JP5266852B2 - Superconducting current lead - Google Patents

Superconducting current lead Download PDF

Info

Publication number
JP5266852B2
JP5266852B2 JP2008105568A JP2008105568A JP5266852B2 JP 5266852 B2 JP5266852 B2 JP 5266852B2 JP 2008105568 A JP2008105568 A JP 2008105568A JP 2008105568 A JP2008105568 A JP 2008105568A JP 5266852 B2 JP5266852 B2 JP 5266852B2
Authority
JP
Japan
Prior art keywords
superconducting
tape
wire
current lead
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008105568A
Other languages
Japanese (ja)
Other versions
JP2009259520A (en
Inventor
敬昭 坊野
章 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008105568A priority Critical patent/JP5266852B2/en
Publication of JP2009259520A publication Critical patent/JP2009259520A/en
Application granted granted Critical
Publication of JP5266852B2 publication Critical patent/JP5266852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

この発明は、超電導エネルギー貯蔵用の超電導コイルや限流器,超電導ケーブル,超電導発電機,超電導変圧器等の超電導装置に適用する通電容量が大きな超電導電流リードの組立構造に関する。   The present invention relates to an assembly structure of a superconducting current lead having a large energizing capacity applied to a superconducting device such as a superconducting coil for storing superconducting energy, a current limiting device, a superconducting cable, a superconducting generator, and a superconducting transformer.

超電導マグネットは、物性研究用や磁気共鳴装置などに利用され、将来的には磁気浮上列車、核融合用磁気閉じこめ装置等への応用に期待されている。ところで、クライオスタットの極低温容器中に置かれた超電導マグネットには、室温側に置かれた励磁電源より電流リードを介して電流を供給する際に、電流リードを伝熱経路として外部から極低温領域に侵入する熱が大きな問題となっている。すなわち、液体ヘリウムは高価な冷媒材であり、また熱侵入により蒸発した液体ヘリウムを再液化するために使用する冷凍機も大きな電力を消費する。そこで、電流リードを通じて熱侵入量が多いと、液体ヘリウムの購入に伴うコストアップを招くばかりか、再液化のための冷凍機が大型化、大容量化してしまうことから、低抵抗で高い導電性を確保しつつ、外部からの伝導熱侵入が低い電流リードの開発が重要な開発課題となっている。   Superconducting magnets are used for physical property research and magnetic resonance devices, and are expected to be applied to magnetic levitation trains and magnetic confinement devices for nuclear fusion in the future. By the way, when a current is supplied to the superconducting magnet placed in the cryostat container of the cryostat through the current lead from the excitation power source placed on the room temperature side, the current lead is used as a heat transfer path from the outside in the cryogenic region. The heat that invades is a big problem. That is, liquid helium is an expensive refrigerant material, and a refrigerator used to re-liquefy liquid helium evaporated by heat penetration also consumes a large amount of power. Therefore, a large amount of heat penetration through the current leads not only increases the cost associated with the purchase of liquid helium, but also increases the size and capacity of the refrigerating machine, resulting in low resistance and high conductivity. The development of current leads with low conduction heat intrusion from the outside is an important development issue.

そこで、電流リードの低温側リード部に高温超電導材料を用いて極低温部への伝導熱侵入を低減するようにした高温超電導電流リードが開発されており、その一例として液体ヘリウム中の超電導機器に電流を供給する電流リードの中間部に液体窒素温度に冷却するサーマルアンカを設け、電流リードの低温側には臨界温度が液体窒素の沸点(77.3K)以上である超電導体(例えばY−Ba−Cu−O)を使用した超電導電流リードが知られている(例えば、特許文献1参照)。また、超電導電流リードを低温部、中温部および高温部の導体に分けて構成し、低温部導体は、熱伝導率の低い絶縁基板にBi系の酸化物超電導層を設けたものを使用し、中温部,高温部の導体として酸化物系超電導体からなるコアをAgなどの被覆材(シース)で被覆したテープ状線材の複数枚を積層して集合化した構造の超電導電流リードも知られている(例えば、特許文献2参照)。   Therefore, a high-temperature superconducting current lead has been developed that uses a high-temperature superconducting material at the low-temperature lead part of the current lead to reduce conduction heat intrusion into the cryogenic part, and one example is superconducting equipment in liquid helium. A thermal anchor that cools to the temperature of liquid nitrogen is provided in the middle portion of the current lead that supplies current, and a superconductor (for example, Y-Ba) having a critical temperature equal to or higher than the boiling point (77.3 K) of liquid nitrogen is provided on the low temperature side of the current lead. A superconducting current lead using -Cu-O) is known (for example, see Patent Document 1). In addition, the superconducting current lead is divided into a low temperature part, a medium temperature part, and a high temperature part conductor, and the low temperature part conductor uses a Bi-based oxide superconducting layer provided on an insulating substrate having a low thermal conductivity. There is also known a superconducting current lead having a structure in which a core made of an oxide-based superconductor is covered with a coating material (sheath) such as Ag as a conductor in a middle temperature part and a high temperature part, and is laminated and assembled. (For example, refer to Patent Document 2).

