji Electric Co Ltd Current lead of superconducting magnet apparatus
JPH09153407A (en) * 1995-11-30 1997-06-10 Hitachi Ltd Support structure of oxide superconducting current lead
US7372273B2 (en) * 2006-10-02 2008-05-13 General Electric Company High temperature superconducting current leads for superconducting magnets

Also Published As

Publication number Publication date
JP2009230912A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP5022279B2 (en) Oxide superconducting current lead
JP5011181B2 (en) Oxide superconducting current lead
JP5115778B2 (en) Superconducting cable
JP4838199B2 (en) Oxide superconducting current lead
JP2012256744A (en) Superconductive coil
JP2011171090A (en) Superconductive current lead
JP6047341B2 (en) Conductive cooling type permanent current switch and superconducting wire manufacturing method
JP5675232B2 (en) Superconducting current lead
JP5693915B2 (en) Superconducting current lead and superconducting magnet device
JP6471625B2 (en) Superconducting conductive element
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP2009259520A (en) Superconductive current lead
JP2020136637A (en) High-temperature superconducting magnet device
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP2012064323A (en) Superconductive current lead
JP4901585B2 (en) Oxide superconducting current lead
JP2013074082A (en) Permanent-current switch, and conductive cooling-type superconducting magnet device having the same
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2007115635A (en) High temperature superconducting coil and its manufacturing method
JP5925827B2 (en) Superconducting current lead
JP2002289049A (en) Low-resistance conductor and its manufacturing method, and electric member using them
JP4012422B2 (en) Oxide superconductor current lead
JP2012235008A (en) Superconductive lead and superconducting magnet device
EP4113548A1 (en) Superconducting magnet, superconducting wire, and method for producing superconducting magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees