JPS6155071B2 - - Google Patents
Info
- Publication number
- JPS6155071B2 JPS6155071B2 JP52002906A JP290677A JPS6155071B2 JP S6155071 B2 JPS6155071 B2 JP S6155071B2 JP 52002906 A JP52002906 A JP 52002906A JP 290677 A JP290677 A JP 290677A JP S6155071 B2 JPS6155071 B2 JP S6155071B2
- Authority
- JP
- Japan
- Prior art keywords
- torus
- fusion device
- housed
- low
- nuclear fusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000004927 fusion Effects 0.000 claims description 16
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 claims description 2
- 239000002887 superconductor Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- General Induction Heating (AREA)
Description
【発明の詳細な説明】
本発明はトーラス型核融合装置に係り、特にト
ロイダルコイルが超電導体で形成される超電導ト
ロイダルコイルを採用してなるトーラス型核融合
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torus-type nuclear fusion device, and more particularly to a torus-type nuclear fusion device in which the toroidal coil is a superconducting toroidal coil formed of a superconductor.
一般に、トーラス型核融合装置は、トーラス型
の真空容器を取り囲んで数個、または数十個のト
ロイダルコイルのユニツトを円周上に配置し、か
かるトロイダルコイルによる磁場、及び後述する
ポロイダルコイルによる磁場によつて真空容器に
プラズマを閉じ込め、核融合によるエネルギーを
得るものである。 In general, a torus-type fusion device has several or dozens of toroidal coil units arranged around the circumference of a torus-shaped vacuum vessel, and the magnetic field generated by the toroidal coils and the magnetic field generated by the poloidal coils described later. Therefore, plasma is confined in a vacuum container and energy is obtained through nuclear fusion.
近年、核融合装置の大形化、実用化に伴つてト
ロイダルコイルも、強力で効率の優れたものが要
望され、このようなものとして、従来のような銅
導体に代えて超電導体を用いられるようになつて
きた。 In recent years, as nuclear fusion devices have become larger and more practical, strong and efficient toroidal coils have been required, and superconductors have been used instead of conventional copper conductors. It has become like that.
第1図、及び第2図に超電導体で形成されたト
ロイダルコイルを用いたトーラス型核融合装置の
概略を示す。 FIG. 1 and FIG. 2 schematically show a torus-type nuclear fusion device using a toroidal coil made of a superconductor.
該図において、内部プラズマ(図示せず)を収
納するトーラス状の真空容器1には、図示しない
が超電導体で形成され、液体ヘリウム等の寒剤を
満たした極低温容器内に収納された複数の超電導
トロイダルコイル2が、それを取り囲み、トーラ
ス周方向に所定間隔をもつて配置され、さらにそ
の外側には変流器のポロイダルコイル4〜6、お
よび変流器鉄心3が設けられている。上記ポロイ
ダルコイルのうち、特に4は変流器の一次コイル
である。これらのポロイダルコイル4〜6は、主
としてプラズマの電離、加熱および制御を行なう
ものであり、主として変化電流により励磁が行な
われる。 In the figure, a toroidal vacuum vessel 1 that houses an internal plasma (not shown) has a plurality of vacuum vessels (not shown) made of a superconductor and housed in a cryogenic vessel filled with a cryogen such as liquid helium. Superconducting toroidal coils 2 surround it and are arranged at predetermined intervals in the circumferential direction of the torus, and furthermore, poloidal coils 4 to 6 of the current transformer and current transformer core 3 are provided on the outside thereof. Among the above poloidal coils, 4 in particular is a primary coil of a current transformer. These poloidal coils 4 to 6 mainly perform ionization, heating, and control of plasma, and are mainly excited by changing current.
図示したトーラス型核融合装置において、変流
器の一次コイルであるポロイダルコイル4を一定
の電流変化率で励磁したとすれば、第1図におい
て矢印方向の電界が発生し、近傍の導体部には何
らかの誘起電流が流れる。特に超電導トロイダル
コイル2を用いた場合にはこの超電導トロイダル
コイル2をとりまく低温槽が導電回路を形成する
ため、この部分に誘起電流が流れジユール損失が
発生する。このジユール損失の発生は、超電導ト
ロイダルコイル2の冷却系(通常はヘリウム冷凍
器、またはヘリウム液化器)の熱負荷としては極
めて大きなものとなり、単なる熱損失のみなら
ず、冷却系の在立を危うくする場合もある。 In the illustrated torus-type fusion device, if the poloidal coil 4, which is the primary coil of the current transformer, is excited at a constant current rate of change, an electric field is generated in the direction of the arrow in FIG. Some kind of induced current flows. In particular, when the superconducting toroidal coil 2 is used, the cryostat surrounding the superconducting toroidal coil 2 forms a conductive circuit, so that an induced current flows in this portion and generates a Joule loss. The occurrence of this Joule loss results in an extremely large heat load on the cooling system (usually a helium refrigerator or helium liquefier) of the superconducting toroidal coil 2, and it not only causes a simple heat loss but also threatens the existence of the cooling system. In some cases.
また、超電導体からなるコイルユニツトが液体
ヘリウム等の寒剤を満した極低温容器内に収納さ
れ、これらが共通の断熱真空容器内に収納されて
いるコイルユニツト間に、楔状のスペーサを取り
付け、このスペーサの楔作用によつて各コイルユ
ニツト間に働く電磁力を互いに支持しよとしたも
のが、例えば特開昭50−145795号公報で提案され
ている。しかし、この特開昭50−145795号公報に
示されているスペーサは、電磁力を支持するもの
であるため機械的に優れているものが用いられて
いるが、上述したような、誘起電流が流れた際の
考慮は何ら施されていなかつた。 In addition, coil units made of superconductors are housed in a cryogenic container filled with a cryogen such as liquid helium, and wedge-shaped spacers are installed between the coil units housed in a common insulated vacuum container. For example, Japanese Unexamined Patent Publication No. 145795/1984 proposes a system in which the electromagnetic forces acting between the coil units are mutually supported by the wedge action of a spacer. However, the spacer shown in JP-A-50-145795 is mechanically superior because it supports electromagnetic force, but the induced current as described above is No consideration had been given to what would happen if the water flowed.
本発明は上述の点に鑑み成されたもので、その
目的とするところは、超電導体からなる複数個の
コイルユニツトを、それぞれ独立して収納してな
る低温槽に誘起電流が生じても、それによりジユ
ール熱の発生による熱損失を最少限にすることの
できるトーラス型核融合装置を提供するにある。 The present invention has been made in view of the above-mentioned points, and its purpose is to prevent the generation of induced current in a cryostat in which a plurality of coil units made of superconductors are housed independently. Thereby, it is an object of the present invention to provide a torus-type nuclear fusion device that can minimize heat loss due to generation of Joule heat.
本発明は内部にプラズマが収納されるトーラス
状の真空容器を取り囲み、かつ、トーラス方向に
所定間隔をもつて複数個配置される超電導トロイ
ダルコイルユニツトを、それぞれ独立して収納す
る低温層間に、プラスチツク、繊維強化プラスチ
ツク、及びこれらと金属材料との複合体からなる
電気絶縁層を介在することにより、所期の目的を
達成するようになしたものである。 The present invention surrounds a torus-shaped vacuum vessel in which plasma is housed, and a plurality of superconducting toroidal coil units arranged at predetermined intervals in the direction of the torus are placed between low-temperature layers in which each unit is housed independently. The intended purpose is achieved by interposing an electrically insulating layer made of fiber-reinforced plastic, and a composite of these and a metal material.
以下、図面を実施例に基づいて本発明を説明す
る。 Hereinafter, the present invention will be explained based on the drawings and examples.
第3図に本発明の一実施例を示す。該図に示す
本実施例においても、内部にプラズマ(図示せ
ず)を収納するトーラス状の真空容器1は、トー
ラス方向に所定間隔をもつて複数個配置された超
電導トロイダルコイルユニツト7で取り囲まれて
おり、この各超電導トロイダルコイルユニツト7
は低温槽8内にそれぞれ収納され、そして、各低
温槽8の間には、プラスチツク、繊維強化プラス
チツク、及びこれらの材料と金属材との複合体か
ら選ばれた電気絶縁層10が介在されている。更
に、これら全体は共通の断熱槽9内に収容されて
トーラス型核融合装置を構成している。 FIG. 3 shows an embodiment of the present invention. Also in this embodiment shown in the figure, a torus-shaped vacuum vessel 1 containing plasma (not shown) is surrounded by a plurality of superconducting toroidal coil units 7 arranged at predetermined intervals in the torus direction. Each superconducting toroidal coil unit 7
are respectively housed in cryogenic chambers 8, and an electrically insulating layer 10 selected from plastic, fiber-reinforced plastic, and a composite of these materials and metal materials is interposed between each cryogenic chamber 8. There is. Further, all of these are housed in a common heat insulating tank 9 to constitute a torus type nuclear fusion device.
このような本実施例の構成とすることにより、
複数個の超電導トロイダルコイルユニツト7をそ
れぞれ独立の低温槽8内に収納して電気回路が細
分化され、更に、これら低温層8間はプラスチツ
ク、繊維強化プラスチツク、及びこれらの材料と
金属材との複合体から選ばれた電気絶縁層10に
より絶縁されているため、誘起電流が流れても細
分化された低温層8にはわずかのジユール損失が
発生するだけであり、熱損失も最少限にすること
が可能で、超電導トロイダルコイルユニツト7の
冷却系に及ぼす影響が少なくなる効果がある。 By having the configuration of this embodiment as described above,
A plurality of superconducting toroidal coil units 7 are housed in independent low temperature chambers 8 to subdivide the electric circuit, and furthermore, between these low temperature layers 8 are made of plastic, fiber reinforced plastic, and a combination of these materials and metal materials. Since it is insulated by the electrical insulating layer 10 selected from the composite, only a small amount of joule loss occurs in the subdivided low temperature layer 8 even if an induced current flows, and heat loss is also minimized. This has the effect of reducing the influence on the cooling system of the superconducting toroidal coil unit 7.
次、第4図に本発明の他の実施例を示す。第3
図に示した実施例と異なるところは、独立に設け
られた低温槽8間に冷媒を共通に通すための薄肉
ベローズ等の高抵抗構造から成る連結管11を設
けたことである。 Next, FIG. 4 shows another embodiment of the present invention. Third
The difference from the embodiment shown in the figure is that a connecting pipe 11 made of a high-resistance structure such as a thin bellows is provided for common passage of refrigerant between the independently provided low temperature chambers 8.
このような連結管11を設けたことによつて
も、上述の実施例と同様な効果が得られると共
に、超電導トロイダルコイルユニツト7の強制冷
却および低温槽7の共通槽の共通液面の設定等が
好都合に行なわれるという利点もある。 By providing such a connecting pipe 11, the same effects as in the above-mentioned embodiment can be obtained, as well as forced cooling of the superconducting toroidal coil unit 7, setting of the common liquid level of the common tank of the low temperature chamber 7, etc. Another advantage is that it can be carried out conveniently.
以上説明した本発明のトーラス型核融合装置に
よれば、内部にプラズマが収納されるトーラス状
の真空容器を取り囲み、かつ、トーラス方向に所
定間隔をもつて複数個配置される超電導トロイダ
ルコイルユニツトを、それぞれ独立して収納する
低温層間に、プラスチツク、繊維強化プラスチツ
ク、及びこれらと金属材料との複合体からなる電
気絶縁層を介在したものであるから、各低温層間
は電気絶縁層で絶縁されており、誘起電流が生じ
てもジユール熱の発生による熱損失を最少限にす
ることができ、此種トーラス型核融合装置に採用
する場合には非常に有効である。 According to the toroidal fusion device of the present invention as described above, a plurality of superconducting toroidal coil units surrounding a toroidal vacuum vessel in which plasma is housed and arranged at predetermined intervals in the direction of the torus are provided. , an electrically insulating layer made of plastic, fiber-reinforced plastic, or a composite of these and metal materials is interposed between each independently housed low-temperature layer, so each low-temperature layer is insulated by the electrically insulating layer. Therefore, even if an induced current is generated, heat loss due to the generation of Joule heat can be minimized, and this is very effective when used in this type of torus-type fusion device.
第1図は従来のトーラス型核融合装置を示す水
平断面図、第2図は第1図の−線に沿つた断
面図、第3図は本発明の一実施例を示すトーラス
型核融合装置を一部断面して示す平面図、第4図
は本発明の他の実施例を示す部分断面図である。
1…真空容器、2…超電導トロイダルコイルユ
ニツト、8…低温槽、9…断熱槽、10…電気絶
縁層、11…連結管。
Fig. 1 is a horizontal sectional view showing a conventional torus-type fusion device, Fig. 2 is a sectional view taken along the - line in Fig. 1, and Fig. 3 is a torus-type fusion device showing an embodiment of the present invention. FIG. 4 is a partial sectional view showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Superconducting toroidal coil unit, 8... Low temperature chamber, 9... Heat insulation tank, 10... Electric insulation layer, 11... Connecting pipe.
Claims (1)
空容器を取り囲み、かつ、トーラス方向に所定間
隔をもつて複数個配置される超電導トロイダルコ
イルユニツトを、それぞれ独立した低温層内に収
容すると共に、これらの各低温層を共通の断熱層
内に収納して成るトーラス型核融合装置におい
て、前記低温層間に、プラスチツク、繊維強化プ
ラスチツク、及びこれらと金属材料との複合体か
らなる電気絶縁層を介在したことを特徴とするト
ーラス型核融合装置。 2 前記独立して設けられている低温層間に冷媒
を共通に通すための連結管を設けたことを特徴と
する特許請求の範囲第1項記載のトーラス型核融
合装置。[Scope of Claims] 1 A plurality of superconducting toroidal coil units surrounding a toroidal vacuum vessel in which plasma is housed and arranged at predetermined intervals in the direction of the torus are placed in independent low-temperature layers. In a torus-type nuclear fusion device in which each of these low-temperature layers is housed within a common heat insulating layer, an electrical conductor made of plastic, fiber-reinforced plastic, and a composite of these and metal materials is placed between the low-temperature layers. A torus-type nuclear fusion device characterized by an insulating layer. 2. The torus-type nuclear fusion device according to claim 1, further comprising a connecting pipe for commonly passing a refrigerant between the independently provided low-temperature layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP290677A JPS5388498A (en) | 1977-01-17 | 1977-01-17 | Torus type nuclear fusion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP290677A JPS5388498A (en) | 1977-01-17 | 1977-01-17 | Torus type nuclear fusion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5388498A JPS5388498A (en) | 1978-08-03 |
JPS6155071B2 true JPS6155071B2 (en) | 1986-11-26 |
Family
ID=11542391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP290677A Granted JPS5388498A (en) | 1977-01-17 | 1977-01-17 | Torus type nuclear fusion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5388498A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5646486A (en) * | 1979-09-25 | 1981-04-27 | Hitachi Ltd | Nuclear fusion device |
JPS601809A (en) * | 1983-06-18 | 1985-01-08 | Mitsubishi Electric Corp | Toroidal coil device |
JP5364356B2 (en) | 2008-12-11 | 2013-12-11 | 三菱重工業株式会社 | Superconducting coil device |
-
1977
- 1977-01-17 JP JP290677A patent/JPS5388498A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5388498A (en) | 1978-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0139189B2 (en) | A persistent current switch for high energy superconductive solenoids | |
EP0175495B1 (en) | Superconducting apparatus | |
US3643002A (en) | Superconductive cable system | |
CA1280153C (en) | Conical unimpregnated winding for mr magnets | |
CA1276224C (en) | Superconducting energy storage magnet | |
JPH07142237A (en) | Superconducting magnet device | |
US4910626A (en) | Current limiter | |
US3514730A (en) | Cooling spacer strip for superconducting magnets | |
US3639672A (en) | Electrical conductor | |
US3480895A (en) | Coil-supporting structure for superconductive apparatus | |
US3562684A (en) | Superconductive circuit | |
US5394130A (en) | Persistent superconducting switch for conduction-cooled superconducting magnet | |
JPS6155071B2 (en) | ||
JPS61113218A (en) | Superconductive magnet | |
US3486146A (en) | Superconductor magnet and method | |
US3613006A (en) | Stable superconducting magnet | |
Stekly et al. | A large experimental superconducting magnet for MHD power generation | |
EP0110400B1 (en) | Superconducting wire and method of producing the same | |
US4675637A (en) | Superconducting static machine having a magnetic circuit | |
JPH0570921B2 (en) | ||
AU678191B2 (en) | Division of current between different strands of a superconducting winding | |
JP2821549B2 (en) | Superconducting magnet system | |
Cooper et al. | Fermilab tevatron quadrupoles | |
JPH0955545A (en) | Current lead for superconductive apparatus | |
JP2739159B2 (en) | Toroidal magnet |