そのほか、超電導電流リードを、銅線を束ねた高温側リード部とテープ状の超電導線材で構成した低温側リード部とに分け、ここで低温側リード部は例えばBi系のテープ状酸化物超電導線材を複数枚積層して集合化した導体ユニットを、その超電導線材のテープ面が円筒座標系における周方向と平行になるように円筒状の支持部材の周面に配列して構成した大電流容量の超電導電流リードが知られており(例えば、特許文献3参照)、次にその超電導電流リードの具体的な構造を図5〜図7に示す。   In addition, the superconducting current lead is divided into a high temperature side lead portion bundled with a copper wire and a low temperature side lead portion composed of a tape-like superconducting wire, where the low temperature side lead portion is, for example, a Bi-based tape-like oxide superconducting wire. A conductor unit in which a plurality of conductors are assembled and arranged on the circumferential surface of a cylindrical support member so that the tape surface of the superconducting wire is parallel to the circumferential direction in the cylindrical coordinate system. A superconducting current lead is known (see, for example, Patent Document 3). Next, a specific structure of the superconducting current lead is shown in FIGS.

図5は超電導コイルへの適用例で、図において1は液体ヘリウムで満たしたクライオスタットの極低温容器、2は超電導コイル、2aは超電導コイル2の接続端子、3は外部の励磁電源から超電導コイル2に電力を供給する超電導電流リード、3a,3bは接続端子であり、超電導電流リード3は銅あるいは銅合金等の良導電性金属で構成した高温側リード部4と、テープ状の超電導線材を用いて構成した低温側リード部5とから構成されている。   FIG. 5 shows an example of application to a superconducting coil. In the figure, 1 is a cryostat cryogenic container filled with liquid helium, 2 is a superconducting coil, 2a is a connection terminal of the superconducting coil 2, and 3 is a superconducting coil 2 from an external excitation power source. The superconducting current leads 3a and 3b for supplying electric power to the terminals are connection terminals. The superconducting current leads 3 are made of a high-temperature side lead portion 4 made of a highly conductive metal such as copper or copper alloy, and a tape-shaped superconducting wire. And a low-temperature side lead portion 5 configured as described above.

ここで、前記の低温側リード部5は、図6(a),(b)で示すようにFRP,あるいはステンレス鋼等で作られた円筒状(パイプ状)の支持部材6の周面に超電導導体ユニット7を多数配列して支持部材の軸方向に敷設した構造になる。また、前記導体ユニット7は、例えばBi(ビスマス)系のテープ状超電導線材(銀シース超電導線)8を、その超電導線材のテープ面が円筒座標系における周方向と平行になるように複数枚を積層して支持部材6の周面に形成した凹溝内に敷設している。また、図7(a),(b)で示すように、前記支持部材6の両端には銅あるいは銅合金等の金属で作られた電極9を配し、該電極9と各超電導線材8との間をハンダ等で導電接合して低温側リード部5を構成している。   Here, as shown in FIGS. 6A and 6B, the low temperature side lead portion 5 is superconducting on the peripheral surface of a cylindrical (pipe-shaped) support member 6 made of FRP or stainless steel or the like. A large number of conductor units 7 are arranged and laid in the axial direction of the support member. In addition, the conductor unit 7 includes, for example, a Bi (bismuth) tape-shaped superconducting wire (silver sheath superconducting wire) 8 such that the tape surface of the superconducting wire is parallel to the circumferential direction in the cylindrical coordinate system. It is laid in a concave groove formed on the peripheral surface of the support member 6 by stacking. Further, as shown in FIGS. 7A and 7B, electrodes 9 made of metal such as copper or copper alloy are arranged at both ends of the support member 6, and the electrodes 9 and the respective superconducting wires 8 and The low-temperature-side lead portion 5 is configured by conducting conductive bonding between them with solder or the like.

一方、近年になり次世代のテープ状超電導線材として、高電流密度化、低コスト化が可能であると期待されているイットリウム系(Y系)など、希土類金属(Re)系のテープ状酸化物超電導線材の開発が進んでいる。具体的に開発が進められているテープ状酸化物超電導線材は、イットリウム(Y系)、ホルミウム(Ho系)、ガドリウム(Gd系)がある。また、例えば、特許文献4に記載されたように、このテープ状酸化物超電導線材は、テープ状の金属基板(ハステロイ等)の板面にIBAD法で蒸着した中間層(YSZ等),PLD法で蒸着したキャップ層(CeO2)を介してY系,Ho系の酸化物超電導体層を成膜し、さらに金,銀またはその合金の薄膜(保護膜)で酸化物超電導体層を覆った構成となっており、その模式図を図8に示す。
特開昭64−76707号公報 特開平5−109530号公報 特開平10−188691号公報 特開2004−71359号公報
On the other hand, as a next-generation tape-shaped superconducting wire in recent years, rare earth metal (Re) -based tape-like oxides such as yttrium-based (Y-based), which are expected to be capable of high current density and low cost. Development of superconducting wire is progressing. Specific examples of the tape-shaped oxide superconducting wires that are being developed include yttrium (Y-based), holmium (Ho-based), and gadolinium (Gd-based). Further, for example, as described in Patent Document 4, this tape-shaped oxide superconducting wire includes an intermediate layer (YSZ or the like) deposited by an IBAD method on a plate surface of a tape-shaped metal substrate (Hastelloy or the like), a PLD method. A Y-based or Ho-based oxide superconductor layer is formed through a cap layer (CeO2) deposited in 1), and the oxide superconductor layer is covered with a thin film (protective film) of gold, silver or an alloy thereof. The schematic diagram is shown in FIG.
JP-A 64-76707 JP-A-5-109530 Japanese Patent Laid-Open No. 10-188691 JP 2004-71359 A

ところで、図6,図7に示した低温側リード部5について、そのテープ状超電導線材8を前記の特許文献2で述べたようなテープ状の酸化物超電導線材に置き換えて構成すると、このままでは次記のような通電性の問題があって超電導電流リードの大容量化が困難となる。   By the way, if the tape-like superconducting wire 8 is replaced with the tape-like oxide superconducting wire as described in Patent Document 2 with respect to the low temperature side lead portion 5 shown in FIGS. There is a problem of the current conduction as described above, and it is difficult to increase the capacity of the superconducting current lead.

すなわち、先記した銀シース超電導線材は電流が各線材の断面全域,および線材相互間の重なり面を通じて流れるので、厚さ方向にテープ状線材を複数枚積層して集合化することにより電流リードの通電容量の増大が可能である。これに対し、図8に示したイットリウム系(Y系)やホルミウム系(Ho系)等のテープ状酸化物超電導線材は、線材の層内に中間層,キャップ層の絶縁層が成層されていることから、図6のように複数枚の線材を積層しても電極9(図7参照)に導電接合した線材端面から流入した電流は各テープ状線材の超電導層側,つまり線材の片面側のみを流れ、互いに重なり合う積層面を通じて各超電導線材の相互間には電流が横流することはできない。   That is, since the current flows in the above-described silver sheath superconducting wire through the entire cross-section of each wire and through the overlapping surface between the wires, the current leads can be obtained by stacking and assembling a plurality of tape-like wires in the thickness direction. The current carrying capacity can be increased. In contrast, the yttrium-based (Y-based) or holmium-based (Ho-based) tape-shaped oxide superconducting wire shown in FIG. 8 has an intermediate layer and a cap layer insulating layer formed in the wire layer. Therefore, even if a plurality of wires are laminated as shown in FIG. 6, the current flowing from the end surface of the wire conductively joined to the electrode 9 (see FIG. 7) is only on the superconducting layer side of each tape-like wire, that is, on one side of the wire. The current cannot flow between the superconducting wires through the laminated surfaces that overlap each other.

このために、図8に示したテープ状の酸化物超電導線材を図7の低温側リード部に採用し、このテープ状の酸化物超電導線材を複数枚積層して集合化した導体ユニット7を支持部材6の周面に配列した敷設した上で、その線材の両端を電極9にハンダ接合する場合に、各テープ状線材8の端面と電極9との間のハンダ接合状態にバラツキなどがあると、これに起因して各超電導線材には電流が均等に流れなくなる。   For this purpose, the tape-shaped oxide superconducting wire shown in FIG. 8 is employed in the low-temperature side lead portion of FIG. 7 to support a conductor unit 7 in which a plurality of tape-shaped oxide superconducting wires are stacked and assembled. When both ends of the wire rod are soldered to the electrode 9 after being laid out on the peripheral surface of the member 6, if there are variations in the solder joint state between the end surface of each tape-shaped wire rod 8 and the electrode 9, etc. As a result, current does not flow evenly in each superconducting wire.

さらに、図7のように、円筒状支持部材6の周面に敷設した導体ユニット7の各テープ状超電導線材8に対して、その両端に配した電極9を断面L形のリングとして支持部材6に組み付けた構造では、上下に積層したテープ状の各超電導線材8のうち、支持部材6の周面と接する内側の線材はその両端部の線材面が電極9の周面に重なって導電接合(ハンダ付け)されることになる。このことから、図8に示したテープ状酸化物超電導線材の超電導層側を下面に向けて各テープ状線材を上下に積層すると、電流は電極9の周面に接する特定のテープ状線材にのみ集中して流れるようになるため、電流リードの通電容量(臨界電流)をテープ状酸化物超電導線材の積層枚数に比例して高めることが困難となる。   Further, as shown in FIG. 7, with respect to each tape-shaped superconducting wire 8 of the conductor unit 7 laid on the peripheral surface of the cylindrical support member 6, the electrodes 9 arranged at both ends thereof are used as rings having an L-shaped cross section. In the tape-like superconducting wires 8 stacked one above the other, the inner wire that is in contact with the peripheral surface of the support member 6 is conductively bonded so that the wire surfaces at both ends thereof overlap the peripheral surface of the electrode 9. It will be soldered). From this, when each tape-like wire is laminated up and down with the superconducting layer side of the tape-like oxide superconducting wire shown in FIG. 8 facing the lower surface, the current flows only to the specific tape-like wire that contacts the peripheral surface of the electrode 9. Since it flows in a concentrated manner, it becomes difficult to increase the current carrying capacity (critical current) of the current lead in proportion to the number of stacked tape-shaped oxide superconducting wires.

この発明は上記の点に鑑みなされたものであり、その目的は、次世代のテープ状酸化物超電導線材(Y系やHo系等のテープ状酸化物超電導線材)を採用して超電導電流リードの低温側リード部を構成する際に、複数枚を積層して集合化したテープ状の酸化物超電導線材に対してその各線材に電流が均等に流れるよう組立構造を改良して容易に通電容量の増大化が図れるようにした超電導電流リードを提供することにある。   The present invention has been made in view of the above points, and its purpose is to adopt a next-generation tape-shaped oxide superconducting wire (ta-based oxide superconducting wire such as Y-based or Ho-based), and a superconducting current lead. When constructing the low temperature side lead part, the assembly structure is improved so that the current flows evenly to each of the tape-shaped oxide superconducting wires assembled by laminating multiple sheets, and the current carrying capacity can be easily increased. It is an object of the present invention to provide a superconducting current lead that can be increased.

上記目的を達成するために、この発明によれば、液体ヘリウム,液体窒素等の極低温冷媒,ないしは冷凍機などにより冷却される超電導装置に電力を供給する超電導電流リードであって、その低温側リード部が、複数枚のテープ状超電導線材を積層して集合化した導体ユニットを円筒,または円柱状の支持部材の周面に配列して敷設し、かつ前記支持部材の両端に配した金属電極と前記導体ユニットとの間を導電接合したものにおいて、
前記導体ユニットを構成するテープ状超電導線材には、金属基板上に中間層を介してイットリウム系(Y系),ホルミウム系(Ho系)等の酸化物超電導層を成層したテープ状の酸化物超電導線材を採用し、その導体ユニットの端部と電極との間には、各テープ状線材の酸化物超電導層側に面を重ね合わせて良導電性金属の導電スペーサを介挿し、該導電スペーサと酸化物超電導線材および電極との間を導電接合し(請求項1)、具体的には次記のような態様で構成することができる。
(1)前記の導電スペーサを、導体ユニットを構成するテープ状の各超電導線材と個々に対応する重ね合わせ面を形成した段付き形状の銅または銅合金板となし、該導電スペーサの段付き部を超電導線材の端部に重ね合わせ、導電スペーサと超電導線材,電極の間、および導電スペーサの相互間をハンダ接合する(請求項2)。
(2)前記の導電スペーサを、その端面に導体ユニットを構成するテープ状の各超電導線材端部を個別に差し込む凹溝を形成した銅または銅合金のブロックで構成し、前記凹溝に超電導線材の端部を挿入し、導電スペーサと超電導線材および電極の間をハンダ接合する(請求項3)。
(3)前記の超電導電流リードにおいて、導電スペーサとの接合部を除いて、テープ状超電導線材の長手方向に沿った線材相互間の隙間に低熱伝導性の絶縁スペーサを介挿配置する(請求項4)。
In order to achieve the above object, according to the present invention, there is provided a superconducting current lead for supplying power to a superconducting device cooled by a cryogenic refrigerant such as liquid helium or liquid nitrogen, or a refrigerator, etc. A metal electrode in which a lead unit is laid and arranged on the circumferential surface of a cylindrical or columnar support member, and the conductor units are formed by laminating a plurality of tape-shaped superconducting wires and assembled to each other. In what is conductively joined between the conductor unit and
The tape-shaped superconducting wire constituting the conductor unit includes a tape-shaped oxide superconducting layer in which an yttrium-based (Y-based), holmium-based (Ho-based) oxide superconducting layer is formed on a metal substrate via an intermediate layer. A wire rod is used, and between the end of the conductor unit and the electrode, a surface of the tape-shaped wire rod is superposed on the oxide superconducting layer side and a conductive spacer made of a highly conductive metal is inserted, and the conductive spacer and The oxide superconducting wire and the electrode are conductively bonded (claim 1), and specifically, can be configured in the following manner.
(1) The conductive spacer is formed of a stepped copper or copper alloy plate formed with a superposed surface corresponding to each tape-shaped superconducting wire constituting the conductor unit, and a stepped portion of the conductive spacer. Are superposed on the end of the superconducting wire, and solder bonding is performed between the conductive spacer, the superconducting wire, the electrodes, and between the conductive spacers.
(2) The conductive spacer is composed of a copper or copper alloy block formed with a concave groove into which the end of each tape-like superconducting wire constituting the conductor unit is individually inserted on the end face, and the superconducting wire is formed in the concave groove. Are inserted, and solder bonding is performed between the conductive spacer, the superconducting wire, and the electrode.
(3) In the above-mentioned superconducting current lead, a low thermal conductive insulating spacer is interposed in the gap between the wires along the longitudinal direction of the tape-shaped superconducting wire, except for the joint with the conductive spacer. 4).

上記構成の超電導電流リード(低温側リード部)によれば、複数枚を積層して集合化したテープ状酸化物超電導線材には、その線材端部に重ね合わせて面接合した導電スペーサを介して電極からの電流が各線材に均等に流れるようになる。しかも、各線材と導電スペーサとの間に大きな接合面積(導電面積)が確保できて通電性が向上する。これにより、従来構造で問題となっていた特定な線材への電流の偏り集中が解消され、金属基板に絶縁性の中間層を介して酸化物超電導層を成層した次世代のテープ状酸化物超電導線材を採用して超電導電流リードの大容量化が容易に達成できる。   According to the superconducting current lead (low temperature side lead portion) having the above-described configuration, the tape-shaped oxide superconducting wire assembled by laminating a plurality of sheets is connected to the end of the wire through a conductive spacer surface-bonded. The electric current from the electrodes flows evenly through the wires. In addition, a large bonding area (conductive area) can be ensured between each wire and the conductive spacer, and the conductivity is improved. This eliminates the concentration of current bias on specific wires, which has been a problem with conventional structures, and is a next-generation tape-shaped oxide superconductor in which an oxide superconductor layer is formed on a metal substrate via an insulating intermediate layer. Large capacity of the superconducting current lead can be easily achieved by using the wire.

また、導電スペーサとの接合部を除いて、テープ状超電導線材の長手方向に沿った線材相互間の隙間に低熱伝導性の絶縁スペーサを介挿配置することにより、高温側からの伝導熱侵入増加を抑制しつつ、脆くて割れやすい性質の酸化物超電導層を安全に保護できる。   In addition, the heat conduction penetration from the high temperature side is increased by placing low thermal conductivity insulating spacers in the gaps between the wires along the longitudinal direction of the tape-shaped superconducting wire, excluding the junction with the conductive spacer. It is possible to safely protect an oxide superconducting layer that is brittle and easily cracked.

以下、この発明の実施の形態を図1〜図4に示す実施例に基づいて説明する。なお、図1は超電導コイル装置に適用した超電導電流リード全体の構成図、図2(a),(b)は実施例1に対応する低温側リード部の構成断面図,およびその導体ユニットの拡大断面図、図3(a),(b)は図2(a)の矢視Y−Yに沿った低温側リード部の軸方向の断面図,および要部の拡大断面図、図4は実施例2に対応する低温側リード部の要部断面図であり、各図において図5〜図7に対応する部材には同じ符号を付している。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. 1 is a configuration diagram of the entire superconducting current lead applied to the superconducting coil device, FIGS. 2A and 2B are configuration cross-sectional views of the low-temperature side lead portion corresponding to Example 1, and an enlarged conductor unit thereof. 3 (a) and 3 (b) are cross-sectional views in the axial direction of the low-temperature lead portion along the line YY in FIG. 2 (a), and an enlarged cross-sectional view of the main part. FIG. It is principal part sectional drawing of the low temperature side lead part corresponding to Example 2, and the same code | symbol is attached | subjected to the member corresponding to FIGS. 5-7 in each figure.

この実施例1の超電導電流リード3は基本的に図5〜図7に示した従来構造と同様であるが、その低温側リード部5の支持部材6の周上に敷設した導体ユニット7を構成するテープ状の超電導線材として、図8で述べたテープ状の酸化物超電導線材10を採用し、このテープ状酸化物超電導線材10の複数枚を積層して支持部材6の周面に形成した凹溝内に敷設している。   The superconducting current lead 3 of the first embodiment is basically the same as the conventional structure shown in FIGS. 5 to 7, but constitutes a conductor unit 7 laid on the periphery of the support member 6 of the low temperature side lead portion 5. As the tape-shaped superconducting wire, the tape-shaped oxide superconducting wire 10 described in FIG. 8 is adopted, and a plurality of the tape-shaped oxide superconducting wires 10 are laminated and formed on the peripheral surface of the support member 6. It is laid in the groove.

ここで、テープ状の酸化物超電導線材10は各線材の超電導層を上に向けて配置した上で、低温側リード部5の両端に配した電極9と各線材10の両端との間には図3(a),(b)で示すように先端部の下面側を厚さ半分ほど切り欠いた段付き形状の導電スペーサ11を介挿し、該導電スペーサ11の段付き部11aを超電導線材10の上面端部に重ね合わせた上で、導電スペーサ11/テープ状酸化物超電導線材10,導電スペーサ11/電極9の間、および上下に重なる導電スペーサ11の相互間をハンダ接合している。   Here, the tape-shaped oxide superconducting wire 10 is disposed with the superconducting layer of each wire facing upward, and between the electrodes 9 disposed at both ends of the low temperature side lead portion 5 and both ends of each wire 10. As shown in FIGS. 3A and 3B, a stepped conductive spacer 11 in which the lower surface side of the tip portion is cut out by a half thickness is inserted, and the stepped portion 11 a of the conductive spacer 11 is connected to the superconducting wire 10. Then, the conductive spacer 11 / tape-shaped oxide superconducting wire 10, the conductive spacer 11 / electrode 9, and the conductive spacers 11 that overlap each other are soldered.

