JPS62283609A - Gas cooled current supplying lead - Google Patents

Gas cooled current supplying lead

Info

Publication number
JPS62283609A
JPS62283609A JP61126401A JP12640186A JPS62283609A JP S62283609 A JPS62283609 A JP S62283609A JP 61126401 A JP61126401 A JP 61126401A JP 12640186 A JP12640186 A JP 12640186A JP S62283609 A JPS62283609 A JP S62283609A
Authority
JP
Japan
Prior art keywords
current supply
inner tube
lead
gas
cryogenic refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61126401A
Other languages
Japanese (ja)
Other versions
JPH041483B2 (en
Inventor
Shigeru Murai
村井 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61126401A priority Critical patent/JPS62283609A/en
Publication of JPS62283609A publication Critical patent/JPS62283609A/en
Publication of JPH041483B2 publication Critical patent/JPH041483B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To simplify the construction of a gas cooled current supplying lead and to reduce the size of the lead by constructing to discharge evaporated cryogenic refrigerant through an air gap between an outer tube and an inner tube in which a lower end is mounted in a cryogenic refrigerant vessel and the inside of the inner tube from a hole for discharging cryogenic refrigerant evaporating gas into the atmosphere to reduce heat invasion amount to the vessel without increasing the length of the lead. CONSTITUTION:An inner tube 2 made of GFRP having small thermal conductivity is disposed through a predetermined air gap inside an outer tube 1 mounted by welding or the like on a cryogenic refrigerant vessel, a plurality of holes 2b for discharging liquid helium evaporating gas are provided along circumferential direction at the upper end, a plurality of current supplying conductors 3 are so wound spirally along the tube 2 as to be longer than the tube 2, a lead terminal 4 is connected, and a current flows to the superconducting coil of a superconducting magnet. The evaporated liquid helium is discharged from the holes 2b through the inside of the tube 2 into the atmosphere to cool the conductors 3.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は極低温冷媒容器に収容した極低温冷媒中に浸漬
冷却された超電導マグネットへ、常温環境下におかれた
励磁用電源から電流を供給するための電流供給リードの
改良に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention provides a superconducting magnet that has been immersed in a cryogenic refrigerant housed in a cryogenic refrigerant container and is cooled at room temperature. This invention relates to an improvement in a current supply lead for supplying current from an excitation power source placed in an environment.

(従来の技術) 従来、極低温冷媒容器に収容した液体ヘリウム等の極低
温冷媒中に浸漬冷却された超電導マグネットの超電導フ
ィルに、常温環境下におかれた励磁用電源から電流を供
給するための手段として、電流供給リードが使用されて
きている。そして、この種の電流供給リードに関する技
術については、電流供給リード低fA端での極低温冷媒
への浸入熱に伴う蒸発極低温冷媒によってリード表面と
の熱交換を行ない、電流供給リードをその全長にわたり
冷却して侵入熱を減少させるように構成したガス冷却電
流供給リードがある。
(Prior art) Conventionally, a current is supplied from an excitation power supply placed in a normal temperature environment to the superconducting fill of a superconducting magnet that is immersed and cooled in a cryogenic coolant such as liquid helium stored in a cryogenic coolant container. Current supply leads have been used as a means of Regarding the technology related to this type of current supply lead, heat exchange with the lead surface is performed by the evaporated cryogenic refrigerant accompanying the heat entering the cryogenic refrigerant at the low fA end of the current supply lead, and the current supply lead is extended over its entire length. There are gas cooled current supply leads that are configured to be cooled over a wide area to reduce heat intrusion.

しかしながら、2個以上の複数個の超電導コイルを備え
、これらの各HAN導コクコイルれぞれ独立して励磁す
ることによってIaJl配位を調整するような、例えば
ジャイロ1ヘロン用超電導マグネツト等の超電導マグネ
ットでは、それに伴って電流供給リードの本数が多くな
ることから、各々の電流供給リードに上述のガス冷却電
流供給リードを夫々独立に適用すると、次のような問題
が生じることになる。
However, a superconducting magnet, such as a superconducting magnet for gyro 1 heron, which is equipped with two or more superconducting coils and adjusts the IaJl configuration by independently exciting each of these HAN conductive coils. Then, since the number of current supply leads increases accordingly, if the above-mentioned gas cooling current supply leads are independently applied to each current supply lead, the following problem will occur.

(a)ガス冷却電流供給リードの総断面積が非常に大き
くなり、結果的に極低温冷媒容器への熱侵入量が大きく
なる。
(a) The total cross-sectional area of the gas cooling current supply lead becomes very large, resulting in a large amount of heat entering the cryogenic refrigerant container.

(b)上述の熱侵入量を少なくするためにリードの良さ
を長くすると、ガス冷却電流供給リードの構成が非常に
IJ唯で大形となるばかりでなく、各々のガス流路が狭
くかつ長くなることから、僅かな空気の浸入でも水分に
よってガス流路が閉塞してしまう。
(b) If the quality of the leads is made longer in order to reduce the amount of heat intrusion as described above, not only will the structure of the gas cooling current supply lead become very large and IJ only, but each gas flow path will be narrow and long. As a result, even a small amount of air infiltration causes the gas flow path to become clogged with moisture.

(C)各々の電流供給リードに対する冷却ガス流量のア
ンバランスを生じ易いため、リード断面の選定、ガス冷
却管の設計等、各々の電流供給リードに最適な限界設計
を行なうことが出来ない。
(C) Since the cooling gas flow rate for each current supply lead is likely to be unbalanced, it is not possible to perform optimal limit design for each current supply lead, such as selection of lead cross section and design of gas cooling pipe.

(発明が解決しようとする問題点) 以上のように、従来のガス冷部電流供給リードにおいて
は、極低温冷媒容器への熱侵入量が大きく、構成が複雑
で大形であるばかりでなく、電流供給リードに最適な限
界設計を行なうことが出来ないという問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional gas cold section current supply lead, the amount of heat entering the cryogenic refrigerant container is large, and the structure is complicated and large. There was a problem in that it was not possible to perform an optimal limit design for the current supply lead.

そこで本発明では、リードの良さを長くすることなく極
低温冷媒容器への熱浸入量を少なくし、構成の簡単化な
らびに小形化を図り、しかもR通な限界設計を行なうこ
とが可能な信頼性の高いガス冷却電流供給リードを提供
することを目的とするものである。
Therefore, in the present invention, the amount of heat intrusion into the cryogenic refrigerant container is reduced without increasing the length of the lead, the structure is simplified and the size is reduced, and reliability is achieved that allows for R-oriented limit design. The purpose of this invention is to provide a gas-cooled current supply lead with a high temperature.

[発明の構成] (問題点を解決するための手段) 上記の目的を達成す・るために本発明では、極低温冷媒
容器に収容した極低温冷媒中に浸漬冷却された超電導マ
グネットへ、常mIW境下におかれた励磁用電源から電
流を供給するための12i!供給リードにおいて、上記
極低温冷媒容器に下端部が取付けられた外管と、上端部
側に極低温冷媒蒸発ガス放出用の穴を有し、上記外管の
内側に一定の空隙を存して配設された内管と、この内管
の外周側に当該内管の長さよりも長くなるように巻回さ
れ、常温環境下のリード端子を介して上記超電導マグネ
ットの超電導コイルに電流を供給する複数本の電流供給
用導体とを備えて成り、蒸発した極低温冷媒を、上記外
管と内管との間の空隙部を通し上記極低温冷媒蒸発ガス
放出用穴より内情の内側を通して大気中へ放出する構成
としたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a superconducting magnet that is immersed and cooled in a cryogenic refrigerant housed in a cryogenic refrigerant container. 12i! for supplying current from the excitation power supply placed under mIW! The supply lead has an outer tube whose lower end is attached to the cryogenic refrigerant container, a hole on the upper end side for releasing evaporated gas of the cryogenic refrigerant, and a certain gap inside the outer tube. A current is supplied to the superconducting coil of the superconducting magnet through the arranged inner tube and the lead terminal, which is wound around the outer circumferential side of the inner tube so as to be longer than the length of the inner tube, and is in a normal temperature environment. The evaporated cryogenic refrigerant is passed through the gap between the outer tube and the inner tube and into the atmosphere through the cryogenic refrigerant evaporated gas release hole. It is characterized by having a configuration in which it emits to.

(作用) 上述のガス冷却電流供給リードにおいては、超電導マグ
ネットのX!電導コイルに電流を供給するための複数本
の電流供給用導体を、外管と内管との間の空隙により形
成される単一のガス流路に共通に配置していることから
、このガス流路を通過する蒸発した極低温冷媒により、
各々の′R電流供給用導体流量アンバランスを生じるこ
となく冷却されることになる。また、複数本の電流供給
用導体を単一のガス冷却管内に配置していることから、
極低温冷媒容器への熱侵入量が低減されることになる。
(Function) In the above-mentioned gas-cooled current supply lead, the superconducting magnet's X! This gas is The evaporated cryogenic refrigerant passing through the flow path causes
Each 'R current supply conductor is cooled without causing an unbalance in flow rate. In addition, since multiple current supply conductors are placed within a single gas cooling pipe,
The amount of heat intrusion into the cryogenic refrigerant container will be reduced.

ざらに、上述の熱浸入量の軽減によりガス冷却管の長さ
を長くしなくてもよいことから、構成が簡単でしかもコ
ンパクトなものとなる。
In general, the above-mentioned reduction in the amount of heat penetration eliminates the need to increase the length of the gas cooling pipe, resulting in a simple and compact configuration.

(実施例) 以下、本発明を図面に示す一実施例を参照して説明する
(Example) The present invention will be described below with reference to an example shown in the drawings.

第1図は本発明によるガス冷却電流供給リードの構成例
を示す縦断面図、また第2図は第1図における平面図を
示すものである。
FIG. 1 is a longitudinal sectional view showing an example of the configuration of a gas-cooled current supply lead according to the present invention, and FIG. 2 is a plan view of FIG. 1.

図において、1・は上端部に図示しない真空容器に連結
されるフランジ1aを有し、@えばステンレスからなる
外管であり、その下端部を極低温冷媒である液体ヘリウ
ムが収容された図示しない極低温冷媒容器に溶接等によ
り取付けている。一方、2は上端部にフランジ2aを有
し1例えば熱伝導の小さいGFRPからなる内管であり
、上記外管1の内側に図示の如く一定の空隙を存して配
設している。また、この内管2は上端部側の図示位置に
9周方向に沿って液体ヘリウム蒸発ガス放出用の複数個
の穴2bを有し、この液体ヘリウム蒸発ガス放出用穴2
bよりも下方の内管2外周側には。
In the figure, 1 is an outer tube made of stainless steel, with a flange 1a connected to a vacuum container (not shown) at its upper end, and its lower end is filled with liquid helium (not shown), which is a cryogenic refrigerant. It is attached to the cryogenic refrigerant container by welding, etc. On the other hand, 2 is an inner tube having a flange 2a at its upper end and made of, for example, GFRP with low thermal conductivity, and is disposed inside the outer tube 1 with a certain gap as shown in the figure. Further, this inner tube 2 has a plurality of holes 2b for releasing liquid helium evaporative gas along the nine circumferential directions at the illustrated position on the upper end side, and the holes 2b for releasing liquid helium evaporative gas
On the outer circumferential side of the inner tube 2 below b.

当該内管2の長さよりも長くなるように複数本(本例で
は2本)の電流供給用導体3を内管2に沿ってら線状に
巻回している。ざらに、この2本の電流供給用導体3に
は常瀧環塊下のリード端子4を接続し、常温環境下にお
かれた励磁用N8!からこのリード端子4を介して1図
示しない超電導マグネットの超電導コイルに電流を供給
するようにしている。以上のようにして、蒸発した液体
ヘリウムを、上記外管1と内管2との間の空隙部を通し
上記極低温冷媒蒸発ガス放出用穴2bより内管2の内側
を通して大気中へ放出する構成とすることにより、各々
の電流供給用導体3を冷却するようにしている。なお、
上述の電流供給用導体3の材料としては、例えば熱伝導
の小さい銅(りん脱酸銅)を用いる。また、内管2の下
端部から極低温冷媒蒸発ガス放出用穴2bにかけては、
その内部に液体ヘリウムガスの管内への侵入を阻止する
ために1例えば発泡スチロールを詰物5として詰め込ん
でいる。
A plurality of (two in this example) current supply conductors 3 are wound in a spiral along the inner tube 2 so as to be longer than the length of the inner tube 2. Roughly speaking, the lead terminal 4 under the Tsunetaki ring block was connected to these two current supply conductors 3, and the excitation N8! was placed in a normal temperature environment. A current is supplied from the lead terminal 4 to a superconducting coil of a superconducting magnet (not shown). As described above, the evaporated liquid helium is released into the atmosphere through the gap between the outer tube 1 and the inner tube 2 through the cryogenic refrigerant evaporated gas release hole 2b and inside the inner tube 2. With this configuration, each current supply conductor 3 is cooled. In addition,
As the material for the above-described current supply conductor 3, for example, copper (phosphorus-deoxidized copper) having low thermal conductivity is used. In addition, from the lower end of the inner tube 2 to the hole 2b for releasing cryogenic refrigerant evaporative gas,
In order to prevent liquid helium gas from entering the pipe, for example, foamed polystyrene is packed as a filler 5 inside the pipe.

かかる構成のガス冷却電流供給リードにおいては、複数
本の電流供給用導体3を、外管1および内管2からなる
単一のガス冷却管内に共通に配置していることから、ガ
ス冷却電流供給リードの総断面積が著しく小さくなり、
結果的に極低温冷媒容器への熱侵入量を大幅に低減する
ことが可能となる。また、複数本の電流供給用導体3を
外管1と内管2との間の空隙により形成される単一のガ
ス流路に共通に配置していることから、このガス流路を
通過する蒸発した液体ヘリウムにより、各々の電流供給
用導体3が流山アンバランスを生じることなく均一に冷
却されて冷却効率を高めることができる。これにより、
リード断面の選定、ガス冷却管の設計等、各々の電流供
給用導体に最適な限界設計を行なうことが可能となる。
In the gas cooling current supply lead having such a configuration, since the plurality of current supply conductors 3 are commonly arranged in a single gas cooling pipe consisting of the outer tube 1 and the inner tube 2, the gas cooling current supply lead is The total cross-sectional area of the lead becomes significantly smaller,
As a result, it becomes possible to significantly reduce the amount of heat entering the cryogenic refrigerant container. In addition, since the plurality of current supply conductors 3 are commonly arranged in a single gas flow path formed by the gap between the outer tube 1 and the inner tube 2, the current supply conductors 3 are arranged in common in a single gas flow path formed by the gap between the outer tube 1 and the inner tube 2. The evaporated liquid helium cools each current supply conductor 3 uniformly without causing flow imbalance, thereby increasing cooling efficiency. This results in
It becomes possible to perform optimal limit design for each current supply conductor, such as selection of lead cross section and design of gas cooling pipe.

ざらに、極低温冷媒容器への熱侵入量を少なくするため
に、電流供給用導体3の長さは長くしても、外管1およ
び内管2からなるガス冷却管の長さは短かくて済むこと
から、ガス冷却電流供給リードの構成が極めて間中で小
形となるばかりでなく、ガス流路が広くかつ短かくなる
ため、従来のように僅かな空気の侵入に伴う水分によっ
てガス流路が閉塞するというような事も無くなる。ざら
にまた、電流供給用導体3の本数が複数本であってもガ
ス冷却管は1本でよいことから、極低温容器上面のスペ
ースが少なくて済み、液体ヘリウムの回収または放出用
の配管も1系統で済むため、ガス冷却電流供給リードの
設置が極めて容易となる。
Roughly speaking, in order to reduce the amount of heat intrusion into the cryogenic refrigerant container, even if the length of the current supply conductor 3 is long, the length of the gas cooling pipe consisting of the outer tube 1 and the inner tube 2 is short. This not only makes the structure of the gas-cooled current supply lead extremely compact and compact, but also makes the gas flow path wider and shorter. There will no longer be any road blockages. In addition, even if there are multiple current supply conductors 3, only one gas cooling pipe is required, so less space is required on the top of the cryogenic container, and piping for recovering or discharging liquid helium is also required. Since only one system is required, installation of gas cooling current supply leads is extremely easy.

尚、本発明は上述した実施例に限定されるものではなく
、次のようにしても同様に実施することができるもので
ある。
It should be noted that the present invention is not limited to the embodiments described above, but can be similarly implemented in the following manner.

(a)上記実施例では、電流供給用導体3の材料として
は熱伝導の小さい銅を用いたが、これに限らずその他の
熱伝導の小さい材料を用いて形成するようにしてもよい
ものである。
(a) In the above embodiment, the current supply conductor 3 is made of copper, which has low thermal conductivity, but is not limited to this, and may be formed using other materials with low thermal conductivity. be.

(b)上記実施例では、本発明をジャイロトロン用超電
導マグネットに適用した場合を述べたが、これに限らず
その他の超電導マグネットについても本発明を同様に適
用することができるものである。
(b) In the above embodiment, the present invention was applied to a superconducting magnet for a gyrotron, but the present invention is not limited to this and can be similarly applied to other superconducting magnets.

(C)上記実施例では、電流供給用導体3を内管2にら
線状に巻回した場合をjホべたが、これに限らず内管2
の長さよりも長くなるように、その他の所定の形状に巻
回するようにしてもよいものである。
(C) In the above embodiment, the case where the current supply conductor 3 is wound linearly around the inner tube 2 is described, but the present invention is not limited to this.
It may be wound in other predetermined shapes so that the length is longer than that of .

(d)上記実施例では、8本の電流供給用導体3を内管
2に巻回した場合を述べたが、これに限らず2本以上の
複数本の電流供給用導体3を内管2に巻回するようにし
てもよいものである。
(d) In the above embodiment, a case has been described in which eight current supply conductors 3 are wound around the inner tube 2, but the present invention is not limited to this, and two or more current supply conductors 3 are wound around the inner tube 2. It is also possible to wind it around.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、極低温冷媒容器に
収容した極低温冷媒中に浸漬冷却された超電導マグネッ
トへ、常温環境下におかれた励磁用電源から電流を供給
するための電流供給リードにおいて、上記極低温冷媒容
器に下端部が取付けられた外管と、上端部側に極低温冷
媒蒸発ガス放出用の穴を有し、上記外管の内側に一定の
空隙を存して配設された内管と、この内管の外周側に当
該内管の長さよりも長くなるように巻回され。
[Effects of the Invention] As explained above, according to the present invention, a current is supplied from an excitation power source placed in a normal temperature environment to a superconducting magnet cooled by immersion in a cryogenic refrigerant contained in a cryogenic refrigerant container. In the current supply lead for the purpose of An inner tube is arranged around the inner tube, and the inner tube is wound around the outer circumferential side of the inner tube so as to be longer than the length of the inner tube.

常温環境下のリード端子を介して上記超電導マグネット
の超電導コイルに電流を供給する複数本の電流供給用導
体とを漏えて成り、蒸発した極低温冷媒を、上記外管と
内管との間の空隙部を通し上記極低温冷媒蒸発ガス放出
用穴より内管の内側を通して大気中へ放出する構成とし
たので、リードの長さを長くすることなく極低温冷媒容
器への熱侵入量を少なくし、構成の簡単化ならびに小形
化を図り、しかも最適な限界設計を行なうことが可能な
極めて信頼性の高いガス冷却電流供給リードが提供でき
る。
A plurality of current supply conductors supply current to the superconducting coil of the superconducting magnet through lead terminals in a normal temperature environment, and the evaporated cryogenic refrigerant is transferred between the outer tube and the inner tube. Since the cryogenic refrigerant evaporated gas is released into the atmosphere through the cavity and through the inside of the inner tube from the hole for releasing evaporative gas, the amount of heat intrusion into the cryogenic refrigerant container can be reduced without increasing the length of the lead. Therefore, it is possible to provide an extremely reliable gas-cooled current supply lead that is simple in structure and compact, and allows for optimal limit design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面構成図、第2図
は同実施例における平面図を示すもの  。 である。 1・・・外管、1a・・・フランジ、2・・・内管、2
a・・・フランジ、2b・・・極低温冷媒蒸発ガス放出
用穴、3・・・電流供給用導体、4・・・リード端子、
5・・・詰物。
FIG. 1 is a vertical cross-sectional configuration diagram showing an embodiment of the present invention, and FIG. 2 is a plan view of the same embodiment. It is. 1... Outer tube, 1a... Flange, 2... Inner tube, 2
a... Flange, 2b... Hole for releasing cryogenic refrigerant evaporative gas, 3... Current supply conductor, 4... Lead terminal,
5...Filling.

Claims (3)

【特許請求の範囲】[Claims] (1)極低温冷媒容器に収容した極低温冷媒中に浸漬冷
却された超電導マグネットへ、常温環境下におかれた励
磁用電源から電流を供給するための電流供給リードにお
いて、前記極低温冷媒容器に下端部が取付けられた外管
と、上端部側に極低温冷媒蒸発ガス放出用の穴を有し、
前記外管の内側に一定の空隙を存して配設された内管と
、この内管の外周側に当該内管の長さよりも長くなるよ
うに巻回され、常温環境下のリード端子を介して前記超
電導マグネットの超電導コイルに電流を供給する複数本
の電流供給用導体とを備えて成り、蒸発した極低温冷媒
を、前記外管と内管との間の空隙部を通し前記極低温冷
媒蒸発ガス放出用穴より内管の内側を通して大気中へ放
出する構成としたことを特徴とするガス冷却電流供給リ
ード。
(1) In a current supply lead for supplying current from an excitation power source placed in a normal temperature environment to a superconducting magnet immersed and cooled in a cryogenic refrigerant contained in the cryogenic refrigerant container, It has an outer tube with a lower end attached to it, and a hole on the upper end for releasing cryogenic refrigerant evaporative gas,
An inner tube is disposed with a certain gap inside the outer tube, and the lead terminal is wound around the outer circumference of the inner tube so as to be longer than the length of the inner tube. a plurality of current supply conductors that supply current to the superconducting coil of the superconducting magnet through the superconducting coil, and the evaporated cryogenic refrigerant is passed through the gap between the outer tube and the inner tube to the cryogenic temperature. A gas cooling current supply lead characterized in that the refrigerant evaporated gas is discharged into the atmosphere through the inside of the inner tube through the refrigerant evaporative gas discharge hole.
(2)電流供給用導体の材料としては、熱伝導の小さい
銅を用いるようにしたことを特徴とする特許請求の範囲
第(1)項記載のガス冷却電流供給リード。
(2) The gas-cooled current supply lead according to claim (1), wherein copper, which has low thermal conductivity, is used as the material of the current supply conductor.
(3)電流供給用導体は、内管に沿ってら線状に巻回す
るようにしたことを特徴とする特許請求の範囲第(1)
項記載のガス冷却電流供給リード。
(3) Claim (1) characterized in that the current supply conductor is wound in a spiral shape along the inner tube.
Gas-cooled current supply lead as described in section.
JP61126401A 1986-05-31 1986-05-31 Gas cooled current supplying lead Granted JPS62283609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126401A JPS62283609A (en) 1986-05-31 1986-05-31 Gas cooled current supplying lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126401A JPS62283609A (en) 1986-05-31 1986-05-31 Gas cooled current supplying lead

Publications (2)

Publication Number Publication Date
JPS62283609A true JPS62283609A (en) 1987-12-09
JPH041483B2 JPH041483B2 (en) 1992-01-13

Family

ID=14934241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126401A Granted JPS62283609A (en) 1986-05-31 1986-05-31 Gas cooled current supplying lead

Country Status (1)

Country Link
JP (1) JPS62283609A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283678A (en) * 1990-03-30 1991-12-13 Fuji Electric Co Ltd Current lead of superconducting magnet apparatus
JPH0418774A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Current lead of superconductive magnet device
JP2009230912A (en) * 2008-03-19 2009-10-08 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283678A (en) * 1990-03-30 1991-12-13 Fuji Electric Co Ltd Current lead of superconducting magnet apparatus
JPH0418774A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Current lead of superconductive magnet device
JP2009230912A (en) * 2008-03-19 2009-10-08 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead

Also Published As

Publication number Publication date
JPH041483B2 (en) 1992-01-13

Similar Documents

Publication Publication Date Title
JP2000294399A (en) Superconducting high-frequency acceleration cavity and particle accelerator
GB2422654A (en) Cooling a superconducting magnet
US4655045A (en) Cryogenic vessel for a superconducting apparatus
EP0156240A2 (en) Horizontal cryostat penetration insert and assembly
US4363773A (en) Superconductive electromagnet apparatus
US4707676A (en) Superconducting magnet
US3480895A (en) Coil-supporting structure for superconductive apparatus
JPS62283609A (en) Gas cooled current supplying lead
JPH04573B2 (en)
JPWO2019229923A1 (en) Superconducting magnet
JPS6123306A (en) Cooling device of superconductive coil
JPS61179508A (en) Forced cooling superconductive coil device
EP0694931B1 (en) Improvements in or relating to electromagnets
JPH0560295A (en) Low temperature vessel
CA1103143A (en) Cryostat with refrigerator for superconduction nmr spectrometer
JPS632122B2 (en)
JP2675030B2 (en) Superconducting rotor
JPS6155071B2 (en)
JPH06163251A (en) Cryogenic vessel
JPS6381874A (en) Permanent current switch
JPH05267727A (en) Connecting lead of current lead for superconducting device and power supply
JPS6156850B2 (en)
JPH01277185A (en) Insulation vessel
JPH0656902B2 (en) Superconducting device
JPS60217610A (en) Superconductive device