また、上下に並ぶ複数枚の酸化物超電導線材10の相互間には、線材間の隙間を埋めるように両端の接合部を除いた長手方向の領域にFRP等で作られた低熱伝導性の絶縁スペーサ12を介挿し、高温側からの伝導熱侵入を抑えつつ、脆くて割れやすい線材の酸化物超電導層を保護するようにしている。   Also, between the plurality of oxide superconducting wires 10 arranged vertically, a low thermal conductivity insulation made of FRP or the like in the longitudinal region excluding the joints at both ends so as to fill the gaps between the wires. The spacer 12 is inserted to protect the oxide superconducting layer of the wire that is brittle and easily broken while suppressing conduction heat penetration from the high temperature side.

上記した低温側リード部5の組立構造によれば、複数枚を積層して支持部材6の周面に敷設したテープ状の各酸化物超電導線材10は、その両端部が長手方向に面と面を重ね合わせて導電接合した導電スペーサ11を介して電極9に並列接続される。したがって、電極9から導電スペーサ11を経て各酸化物超電導線材10に流れる電流は、特定の線材に集中することなく各線材に均等に流れるようになる。これにより、片面しか電流が流れない次世代のテープ状酸化物超電導線材10(図8参照)を採用し、この線材を複数枚積層して集合化することで、通電容量の大きな高温超電導電流リードを容易に構成できる。   According to the assembly structure of the low-temperature-side lead portion 5 described above, each of the tape-shaped oxide superconducting wires 10 laminated in a plurality of layers and laid on the peripheral surface of the support member 6 has both ends in the longitudinal direction. Are connected in parallel to the electrode 9 through a conductive spacer 11 which is conductively bonded by overlapping. Therefore, the current flowing from the electrode 9 to each oxide superconducting wire 10 through the conductive spacer 11 flows evenly to each wire without concentrating on the specific wire. As a result, the next generation tape-shaped oxide superconducting wire 10 (see FIG. 8) in which current flows only on one side is adopted, and a plurality of these wires are stacked and assembled to provide a high-temperature superconducting current lead having a large current carrying capacity. Can be configured easily.

なお、図示例の支持部材6は円筒状であるが、円柱状の支持部材を用いて低温側リード部を構成することもできる。   In addition, although the supporting member 6 in the illustrated example is cylindrical, the low-temperature-side lead portion can be configured using a columnar supporting member.

次に、この発明の請求項3に対応する実施例2の構成を図4に示す。すなわち、先記の実施例1では、導電スペーサ11をテープ状の各酸化物超電導線材10と個々に対応させた段付き形状の銅板で構成しているのに対して、この実施例2では導電スペーサ13が銅のブロック体になる。そして、この導電スペーサ13の端面には複数枚のテープ状酸化物超電導線材10と個々に対応する凹溝13aがあらかじめ切込み形成されており、低温側リード部5の組立時にテープ状酸化物超電導線材10の端部を前記凹溝13aに一枚ずつ差し込んだ上で、導電スペーサ13との間をハンダ接合するようにしている。なお、前記接合部を除いて各酸化物超電導線材10の相互間には、実施例1と同様に線材の長手方向に沿って絶縁スペーサ12を介挿している。   Next, FIG. 4 shows the configuration of Embodiment 2 corresponding to claim 3 of the present invention. That is, in the first embodiment, the conductive spacer 11 is formed of a stepped copper plate individually corresponding to each tape-shaped oxide superconducting wire 10, whereas in the second embodiment, the conductive spacer 11 is conductive. The spacer 13 becomes a copper block body. A plurality of tape-shaped oxide superconducting wires 10 and concave grooves 13a corresponding to the respective tape-shaped oxide superconducting wires 10 are cut in advance on the end face of the conductive spacer 13, and the tape-shaped oxide superconducting wires are assembled when the low temperature side lead portion 5 is assembled. 10 end portions are inserted into the concave grooves 13a one by one, and then the conductive spacers 13 are soldered together. Insulating spacers 12 are interposed between the oxide superconducting wires 10 except for the joints along the longitudinal direction of the wires as in the first embodiment.

超電導コイル装置に適用したこの発明の実施例1に係わる超電導電流リードの構成図Configuration diagram of superconducting current lead according to Embodiment 1 of the present invention applied to a superconducting coil device 図1における低温側リード部の構成図で、(a)は図1の矢視X−X断面図、(b)は(a)における導体ユニットの拡大断面図FIG. 2 is a configuration diagram of a low-temperature side lead portion in FIG. 1, (a) is a cross-sectional view taken along the line XX in FIG. 図1における低温側リード部の詳細構造図で、(a)は図2(a)の矢視Y−Yに沿った縦断面図、(b)は(a)のA部拡大図2A and 2B are detailed structural views of a low-temperature lead portion in FIG. 1, wherein FIG. 2A is a longitudinal sectional view taken along the line YY in FIG. 2A, and FIG. この発明の実施例2に係わる低温側リード部の要部構造を表す断面図Sectional drawing showing the principal part structure of the low temperature side lead part concerning Example 2 of this invention 超電導コイル装置に適用した超電導電流リードの従来構成図Conventional configuration diagram of superconducting current lead applied to superconducting coil device 図5における低温側リード部の構成図で、(a)は図5の矢視X−X断面図、(b)は(a)における導体ユニットの拡大断面図FIG. 6 is a configuration diagram of the low-temperature-side lead portion in FIG. 5, (a) is a cross-sectional view taken along the line XX in FIG. 図5における低温側リード部の詳細構造図で、(a)は図5(a)の矢視Y−Yに沿った縦断面図、(b)は(a)のA部拡大図FIG. 6 is a detailed structural view of the low-temperature-side lead portion in FIG. 5, (a) is a longitudinal sectional view taken along the line YY in FIG. 次世代のテープ状酸化物超電導線材の模式構造図Schematic structure diagram of next-generation tape-shaped oxide superconducting wire

符号の説明Explanation of symbols

1 極低温容器
2 超電導コイル
3 超電導電流リード
4 高温側リード部
5 低温側リード部
6 円筒状支持部材
7 導体ユニット
9 電極
10 テープ状酸化物超電導線材
11 段付き形状の導電スペーサ
11a 段付き部
12 絶縁スペーサ
13 ブロック体の導電スペーサ
13a 凹溝
DESCRIPTION OF SYMBOLS 1 Cryogenic container 2 Superconducting coil 3 Superconducting current lead 4 High temperature side lead part 5 Low temperature side lead part 6 Cylindrical support member 7 Conductor unit 9 Electrode 10 Tape-shaped oxide superconducting wire 11 Stepped conductive spacer 11a Stepped part 12 Insulating spacer 13 Conductive spacer 13a of block body

Claims (4)

低温冷媒,ないしは冷凍機により冷却される超電導装置に電力を供給する超電導電流リードであって、その低温側リード部が、複数枚のテープ状超電導線材を積層して集合化した導体ユニットを円筒,または円柱状の支持部材の周面に配列して敷設し、かつ前記支持部材の両端に配した金属電極と前記導体ユニットとの間を導電接合したものにおいて、
前記導体ユニットを構成するテープ状超電導線材には、金属基板上に中間層を介して酸化物超電導層を成層したテープ状の酸化物超電導線材を採用し、その導体ユニットの端部と電極との間には、各テープ状線材の酸化物超電導層側の端部に面を重ね合わせて導電スペーサを介挿し、該導電スペーサと酸化物超電導線材および電極との間を導電接合したことを特徴とする超電導電流リード。
A superconducting current lead for supplying power to the superconducting device which is more cooled to cryogenic refrigerant, or refrigerator, the cold side lead section, the conductor unit which is aggregated by stacking a plurality of tape-shaped superconducting wires In the cylindrical or columnar support member arranged and laid on the peripheral surface, and conductively bonded between the metal electrode and the conductor unit disposed on both ends of the support member,
Wherein the tape-shaped superconducting wires constituting the conductor units, the tape-shaped oxide superconducting wire obtained by stratification of oxides superconducting layer via an intermediate layer on a metal substrate is adopted, the end portion and the electrodes of the conductor unit In between, the surface is overlapped with the end portion of each tape-shaped wire on the oxide superconducting layer side, a conductive spacer is inserted, and the conductive spacer is electrically connected to the oxide superconducting wire and the electrode. Superconducting current lead.
請求項1に記載の超電導電流リードにおいて、導電スペーサが、導体ユニットを構成するテープ状の各酸化物超電導線材と個々に対応する重ね合わせ面を形成した段付き形状の銅または銅合金板であり、該導電スペーサの段付き部を前記酸化物超電導線材の端部に重ね合わせ、導電スペーサと酸化物超電導線材,電極の間、および導電スペーサの相互間をハンダ接合したことを特徴とする超電導電流リード。 2. The superconducting current lead according to claim 1, wherein the conductive spacer is a stepped copper or copper alloy plate in which overlapping surfaces respectively corresponding to the tape-shaped oxide superconducting wires constituting the conductor unit are formed. the stepped portions of the conductive spacer superimposed on an end portion of the oxide superconducting wire, conductive spacers and the oxide superconducting wire, between the electrodes, and the superconducting current between mutual conductive spacers, characterized in that the solder joint Lead. 請求項1に記載の超電導電流リードにおいて、導電スペーサが、その端面に導体ユニットを構成するテープ状の各超電導線材端部を個別に差し込む凹溝を形成した銅または銅合金のブロックであり、その凹溝に前記酸化物超電導線材の端部を挿入し、導電スペーサと酸化物超電導線材および電極の間をハンダ接合したことを特徴とする超電導電流リード。 2. The superconducting current lead according to claim 1, wherein the conductive spacer is a block of copper or copper alloy in which a concave groove for individually inserting a tape-like end of each superconducting wire constituting the conductor unit is formed on the end surface thereof, A superconducting current lead, wherein an end portion of the oxide superconducting wire is inserted into a groove and soldered between the conductive spacer, the oxide superconducting wire and the electrode. 請求項1ないし3のいずれかの項に記載の超電導電流リードにおいて、導電スペーサとの接合部を除いて、テープ状酸化物超電導線材の長手方向に沿った線材相互間の隙間に絶縁スペーサを介挿配置したことを特徴とする超電導電流リード。
A superconducting current lead according to any one of claims 1 to 3, with the exception of the junction between the conductive spacer, the insulation spacer in a gap between the wires mutually in the longitudinal direction of the tape-shaped oxide superconducting wire A superconducting current lead characterized by being disposed.
JP2008105568A 2008-04-15 2008-04-15 Superconducting current lead Expired - Fee Related JP5266852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105568A JP5266852B2 (en) 2008-04-15 2008-04-15 Superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105568A JP5266852B2 (en) 2008-04-15 2008-04-15 Superconducting current lead

Publications (2)

Publication Number Publication Date
JP2009259520A JP2009259520A (en) 2009-11-05
JP5266852B2 true JP5266852B2 (en) 2013-08-21

Family

ID=41386704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105568A Expired - Fee Related JP5266852B2 (en) 2008-04-15 2008-04-15 Superconducting current lead

Country Status (1)

Country Link
JP (1) JP5266852B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421170B2 (en) * 2010-03-30 2014-02-19 株式会社東芝 Superconducting current lead
JP2012074340A (en) * 2010-09-01 2012-04-12 Fujikura Ltd High-temperature superconducting cable
US9389290B2 (en) 2011-06-13 2016-07-12 General Electric Company System and method for insulating a cryogen vessel
JP2017530668A (en) * 2014-08-08 2017-10-12 古河電気工業株式会社 Current limiting device and method of manufacturing current limiting device
CN116665986B (en) * 2023-07-26 2023-10-13 西安聚能超导线材科技有限公司 Method for reducing binding force of WIC superconducting wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254788B2 (en) * 1992-03-04 2002-02-12 三菱電機株式会社 Current limiting conductor using oxide superconducting film and method of manufacturing the same
JPH09153407A (en) * 1995-11-30 1997-06-10 Hitachi Ltd Support structure of oxide superconducting current lead
JP3357820B2 (en) * 1997-09-12 2002-12-16 株式会社東芝 Connection device and superconducting magnet
JP2002064014A (en) * 2000-08-16 2002-02-28 Japan Atom Energy Res Inst Superconductive current lead
JP4599807B2 (en) * 2003-05-01 2010-12-15 富士電機システムズ株式会社 Current leads for superconducting equipment
JP4838199B2 (en) * 2007-06-11 2011-12-14 昭和電線ケーブルシステム株式会社 Oxide superconducting current lead
JP5011181B2 (en) * 2008-03-19 2012-08-29 昭和電線ケーブルシステム株式会社 Oxide superconducting current lead
JP5022279B2 (en) * 2008-03-19 2012-09-12 昭和電線ケーブルシステム株式会社 Oxide superconducting current lead

Also Published As

Publication number Publication date
JP2009259520A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP5266852B2 (en) Superconducting current lead
JP5005582B2 (en) Superconducting current lead manufacturing method
JP6505565B2 (en) Connection structure of high temperature superconducting conductor, high temperature superconducting coil and high temperature superconducting coil
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
JP5022279B2 (en) Oxide superconducting current lead
JP5375042B2 (en) Superconducting coil for induction equipment
JP5531664B2 (en) Superconducting current lead
JP3151159B2 (en) Superconducting current lead
JP2012256744A (en) Superconductive coil
Terazaki et al. Measurement of the joint resistance of large-current YBCO conductors
JP6738720B2 (en) Superconducting wire connection structure
US7531750B2 (en) Power supply line for cryogenic electrical systems
JP3541123B2 (en) Superconducting current lead
JP5011181B2 (en) Oxide superconducting current lead
JP2008305765A (en) Oxide superconductive current lead
JP4599807B2 (en) Current leads for superconducting equipment
JP2012099573A (en) Superconductive current lead and superconducting magnet device
JP4634954B2 (en) Superconducting device
JP6314022B2 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2002064014A (en) Superconductive current lead
JP4337253B2 (en) Superconducting current lead
JP5115245B2 (en) Superconducting current lead
JP5925827B2 (en) Superconducting current lead

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees